制造半导体器件的方法

文档序号:7103678阅读:98来源:国知局
专利名称:制造半导体器件的方法
技术领域
本发明涉及一种制造半导体器件的方法,并且特别涉及ー种制造可以弯曲的挠性半导体器件的方法。
2.相关技术的描述
近年来,供显示器和光电转换元件(比如IXD、有机场致发光显示器、光传感器和太阳能电池)之用的设置在刚性基片(比如玻璃基片)上的半导体元件已经得到了积极开发。另ー方面,就使用硅晶片的元件而言,供移动电话等之用的IC电路片也已经得到了微型化和薄化。此外,不通过接触器(还称为RFID (无线电频率识别)标签、ID标签、IC标签、IC电路片、RF(无线电频率)标签、无线电标签、电子标签或者无线电电路片)发送与接收数据的半导体器件已经得到了积极开发。在任何使用刚性基片(比如用于制造上述半导体器件的玻璃基片或者Si基片等)的情形中,基片的厚度需要随着微型化和薄化的需求而降低。
此外,最近,嵌入纸张中的RFID标签、可以旋绕钢笔的显示器、三维成形轮廓传感器或者彩色传感器、手动滚压PC或者通过改变顔色从而使设计得到改变的衣服等一直需要挠性器件。因此,挠性器件厚度上的降低起着显要的关键作用。
在使用预薄化的基片形成半导体元件以制造薄半导体器件的情形中,由于应カ而产生的基片变形、难于处理以及在平版印刷术印刷步骤中的错位等都成为问题。因而,通常采用在基片上形成半导体元件后使基片薄化的方法。
就通过研磨或者抛光而使基片的厚度降低而言,通常,在使用磨石作为研磨步骤使基片薄化后,使用磨粒作为抛光步骤改善基片平面性的同时,更薄的薄膜得到形成。往往将相对于要抛光的基片具有较低维氏硬度的磨粒用作改善平面性的器件。例如,用于玻璃基片的ニ氧化铈(CeO2),或者用于硅晶片的ニ氧化硅(SiO2)等,它们都具有比基片更低的维氏硬度,这使得它们通过化学反应选择性地仅仅抛光与对象紧密接触的部分成为可能(例如,參阅,參考文献I :日本专利公开号2004-282050)。
此外,存在通过利用化学反应的润湿蚀刻而除去玻璃基片的技术(例如,參阅,參考文献2 :日本专利公开号2002-87844)。
然而,当在将半导体元件设置在基片上后将基片薄化或者除去时,应当考虑到,杂质元素或者水分等易于从外界进入半导体元件并且不利地影响半导体元件。
发明概述
鉴于上述问题,本发明的ー个目的是提供一种制造半导体器件的方法,该方法消除了即使在将半导体元件设置在基片上后薄化或者除去基片的情形中,由于杂质元素或者水分等从外界的进入而对半导体元件产生的影响。
本发明的制造半导体器件的方法的一个特征包括以下步骤通过对基片进行表面处理以在基片的至少ー个侧面上形成起防护膜作用的绝缘薄膜,将半导体元件比如薄膜晶体管形成在绝缘薄膜上,和使基片薄化。应当注意,绝缘薄膜可以形成在基片的另一面上。进行 表面处理时,对基片进行杂质元素的加入或者等离子处理。作为薄化基片的方法,通过对基片另一面进行研磨处理或者抛光处理可以使基片被部分除去。此外,形成于基片一个侧面上的绝缘薄膜可以通过除去基片而得到暴露。通过进行研磨处理和抛光处理中的一种或两者,或者将经化学处理的蚀刻与研磨处理和抛光处理中的ー种或两者组合,所述基片可以得到除去。
本发明的制造半导体器件的方法的另ー特征是包括以下步骤通过在氮气氛下对基片进行等离子处理以氮化该基片的ー个侧面,从而形成氮化层,将薄膜晶体管形成在所述氮化层上,和通过对该基片另一面进行研磨处理和抛光处理中的一种或两者而薄化基片。此夕卜,形成于基片一个侧面上的绝缘薄膜可以通过除去基片而得到暴露。此外,形成于基片一个侧面上的氮化层可以通过除去基片而得到暴露。通过进行研磨处理和抛光处理中的ー种或两者,或者将经化学处理的蚀刻与研磨处理和抛光处理中的ー种或两者组合,所述基片可以得到除去。应当注意,本发明中的氮化层至少包含氮化物,并且氮化物是通过氮化基片表面而在基片上形成的。此外,取决于表面处理的条件,还可以具有存在氮化物形成于基片上以致具有浓度分布的情形。
本发明的制造半导体器件的方法的另ー特征是包括以下步骤将在基片的ー个侧面上形成薄膜晶体管,通过对基片的另一侧面进行研磨处理和抛光处理中的一种或两者使基片薄化,和通过在氮气氛下对薄化基片进行等离子处理以氮化薄化基片的ー个表面,形成氮化层。
本发明的制造半导体器件的方法的另ー特征是包括以下步骤通过在氮气氛下对基片进行等离子处理以氮化该基片的ー个侧面,从而形成第一氮化物,在第一氮化物上形成薄膜晶体管,薄化该基片,和通过在氮气氛下对薄化的基片进行等离子处理以氮化该薄化的基片的ー个表面,从而形成第二氮化物。通过对基片的另一侧面进行研磨处理和抛光处理中的一种或两者,将该基片薄化。此外,利用化学处理的蚀刻可以与研磨处理或者抛光处理组合进行。根据本发明的上述特征,在薄化或者除去基片后,可以用挠性膜进行密封以覆盖半导体元件(比如薄膜晶体管)。
此外,根据上述特征的本发明的制造半导体器件的方法的ー个特征是,等离子处理是利用高频波在电子密度为I X IO11CnT3 I X IO13CnT3以及电子温度为O. 5eV I. 5eV的条件下进行的。
本发明的半导体器件的ー个特征是包括形成于基片表面上的氮化层和设置在氮化层之上的薄膜晶体管,其中基片厚度为I μ m 100 μ m,并且至少部分氮化层含有惰性气体元素。
本发明的半导体器件的另ー特征是包括形成于基片表面上的氮化层和设置在氮化层之上的薄膜晶体管,其中基片厚度为I μ m或更低,并且至少部分氮化层含有惰性气体元素。
本发明的半导体器件的另ー特征是包括设置在基片ー个侧面上的薄膜晶体管和形成于基片另ー侧面上的氮化层,其中基片厚度为I μ m 100 μ m,并且至少部分氮化层含有惰性气体元素。
本发明的半导体器件的另ー特征包括形成于基片一个侧面上的第一氮化层、形成于基片另ー侧面上的第二氮化层和设置在第一氮化层上的薄膜晶体管,其中基片厚度为
Iμ m 100 μ m,并且至少部分第一氮化层和第二氮化层含有惰性气体元素。
即使在将半导体元件(比如晶体管)设置在基片上之后通过薄化或者除去基片而制造挠性半导体器件的情形中,通过在薄化或除去基片之前或者使基片薄化之后进行表面处理从而在基片上提供防护膜,杂质元素或者水分等从外界向半导体元件的进入也可以受到抑制并且可以防止其不利地影响半导体器件的特性。此外,即使在对装配有半导体元件的基片进行表面处理的情形中,通过进行高密度等离子处理作为表面处理,对半导体元件的损害也可以得到降低。
附图简述
图IA IE为表示本发明的制造半导体器件的方法的实例的简图。
图2A 2E为表示本发明的制造半导体器件的方法的实例的简图。
图3A 3E为表示本发明的制造半导体器件的方法的实例的简图。
图4A 4C为表示本发明的制造半导体器件的方法的实例的简图。
图5A 为表示本发明的制造半导体器件的方法的实例的简图。
图6A和6B为表示本发明的半导体器件的实例的简图。
图7A 7C为表示本发明的半导体器件的实例的简图。图8A 8D为表示本发明的半导体器件应用类型的实例的简图。
图9A 9C为表示本发明的制造半导体器件的方法的实例的简图。
图IOA IOB为表示本发明的制造半导体器件的方法的实例的简图。
图IlA和IlB为表示本发明的制造半导体器件的方法的实例的简图。


图12A和12B为表示本发明的制造半导体器件的方法的实例的简图。
图13A为本发明的半导体器件的简图,而图13B和13C为表示本发明的半导体器件应用类型的实例的简图。
图14A和14H为表示本发明的半导体器件应用类型的实例的简图。
图15A和15B为表示本发明的半导体器件的实例的简图。
图16为表示本发明的半导体器件的实例的简图。
图17A 17G为表示本发明的半导体器件应用类型的实例的简图。
图18A 18F为表示本发明的半导体器件应用类型的实例的简图。
图19A和19B为表示制造本发明的半导体器件的装置的实例的简图。
发明详述
以下将參考附图对本发明的实施方案进行说明。然而,本发明并不限于以下描述。对于本领域技术人员而言熟知的是,可以对本发明的方式和细节进行各种变化,这并不背离本发明的精神和范围。因此,不能将本发明解释为限于以下实施方案的描述。应当指出,在下面说明的本发明结构中,相同的參照数字通常用于表示不同的附图中相同的部件。
在刚性基片上形成半导体元件(比如薄膜晶体管(TFT))之后,通过对所述基片进行研磨处理、抛光处理以及经化学处理的蚀刻中的任何或者所有而薄化或者除去基片,本发明制造了挠性的半导体器件。此外,本发明包含ー种方式,其中在薄化或除去基片之前或者使基片薄化之后,通过对所述基片进行表面处理(比如等离子处理)而形成防护膜。即使在薄化或者除去基片的情形中,杂质元素或者水分等向设置在基片上的半导体元件的进入也可以通过形成防护膜而得到抑制。
在下文中,參考附图IA 2E对本发明的制造半导体器件的方法的实例进行了说明。应当指出,图IA IE表示在薄化或者除去基片之前,预先对基片进行表面处理的情形,和图2A 2E表示使基片薄化之后,对薄化的基片进行表面处理的情形。
最初,參考图IA IE对在薄化或者除去基片之前对基片进行表面处理的情形进行了说明。
首先,制备基片101,并且用氢氟酸(HF)或者碱或者纯水(图1A)洗涤它的表面。
作为基片101,硼硅酸钡玻璃或者硼硅酸铝玻璃等的玻璃基片、石英基片、陶瓷基片或者包括不锈钢的金属基片等都可以使用。可选择地,硅等半导体基片也可以使用。其次,对基片101的ー个侧面进行表面处理(图1B)。对基片101的表面处理通过等离子处理或者掺杂杂质元素而得以完成。例如,通过在氮气氛下对基片100的表面进行等离子处理以氮化基片101的表面,氮化层102 (在下文中还称为绝缘薄膜102)得以形成。在这种情形中,绝缘薄膜102至少包含氮化物,并且取决于表面处理的条件,还可能存在基片上形成的氮化物具有浓度分布(在此为氮的浓度分布)的情形。可选择地,通过在氧气氛下进行等离子处理来氧化基片100的表面,氧化层可以得到形成,或者通过在含有氧气和氮气的空气中进行等离子处理以氧氮化基片101的表面,氮氧化物层可以得到形成。此外,通过利用掺杂将氮(N)原子加入到基片101的表面,氮化层102可以得到形成,或者通过在氮气氛中进行热处理,氮化层102可以得到形成。应当指出,氮化层102不仅可以形成于基片101的表面上,而且可以形成于另ー侧面上,这取决于用于等离子处理等的装置或者其状況。
注意到,本发明中的等离子处理包括对要进行处理的对象(比如半导体薄膜、绝缘薄 膜或者导电薄膜)进行氧化处理、氮化处理、氧氮化处理、氢化处理和表面改性处理等,并且可以取决于其目的对用于处理的气体进行选择。例如,在对要进行处理的对象(在此为基片101)进行氮化处理的情形中,等离子处理在含氮气氛中(例如,在包含氮气(N2)和惰性气体(包括He、Ne、Ar、Kr和Xe中的至少ー种)的气氛、包含氮气、氢气和惰性气体的气氛、包含NH3和惰性气体的气氛、包含NO2和惰性气体的气氛或者包含N2O和惰性气体的气氛中)进行。在对要进行处理的对象进行氧化处理的情形中,等离子处理在含氧气氛中(例如,在包含氧气(O2)或者ー氧化ニ氮的气氛和惰性气体(包括He、Ne、Ar、Kr和Xe中的至少ー种)的气氛、包含氧气或者ー氧化ニ氮、氢气(H2)和惰性气体的气氛中)进行。应当指出,处理的对象(在此为形成于基片101表面上的绝缘薄膜102)可以含有用于等离子处理的惰性气体。例如,在使用Ar的情形中,处理的对象可以包含Ar。
作为等离子处理,优选进行在高密度(优选为I X IO11CnT3 I X IO13CnT3)和低电子温度(优选为O. 5eV I. 5eV)条件下使用高频波(比如微波)的等离子处理(所述等离子处理在下文中称为高密度等离子处理)。通过输入高频波(比如微波)进行等离子体激发,高密度等离子体可以在低电子温度下生成,并且要进行处理的对象表面可以被氧自由基(可以包含OH自由基)或者氮自由基(可以包含NH自由基)氧化或者氮化,所述氧自由基或者氮自由基经高密度等离子体生成。由此,通过对欲进行处理的对象进行高密度等离子处理,因为等离子体密度高并且靠近要进行处理的对象的电子温度低,所以等离子体对进行处理的对象造成的损害可以得到抑制。此外,由于等离子体密度高,因此通过对欲进行处理的对象用等离子处理进行氮化处理或者氧化处理而形成的氮化层或者氧化层在厚度均匀性等方面优于通过CYD方法或者溅射方法等形成的薄膜,并且可以形成致密膜。此外,由于等离子体的电子温度低,所以同常规的等离子处理或者加热氧化方法相比,所述氮化处理或者氧化处理可以在较低的温度下进行。因此,例如在使用玻璃基片作为基片的情形中,即使在低于100°C或者高于玻璃基片应变点的温度下进行等离子处理的情形中,氮化处理或者氧化处理也可以得到充分地进行。然后,将包含半导体元件(比如晶体管或者ニ极管)的元件组103形成在形成于基片101表面的绝缘膜102上(图1C)。
元件组103由包含例如晶体管、ニ极管或者太阳能电池等的半导体元件形成。作为晶体管,可以提供使用形成于刚性基片(比如玻璃基片)上的半导体薄膜作为通道的薄膜晶体管(TFT)、利用半导体Si基片等形成的将基片用作为通道的场效晶体管(FET)或者将有机材料用作为通道的有机TFT等。作为ニ极管,多种ニ极 管(比如变容ニ极管、Schottky ニ极管和隧道ニ极管)都可以使用。在本发明中,所有类型的集成电路(比如CPU、存储器和微处理器)都可以通过使用晶体管或者ニ极管等而得到形成。此外,除半导体元件(比如晶体管)之外,所述元件组103还可以为包括天线的形式。该元件组103的半导体器件装备有利用天线中生成的交流电压进行操作的天线,并且可以在不接触的情况下通过调整施加于天线的交流电压向/从外部装置(阅读器/记录器)收/发数据。注意到,所述天线可以与包含晶体管的集成电路一起形成,或者可以与集成电路分别形成后进行电连接。
其次,使基片101的另ー侧面(与装配有绝缘膜102的侧面相反的側面)经受研磨处理、抛光处理或者经由化学处理的蚀刻,从而薄化或者除去基片(图1D)。在研磨处理中,使用磨石颗粒对要进行处理的对象(这里指基片101)的表面进行研磨并使其平滑。在抛光处理中,通过塑料平滑作用或者使用研磨剂(比如砂纸或者磨粒)的摩擦抛光作用,要进行处理的对象表面得到平滑。在化学处理中,使用试剂对进行处理的对象进行化学侵蚀。
在此,对利用研磨装置104对基片101表面进行研磨处理的实例进行了描述。应当指出,在研磨处理后优选对基片101的表面进ー步进行抛光处理,并且在研磨处理后,通过进行抛光处理,可以使基片101的表面形状均匀。此外,在进行研磨处理和抛光处理中的一种或两者后,可以通过进ー步对所述基片进行利用化学处理的蚀刻而薄化或者除去它。特别是,在除去基片101的情形中,在通过进行研磨处理和抛光处理中任何一种或者所有使基片薄化至某种程度后,通过进行经化学处理的蚀刻,基片101可以得到有效消除。注意至IJ,在使用玻璃基片作为基片101的情形中,利用包含氢氟酸的药物溶液的化学蚀刻优选被作为化学处理进行。应当指出,在薄化基片101的情形中,优选基片101被薄化至厚度为I μ m 100 μ m,优选为2 μ m 50 μ m,更优选为4 μ m 30 μ m,从而使得基片具有挠性。此夕卜,在除去基片101的情形中,优选将基片完全除去,但是所述基片可以具有Iym或更低的厚度。
此外,在除去基片101的情形中,通过利用基片101对绝缘薄膜102的蚀刻选择比,设置在基片101上作为防护膜的绝缘薄膜102可以被用作抑制器。例如,在使用玻璃基片作为基片101并且通过在氮气氛下对玻璃基片进行高密度等离子处理而形成氮化层的情形中,氮化层的物理強度得到了改善,这是由于相对于没有进行氮化处理的玻璃基片,氮化层含有更多的氮。因此,在研磨或者抛光以除去基片101的过程中,所述氮化层可以用作研磨或者抛光抑制器。此外,通过与在除去基片101的情形中类似的化学处理,氮化层还可以被用作应用蚀刻选择比的抑制器。
通过上述步骤,可以制造挠性半导体器件(图1E)。此后,根据应用,通过进ー步用挠性薄膜等密封元件组可以完成103半导体器件,所述挠性薄膜可以由实施者适当地确定。
由此,在图IA IE所示的半导体器件中,由于即使在薄化基片101后也形成了起防护膜作用的绝缘薄膜102,因此可以防止元件组103与杂质元素混合。
接着,在薄化基片后,參考图2A 2E描述了对薄化基片进行表面处理的情形。
首先,制备基片101,并用氢氟酸(HF)或者碱或者纯水洗涤它的表面(图2A)。作为基片101,任何上述提及的基片都可以使用。
其次,将包含半导体元件(比如晶体管)的元件组101形成在基片101上(图2B)。
然后,通过研磨、抛光或者蚀刻基片101的ー个表面(与装配有元件组103的侧面相反的侧面)使基片101薄化,从而形成基片106 (图2C)。在此,对利用研磨装置104研磨基片101表面的实例进行了描述。通过研磨后进ー步抛光基片101的表面,基片101的表面可以被均匀化。此外,通过在进行研磨处理和抛光处理中的一种或两者后进ー步利用化学处理进行蚀刻,所述基片可以得到薄化。
其次,对薄化的基片106进行表面处理(图2E)。所述表面处理可以利用任何上述方法进行,但是在此表面处理优选应用高密度等离子处理进行。可以利用CVD方法或者溅射方法等提供起防护膜作用的绝缘薄膜。然而,在使用上述方法的情形中,作为处理对象的元件组103由于处理温度等的影响可能会受到损害,并且包含在元件组103内的晶体管等的特性也可能不利地受到影响。另ー方面,在进行高密度等离子处理的情形中,等离子体密度高并且靠近处理对象的电子温度低。因此,由等离子体对欲处理的对象造成的损害可以得到抑制。此外,由于低的等离子体电子温度,所以同常规的等离子处理或者热氧化方法相比,所述氮化处理或者氧化处理等可以在更低的温度下进行。此外,由于高的等离子体密度,通过用等离子处理对欲进行处理的对象进行氮化处理或者氧化处理而形成的氮化层或者氧化层,在厚度均匀性等方面优于通过CYD方法或者溅射方法等形成的薄膜,并且可以形成致密膜。由此,例如,通过在氮气氛下对基片106表面进行高密度等离子处理,起防护膜作用的氮化层107 (在下文中还称为“绝缘层107”)得以在基片106的表面上形成。在这种情形中,所述处理对象(在此为,形成于基片106表面上的绝缘薄膜107)可以包含用于等离子处理的惰性气体,以及例如在使用Ar的情形中,处理对象可以包含Ar。应当指出,在其中起防护膜作用的绝缘薄膜107得到形成的情形中,优选基片106被薄化至厚度为I μ m
100μ m,优选2 μ m 50 μ m,更优选4 μ m 30 μ m,以使得基片具有挠性。
由此,在薄化基片101后,通过在基片106的表面上形成起防护膜作用的绝缘薄膜107,可以防止元件组103掺杂杂质元素。
此外,基片101可以在形成起防护膜作用的绝缘薄膜102后被薄化,如图IA IE所示,并且起防护膜作用的绝缘薄膜107可以进一歩形成在薄化基片106之上,如图2A 2E所示。例如,在薄化基片101之前,通过掺杂N原子可以被加入到基片101的ー个表面,从而在基片101的表面上形成氮化层102 (绝缘薄膜102);在将晶体管等元件组形成在基片101上之后,基片101的另ー侧面可以被薄化,同时绝缘薄膜102被插入它们之间;和在氮气氛中,通过对基片101的薄化侧面进行高密度等离子处理,氮化层107(绝缘薄膜107)可以得到形成。另外地,在薄化基片101之前,通过在氮气氛中对基片101的ー个侧面进行高密度等离子处理,氮化层102(绝缘薄膜102)可以得到形成;在将晶体管等元件组形成在基片
101上之后,基片101的另ー侧面可以被进一歩薄化,同时绝缘薄膜102被插入它们之间; 和通过对基片101的薄化侧面进行高密度等离子处理,起防护膜作用的绝缘薄膜可以得到形成。
应当指出,在对装配有包含半导体元件(比如晶体管)的元件组的基片进行表面处理的情形(在此为薄化基片后进行表面处理的情形)中,优选将高密度等离子处理用作表面处理。这是因为在表面处理期间对元件组103造成的损害可以通过使用高密度等离子处理而得到抑制。另ー方面,在对未装配包含半导体元件(比如晶体管)的元件组的基片进行表面处理的情形(在此为薄化基片前进行表面处理的情形)中,并不需要考虑对元件组等的损害。因此,诸如高密度等离子处理、掺杂杂质元素、在氮气氛或者氧气氛中的热氧化处理、CVD方法或者溅射方法的方法都可以用于表面处理。
如上所述,起防护膜作用的绝缘薄膜102和绝缘薄膜107可以在薄化基片101之前和薄化基片101之后通过进行表面处理而形成。因此,可以更有效地防止元件组103掺杂外来的杂质元素。
如上所述,即使在薄化基片的情形中,通过在薄化基片之前和之后对基片进行表面处理(比如等离子处理)形成防护膜,杂质元素或者水分等向设置在基片上的半导体元件的进入可以得到抑制。
在下文中,对上述图IA IE和图2A 2E中生产方法的具体实例进行了说明。
(实施方案I)
在此实施方案中,參考图3A 4C对本发明制造半导体器件方法的实例进行了说明。开始,对上述图IA IE中的制造方法进行更详细地说明。
首先,预备基片201,并用氢氟酸(HF)、碱或者纯水洗涤基片201的表面(图3A)。
作为基片201,硼硅酸钡玻璃或者硼硅酸铝玻璃等玻璃基片、石英基片、陶瓷基片、包含不锈钢的金属基片或者Si等半导体基片等都可以使用。应当指出,在此描述的情形是将玻璃基片用作基片201的情形。
其次,通过等离子处理对基片201的ー个表面进行氮化处理,从而在基片201的表面形成氮化层202 (在下文中还称为“绝缘薄膜202)(图3B)。所述绝缘薄膜202至少含有氮化物,并且取决于表面处理的条件,可以存在在基片上形成的氮化物以致具有浓度分布(在此为氮的浓度分布)。不通过等离子处理,而是通过掺杂氮原子也可以将绝缘薄膜202形成在基片201上。此外,在进行等离子处理的情形中,优选进行上述高密度等离子处理。高密度等离子处理可以在低电子温度和高密度下进行;因此,对基片201的表面造成的损害可以得到降低,并且可以使其表面致密。
通过对欲进行处理的对象进行高密度等离子处理,等离子体对进行处理的对象造成的 损害可以得到抑制,这是因为等离子体密度高并且靠近进行处理的对象的电子温度低。此夕卜,由于高的等离子体密度,通过用等离子处理对欲进行处理的对象进行氮化处理或者氧化处理而形成的氮化层或者氧化层,在厚度均匀性等方面优于通过CVD方法或者溅射方法等形成的薄膜,并且可以形成致密膜。此外,由于低的等离子体电子温度,所以同常规的等离子处理或者热氧化方法相比,所述氮化处理或者氧化处理等可以在更低的温度下进行。在使用玻璃基片作为基片201的情形中,即使等离子处理在低于100°C或者高于玻璃基片应变点的温度下进行时,氮化处理或者氧化处理也可以得到充分地进行。
其次,将起基体薄膜作用的基体绝缘薄膜203 (在下文中还称为”绝缘薄膜203”)形成在绝缘薄膜202上,并且将半导体薄膜204形成在绝缘薄膜203之上(图3C)。
绝缘薄膜203可以装配有包含氧和/或氮的绝缘薄膜单层结构(比如氧化硅(SiOx)薄膜、氮化硅(SiNx)薄膜、氧氮化硅(SiOxNY) (X > Y)薄膜、或者氮氧化硅(SiNx0Y) (X > Y)薄膜)或者其堆积构。例如,在绝缘薄膜203具有双层结构的情形中,可以将氮氧化硅薄膜提供为绝缘薄膜第一层并且将氧氮化硅薄膜提供为绝缘薄膜第二层。在绝缘薄膜203具有三层构造的情形中,可以将氧氮化硅薄膜提供为绝缘薄膜的第一层,将氮氧化硅薄膜提供为绝缘薄膜的第二层,和将氧氮化硅薄膜提供为绝缘薄膜的第三层。由此,起基底薄膜作用的绝缘薄膜203可以抑制碱金属(比如Na)或者碱土金属由基片201扩散入半导体薄膜204以及其对半导体元件特性的不利影响。
可以使用非晶态半导体或者半非晶态半导体(SAS)形成半导体薄膜204。可选择地,可以使用多晶半导体薄膜。SAS具有介于非晶态结构和晶体结构(包含单晶和多晶)之间的中间结构以及具有就自由能而言稳定的第三态,并且它包含具有短程有序和晶格畸变的结晶区。在此薄膜的至少一部分区域,可以观察到O. 5nm 20nm的晶体区。在含有硅作为主要组分的情形中,由于L-O光子,其拉曼光谱转移到比520CHT1更低的波数ー侧。由硅的晶格引起的衍射峰(111)或(220)在X射线衍射中被观察到。至少I原子%或更多的氢或者卤素包含在其中,以终止悬空键。通过对含硅的气体进行辉光放电分解(等离子CVD),SAS得到形成。SiH4作为含硅的气体被提供。此外,Si2H6、S%Cl2、SiHCl3、SiCl4或者SiF4等也都可以用作含硅的气体。此外,还可以将GeF4混合入其中。还可以用H2、或者H2与惰性气体元素He、Ar、Kr和Ne中的一种或多种对含硅的气体进行稀释。其稀释率可以为2倍 1000倍;其压カ大约为O. IPa 133Pa ;和电源频率为IMHz 120MHz,优选为13MHz 60MHz。基片的加热温度可以为300°C或更低。在薄膜中作为杂质元素的气氛成分混杂物(比如氧、氮或者碳)的浓度优选为IX 102°原子/cm3或更低;特别是,氧的浓度为5 X IO19原子/cm3或更低,优选为I X IO19原子/cm3或更低。在此,用包含硅(Si)作为它的主要组分(比如SixGe1^x)的原料利用溅射方法、LPCVD方法或者等离子CVD方法等,来形成非晶态半导体薄膜,并且通过激光结晶方法、利用RTA或者退火炉的热结晶方法或者使用促进结晶的金属元素的热结晶方法等,使非晶态半导体薄膜结晶。此外,通过应用直流偏压产生热等离子体和将热等离子体施加至半导体薄膜,可以进行結晶。
然后,将半导体薄膜204选择性地蚀刻成岛形半导体薄膜205a 205d,并且形成栅绝缘薄膜206从而覆盖岛形半导体薄膜205a 205d(图3D)。
可以通过CVD方法或者溅射方法等方法提供栅绝缘薄膜206使其具有含氧和/或氮绝缘薄膜(比如氧化硅(SiOx)薄膜、氮化硅(SiNx)薄膜、氮氧化硅(SiOxNY) (X > Y)薄膜、或者氮化硅氧化物(SiNx0Y) (X> Y)薄膜)的单层结构或者其层压结构。另外,在氧气氛(例如,含有氧气(O2)和惰性气体(包含He、Ne、Ar、Kr和Xe中的至少ー种)的气氛或者含有氧气、氢气(H2)和惰性气体的气氛)或者氮气氛(例如,含有氮气(N2)和惰性气体(包含He,Ne,Ar,Kr和Xe中的至少ー种)的气氛或者含有NH3和惰性气体的气氛)中,通过对岛形半导体薄膜205a 205d进行高密度等离子处理,对岛形半导体薄膜205a 205d的表面进行氧化处理或者氮化处理,栅绝缘薄膜可以得到形成。通过高密度等离子处理,对岛形半导体薄膜205a 205d的表面进行氧化处理或者氮化处理,栅绝缘薄膜可以得到形成。由通过高密度等离子处理对岛形半导体薄膜205a 205d进行氧化处理或者氮化处理形成的氧化层或者氮化层形成的栅绝缘薄膜,在厚度均匀性等方面优于通过CVD方法或者溅射方法等方法形成的绝缘薄膜,并且该膜为致密膜。
其次,将栅电极207选择性地形成在栅绝缘薄膜206上,并且此后形成绝缘薄膜209和绝缘薄膜211以覆盖栅电极207。应当指出,在此所作的图解是有关形成与栅电极207侧面接触的侧壁(在下文中还为“绝缘薄膜208”)以及在位于低于N-通道薄膜晶体管210a和210c中的绝缘薄膜208的半导体薄膜205a和205c中提供LDD区的实例。(图3E)
可以通过CVD方法或者溅射方法等方法提供栅电极207,其具有选自钽(Ta)、钨(W)、钛(Ti)、钥(Mo)、铝(Al)、铜(Cu)、铬(Cr)和铌(Nb)等的元素或者含有该元素作为主要组分的合金材料或者复合材料的单层结构或者层压结构。另外,栅电极207可以由典型地为多晶硅的半导体材料形成,所述多晶硅掺杂有杂质元素,比如磷。例如,所述栅电极可以具有氮化钽和钨的层压结构。
可以通过CVD方法或者溅射方法等方法提供绝缘薄膜209,使其具有含氧和/或氮绝缘薄膜(比如氧化硅(SiOx)薄膜、氮化硅(SiNx)薄膜、氧氮化硅(SiOxNY) (X > Y)薄膜、或者氮氧化硅(SiNx0Y) (X > Y)薄膜)或者含碳薄膜(比如DLC (金刚石状碳)薄膜)的单层结构或者其层压结构。
可以通过CVD方法或者溅射方法等方法提供绝缘薄膜211,使其具有含氧和/或氮绝缘薄膜(比如氧化硅(SiOx)薄膜、氮化硅(SiNx)薄膜、氧氮化硅(SiOxNY) (X > Y)薄膜、或者氮氧化硅(SiNx0Y) (X > Y)薄膜)或者含碳薄膜(比如DLC(金刚石状碳)薄膜,有机材料(比如环氧、聚酰亚胺、聚酰胺、聚こ烯基苯酚、苯并环丁烯、或者丙烯酸或者硅氧烷树脂))的单层结构。应当指出,所述硅氧烷树脂对应于具有Si-O-Si键的树脂。硅氧烷具有由硅
(Si)氧(O)键形成的骨架。作为取代基,使用至少含有氢的有机基团(例如,烷基或者芳香烃)。作为取代基,氟基也可以被使用。另外,至少含有氢并且含有一个氟基的有机基团都可以用作取代基。应当指出,在图3E中的半导体器件中,可以直接提供绝缘薄膜211以覆 盖栅电极207,并不需要提供绝缘薄膜209。
其次,形成导电薄膜212以在绝缘薄膜211上电连接岛形半导体薄膜205a 205d的源区和漏区,以及形成绝缘薄膜213以覆盖导电薄膜212 (图4A)。从而,提供了薄膜晶体管210a 210d (在下文中还称为N-通道薄膜晶体管210a和210c以及P-通道薄膜晶体管 210b 和 210d)。
可以使用选自铝(Al)、钨(W)、钛(Ti)、钽(Ta)、钥(Mo)、镍(Ni)、钼(Pt)、铜(Cu)、金(Au)、银(Ag)、锰(Mn)、钕(Nd)和碳(C)的元素或者含有许多上述元素的合金的单层结构或者层压结构来形成导电薄膜212。对于由含有许多元素的合金形成的导电薄膜,含有C和Ti的Al合金、含有Ni的Al合金、含有C和Ni的Al合金或者含有C和Mn的Al合金等都可以使用。此外,在装配层压结构的情形中,可以提供Al和Ti的层压层。
可以通过CVD方法或者溅射方法等方法提供绝缘薄膜213,使其具有含氧和/或氮绝缘薄膜(比如氧化硅(SiOx)薄膜、氮化硅(SiNx)薄膜、氧氮化硅(SiOxNY) (X > Y)薄膜、或者氮氧化硅(SiNx0Y) (X > Y)薄膜)或者含碳薄膜(比如DLC(金刚石状碳)薄膜,有机材料(比如环氧、聚酰亚胺、聚酰胺、聚こ烯基苯酚、苯并环丁烯、或者丙烯酸或者硅氧烷树脂))的单层结构。
其次,通过对基片201的另ー侧面(与装配有绝缘薄膜202相反的ー侧)进行研磨处理、抛光处理或者经化学处理的蚀刻等将基片201薄化或者除去(參见图4B)。在此,对利用研磨装置214研磨基片201表面的实例进行描述。此外,优选在研磨后让基片201的表面进ー步经受抛光处理,并且基片201的表面形状可以通过研磨处理后进行抛光处理而得到一致。另外地,在进行研磨处理和抛光处理中的一种或两者后,可以通过进ー步进行利用化学处理的蚀刻而将所述基片薄化或者除去。特别在除去基片201的情形中,在通过进行研磨处理和抛光处理等中的任何一种或者所有使基片薄化至某种程度后,通过进行经由化学处理的蚀刻,基片201可以被有效地除去。
通过上述步骤,可以获得挠性半导体器件(图4C)。
应当指出,包含在本发明的半导体器件内的薄膜晶体管的结构并不限于上述结构。例如,在图3E中,在位于N-型薄膜晶体管210a和210c的侧壁之下的半导体薄膜内提供LDD区,并且在P-型薄膜晶体管210b和210d内没有提供LDD区。然而,在这两个薄膜内可以提供LDD区,或者LDD区和侧壁都不被提供于这两个薄膜内(图7A)。此外,薄膜晶体管的结构并不限于如上所述的那些结构,以及其结构可以是在其中形成一个通道形成区的单栅极结构、多通道结构例如在其中形成两个通道形成区的双栅极结构或者在其中形成三个通道形成区的三栅极结构。此外,所述结构可以是包含两个设置在通道形成区之上和之下的栅电极底部栅结构或者双栅结构,对于每种情况,在两个栅电极之间插入栅绝缘薄膜。此外,在将栅电极形成为具有层压结构的情形中,栅电极可以具有下述结构其中给栅电极提供了形成在栅电极下部的第一导电薄膜207a和形成在第一导电薄膜207a之上的第二导电薄 膜207b ;第一导电薄膜207a被形成为具有锥形;和提供与充当源区或者漏区的杂质区相比具有较低浓度的杂质区,以便仅与第一导电薄膜重叠(图7B)。此外,在将栅电极做成具有层压结构的情形中,栅电极可以具有以下结构其中给栅电极提供了形成于栅电极下部中的第一导电薄膜207a和形成于第一导电薄膜207a之上的第二导电薄膜207b ;侧壁208被形成,以便与第二导电薄膜207b的侧壁接触并且形成在第一导电薄膜207a之上(图7C)。在上述结构中,起半导体薄膜的源区或者漏区作用的杂质区还可以采用Ni、Co、W或者Mo等的硅化物来形成。
随后,參考图5A 对与图3A 4C中不同的制造半导体器件的方法实例进行了说明。具体地说,对上述图2A 2E中的制造方法进行更详细地说明。
首先,按如上所述进行成形至图4A所示的状态。然而,在此直接在基片201上形成绝缘薄膜203,并没有对基片201的表面进行表面处理(图5A)。
其次,通过对基片201的ー个表面(与具有绝缘薄膜203 —侧相反的ー侧)进行研磨处理、抛光处理和经化学处理的蚀刻等中的任何一种或者全部使基片201薄化,从而形成基片216(图5B)。在此,对利用研磨装置214研磨基片201表面的实例进行了描述。此外,通过研磨后抛光基片201的表面,可以使基片201的表面形状均匀化。
其次,对薄化的基片216进行表面处理,从而形成起防护膜作用的绝缘薄膜(图OT)。所述表面处理可以利用任何上述方法进行,但是在此表面处理优选利用高密度等离子处理对基片216进行处理。起防护膜作用的绝缘薄膜217可以使用CVD方法或者溅射方法等方法而得到提供。然而,在使用上述方法的情形中,作为欲被处理的对象的薄膜晶体管210a 210d等由于处理温度等的影响可能会受到损害,并且薄膜晶体管210a 210d的特性也可能会不利地受到影响。另ー方面,在进行高密度等离子处理的情形中,等离子体密度高并且靠近欲进行处理的对象的电子温度低。因此,由等离子体对作为欲被处理的对象的薄膜晶体管210a 210d等造成的损害可以得到抑制。此外,由于高的等离子体密度,通过用等离子处理对欲进行处理的对象进行氮化处理或者氧化处理而形成的氮化层或者氧化层,在厚度均匀性等方面优于通过CYD方法或者溅射方法等方法形成的薄膜,并且可以形成致密膜。此时,通过在氮气氛下对基片216的表面进行高密度等离子处理,起防护膜作用的氮化层217 (在下文中还被称为“绝缘薄膜217”)在基片216的表面上得到形成。在这种情形中,所述处理对象(在此为形成于基片216表面上的绝缘薄膜217)可以包含用于等离子处理的惰性气体,并且例如在使用Ar的情形中,处理对象可以包含Ar。
此外,本发明的半导体器件并不限于图3A 所示的结构,还可以具有例如图6A和6B所示的结构。示于图6A中的结构是图4B中基片201被薄化而没有被完全除去以便剩余基片218的结构。此外,图6A中所示的结构可以是其中基片218表面被进行了表面处理从 而提供起防护膜作用的绝缘薄膜217的结构,如图6B所示。在这种情形中,所述结构是起防护膜作用的绝缘薄膜202、基片216和绝缘薄膜217的层压结构;因此,所述结构能够更有效地防止杂质元素或者水分等从外界掺杂入薄膜晶体管中。例如,在其中起防护膜作用的绝缘薄膜202和绝缘薄膜217是通过对玻璃基片进行氮化处理而形成的情形中,形成基片的氧化硅被夹在图6B结构中的氮化层之间。
此外,本发明的半导体器件可以用于在不需要连接的情况下发射和接收数据的半导体器件(还被称为RFID (无线电频率识别)标签、ID标签、IC标签、IC芯片、RF (无线电频率)标签、无线标签、电子标签或者无线芯片)和包含象素部分的显示器中。
例如,在图4A 4C中,在薄化或者除去基片之前,起天线作用的导电薄膜221被形成在绝缘薄膜213之上,起防护膜作用的绝缘薄膜222被形成以覆盖导电薄膜221,并且随后将基片201薄化或者除去,从而制造可以在不接触的情况下发射和接收数据的挠性半导体器件(图8A)。
导电薄膜由导电材料通过利用CVD方法、溅射方法、印刷方法(比如丝网印刷或者凹板印刷)、微滴放电方法、调合器方法或者电镀法等得到形成。导电材料是选自铝(Al)、钛(Ti)、银(Ag)、铜(Cu)、金(Au)和镍(Ni)的元素或者合金材料或者含有上述元素作为其主要组分的复合材料,并且导电薄膜被形成为具有导电材料的单层结构或者层压结构。
此外,能够在不接触的情况下发射和接收数据的挠性半导体器件可以通过以下方法得到制造在薄化或者除去基片201之前,把装配有起天线作用的导电薄膜221的基片223连接到设置在基片201上半导体元件(比如薄膜晶体管)上,以便彼此电连接,并且随后薄化或者除去基片201 (图8B)。
对于基片223,可以使用原来有挠性的材料(比如塑料),或者可以在彼此连接之后使基片201和基片223都被薄化或者除去;在后一种情形下,与基片201类似的材料可以用作基片223。此时,在连接基片210和基片223中,利用包含在粘附树脂224中的导电颗粒225,半导体元件和起天线作用的导电薄膜221被彼此连接。另外,可以利用导电粘合剂(比如银膏、铜膏或者碳膏)、非均质导电粘合剂(比如ACP (非均质导电膏))或者焊接接头等将它们彼此连接。
此外,可以通过在薄化或者除去图4A 4C中基片201之前,将象素电极231设置在绝缘薄膜211上以便电连接至导电薄膜212而制造含有象素部分的半导体器件。例如,可以通过将液晶材料233设置在象素电极231上以便将挠性液晶显示器夹在定位薄膜232和定位薄膜234之间,并且将相反的电极235设置在定位薄膜234上而得到制造(图SC)。此夕卜,挠性自发光型显示器可以通过将发光层236 (比如有机EL层)和相反电极237连续地层压在象素电极231上而得到制造(图8D)。注意到,在图8D中,提供绝缘薄膜238作为用于分离许多象素的配置,并且绝缘薄膜239被提供作为防护膜。
应当指出,本实施方案在图IA IE或者图2A 2E中描述了将薄膜晶体管用作元件组的实例,但是本发明并不限于这些。如上所述,利用硅半导体基片等作为通道的场效晶体管(FET)或者利用有机材料作为通道的TFT等都可以使用。此外,除晶体管之外,可以提供ニ极管或者太阳能电池等。
例如,在使用硅半导体基片等作为基片201的情形中,在将使用半导体基片作为通道区的晶体管形成在基片201的一个侧面上和从另ー侧薄化基片201后,对薄化的基片201的表面进行表面处理,从而形成起防护膜作用的绝缘薄膜。所述表面处理可以利用任何上述方法进行,但是优选使用高密度等离子处理进行,因为此时对晶体管的损害可以得到抑制。
注意到,此实施方案可以与本说明书中所述的其它实施方案自由組合。
(实施方式2)
在此实施方式中,參考附图对在上述实施方案中进行等离子处理情形中的装置的实例进行说明。
示于图19A中的等离子处理装置包括许多能够生成等离子体的处理室、将基片转移至各个室的通用室和接收与移出基片的负载锁定室。由此,在连续地进行绝缘薄膜、导电薄膜或者半导体薄膜的形成及其等离子处理的情形中,包含许多处理室的等离子处理装置都可以使用。应当指出,图19A是表示此实施方案中所述的等离子处理装置的一个示范性结构的顶部平面视图。
如图19A中所示的例证性实例的等离子处理装置包括第一处理室311、第二处理室312、第三处理室313、第四处理室314、负载锁定室310和315以及通用室320。每个处理室都具有气密性。每个处理室都装配有抽真空设备、气体导入设备和等离子体产生设备。负载锁定室310和315是用于将样品(欲进行处理的基片)转移至各个室的室。通用室320被提供以供每个负载锁定室310和315以及第一至第四处理室311 314通用。经由通用室320基片201被从负载锁定室310和315转移到各个处理室。第一至第四室是用于对基片201进行导电薄膜、绝缘薄膜或者半导体薄膜成形处理、蚀刻处理或者等离子处理等的室。应当指出。通用室320装配有机械手321,通过此机械手基片201被转移到各个室中。
栅阀门322 327分别被设置在通用室320和第一处理室311、第二处理室312、第三处理室313、第四处理室314以及负载锁定室310和315之间。
根据预想的应用第一处理室311、第二处理室312、第三处理室313和第四处理室314可以具有各种内部结构。作为处理的种类,存在等离子处理、薄膜形成处理、热处理或者蚀刻处理等。
图19B表示用于进行等离子处理的处理室的示范性内部结构。该处理室的内部装配有用于放置基片以经受等离子处理的支承基座351、用于引入气体的供气部分352、排气ロ353、天线354、介电板355和为生成等离子体而提供高频波的高频供给部分356。此外,欲进行处理的基片331的温度可以通过给支承基座351装配温度控制部分357而得到控制。下面对等离子处理的实例进行说明。
在此,等离子处理包括氧化处理、氮化处理、氧氮化处理、氢化处理和对半导体薄膜、绝缘薄膜或者导电薄膜进行的表面改性处理。这样的处理可以通过根据预想的应用来选择适宜的气体而进行。
例如,氧化处理或者氮化处理可以按下述方式进行。首先,将处理室排空,并且将含氧或者含氮的气体从供气部分352引入其中。作为含氧气体,例如,氧气(O2)和惰性气体的混合气体或者氧气、氢气和惰性气体的混合气体都可以被引入。此外,作为含氮气体,氮气和惰性气体的混合气体或者氨气和惰性气体的混合气体也可以被引入。其次,将欲进行处理的基片331定位于包含温度控制部分357的支承基座351上,并且将欲进行处理的基片331加热至100°C 550°C。应当指出,欲进行处理的基片331和介电板355之间的距离被设置为20mm 80mm (优选20mm 60mm)。
其次,将微波从高频供给部分356提供给天线354。在此,频率为2. 45GHz的微波被提供。通过将来自天线354的微波经介电板355引入到处理室内,经等离子激发而活化的高密度等离子体358被生成。通过引入微波进行等离子激发时,具有高电子密度(IXlO11cnT3或更高)的等离子体可以在低电子温度(3eV或更低,优选1.5eV或更低)下生成。由于氧自由基(可以包含OH自由基)或者氮自由基(可以包含NH自由基)可以通过上述低电子温度和高密度等离子体产生,因此氮化处理或者氧化处理可以通过对欲进行处理的基片331的表面进行表面处理而得到进行,不会对欲进行处理的基片331造成损害。
例如,在含有NH3气体和Ar气体的气氛中进行等离子处理的情形中,利用微波产生了其中NH3气体与Ar气体混合的高密度受激的等离子体。在其中NH3气体与Ar气体混合的高密度受激的等离子体中,通过用引入的微波激发Ar气体,产生了自由基。Ar自由基同NH3分子进行碰撞,从而产生氮自由基(可以包含NH自由基)。所述自由基与欲进行处理的基片331反应;据此,进行处理的基片331可以得到氮化。此后,NH3气体和Ar气体经由排气ロ 353被排出到处理室之外。其间,在引入氧气或者一氧化ニ氮等的情形中,氧自由基(可以包含OH自由基)可以得到产生;据此,欲进行处理的基片331或者欲进行处理的基片331上的包衣薄膜可以得到氧化。
在基片201上制造晶体管的情形也是如此,例如,半导体薄膜可以通过与上述高密度
等离子体发生固相反应而被直接氧化、氮化或者氮氧化,从而形成栅绝缘薄膜。此外,栅绝缘薄膜可以通过应用等离子或者热反应的CVD方法,将由氧化硅、氮氧化硅或者氮化硅等形成的薄膜沉积和堆积在通过与高密度等离子体进行固相反应而形成在半导体薄膜上的绝缘薄膜上而获得。在任何情形中,被做成包含绝缘薄膜的场效应晶体管在各种特性上都会被降低,其中利用高密度等离子体将绝缘薄膜形成为栅绝缘薄膜的部分或全部。
作为具体实施例,下面对图3A 3E中在第一处理室311中对基片201进行等离子处理、在第二处理室312中形成绝缘薄膜203、和在第三室313中进行等离子处理和在第四处理室314中形成半导体薄膜204的实例进行了说明。
首先,将贮存了许多基片201的盒328载运到负载锁定室310中。盒328被运入之后,将负载锁定室310的装料门关闭。在这种条件下,将栅阀门322打开,从盒328中取出ー个欲进行处理的基片,然后用机械手321将其定位于通用室320中。在这种情形下,基片201的定位在通用室320中进行。
其次,将栅阀门322关闭并且将栅阀门324打开。然后,将基片201转移到第一处理室311中。在第一处理室311中,通过对基片201进行等离子处理,基片201得到氧化或者氮化。在此,在第一处理室311中,通过在氮气氛中进行等离子处理,含有氮化物的氮化层202形成在基片201的表面上。
在基片201的表面上形成氮化层后,用机械手321将基片201提取至通用室320中并且转移到第二处理室312中。在第二处理室312中,在150°C 300°C下,进行薄膜成形处理至形成绝缘薄膜203。绝缘薄膜203可以被做成含有氧和/或氮(比如氧化硅(SiOx)、氮化硅(SiNx)、氧氮化硅(SiOxNY) (X > Y)或者氮氧化硅(SiNx0Y) (X > Y))的绝缘薄膜的单层结构或者其层压结构。在此,通过第二处理室312中的等离子CVD方法,氮氧化硅薄膜被形成为第一层绝缘薄膜以及氧氮化硅薄膜被形成为第二层绝缘薄膜。应当指出,薄膜形成方法并不限于等离子CVD方法,同样也可以应用使用靶板的溅射方法。在形成绝缘薄膜203后,用机械手321将基片201提取至通用室320中并且然后将其转移到第三处理室313中。在第三处理室313中,通过对绝缘薄膜203进行等离子处理,绝缘薄膜203得到氧化或者氮化。在此,在第三处理室中,通过在氧气氛中(例如,在含有氧气和惰性气体的气氛、含有氧气、氢气和惰性气体的气氛或者含有ー氧化ニ氮和惰性气体的气氛中)进行等离子处理,绝缘薄膜203的表面得到氧化。
在氧化绝缘薄膜203后,用机械手321将基片201提取到通用室320中并且然后将其转移到第四处理室314中。在第四处理室314中,在150°C 300°C下,通过等离子CVD方法进行薄膜成形处理,从而形成半导体薄膜204。应当指出,所述半导体薄膜204可以是微晶半导体薄膜、非晶态锗薄膜、非晶态硅锗薄膜或者其层压薄膜等。通过将半导体薄膜的形成温度设置在350°C 500°C,用于降低氢气浓度的热处理可以被省去。应当指出,虽然在此描述了通过利用等离子CVD方法形成半导体薄膜的情形,但是使用靶板的溅射方法同样 可以被应用。
如此,在形成半导体薄膜后,用机械手321将基片201转移到负载锁定室315中并且将其贮存入盒329中。
应当指出,图19A仅仅表示一种实施例。例如,在形成半导体薄膜后,利用第五处理室,随后可以形成导电薄膜或者绝缘薄膜,并且处理室的数目可以被进一步增加。此外,独立于进行等离子处理的处理室,进行热处理的处理室(比如RTA)可以被设置并且在半导体器件制造エ艺中被用于热处理。此外,图19A表示使用第一处理室311至第四处理室314的实例,其中每个室都是单ー型处理室。然而,可以采用利用分批式处理室同时处理多个基片的结构。
应当指出,此实施方案可以与上述实施方案自由组合。换句话说,上述实施方案中所述的材料或者形成方法还可以在此实施方案中组合使用,并且在此实施方案中所述的材料或者形成方法也可以在上述实施方案中组合使用。
(实施方案3)
在此实施方案中,參考附图对不同于上述实施方案的制造半导体器件的方法进行了说明。具体而言,參考附图对本发明的制造包含薄膜晶体管、存储元件和天线的半导体器件的方法进行了说明。
首先,在氮气氛下,使基片701的ー个表面经受等离子处理,从而形成氮化层702 (在下文中还被称为绝缘薄膜702)。随后,形成了充当基体薄膜的绝缘薄膜703和非晶态半导体薄膜704 (例如包含非晶态硅的薄膜)。
作为基片701,在其ー个表面上设置有绝缘薄膜的玻璃基片、石英基片、金属基片或者不锈钢基片,或者可以承受本方法的加工温度的耐热塑料基片等都可以被使用。由于对基片701的面积和形状没有明显的限制,因此当使用例如ー个边长为I米或更多的矩形基片作为基片701时,生产能力可以得到显著提高。另外,也可以使用硅半导体基片等。
可以通过CVD方法或者溅射方法等方法提供绝缘薄膜703,从而使其具有含氧和/或氮绝缘薄膜的单层结构或者多层结构,所述绝缘薄膜比如为氧化硅(SiOx)薄膜、氮化硅(SiNx)薄膜、氧氮化硅(SiOxNY) (X > Y)薄膜或者氮氧化硅(SiNx0Y) (X > Y)薄膜。在充当基体的绝缘薄膜具有双层结构的情形中,例如,可以将氮氧化硅薄膜形成为第一层和将氧氮化硅薄膜形成为第二层。在充当基体薄膜的绝缘薄膜具有三层构造的情形中,可以将氧化硅薄膜形成为绝缘薄膜的第一层、将氮氧化硅薄膜形成为绝缘薄膜的第二层和将氧氮化硅薄膜形成为绝缘薄膜的第三层。另外,可以将氧氮化硅薄膜形成为绝缘薄膜的第一层、将氮氧化硅薄膜形成为绝缘薄膜的第二层和将氧氮化硅薄膜形成为绝缘薄膜的第三层。充当基体薄膜的绝缘薄膜起防止杂质进入基片701的阻挡膜的作用。
随后,将非晶态半导体薄膜704 (例如,包含非晶态硅的薄膜)形成在绝缘薄膜703上。通过溅射方法、LPCVD方法或者等离子CVD方法等形成的非晶态半导体薄膜704的厚度为25nm 200nm(优选30nm 15Onm)。随后,通过已知的结晶方法(激光结晶方法、利用RTA或者退火炉的热结晶方法、利用促进结晶的金属元素的热结晶方法或者利用促进结晶的金属元素的热结晶方法和激光结晶方法的组合)使非晶态半导体薄膜704结晶,从而形成晶态半导体薄膜。此后,将所得晶态半导体薄膜蚀刻成期望的形状,从而形成晶态半导体薄膜706 710 (图 9B)。
在下面对晶态半导体薄膜706 710的制造方法的实例进行了简要说明。首先,利用等离子CVD方法形成厚度为66nm的非晶态半导体薄膜。在使用含有作为促进结晶的金属元素的镍的溶液以便保留非晶态半导体薄膜上后,使非晶态半导体薄膜经受脱氢处理(500°C持续I小时)和热结晶处理(550°C持续4小时)从而形成晶态半导体薄膜。此后,用激光束辐照晶态半导体薄膜,需要时,通过照相平版印刷方法形成晶态半导体薄膜706 710。
在通过激光结晶方法形成晶态半导体薄膜的情形中,可以使用连续波激光光束(CW激光光束)或者脉冲激光光束。作为可以在此使用的激光光束,可以使用由以下一种或者多种类型的激光器射出的光束气体激光器,比如Ar激光器、Kr激光器或者准分子激光器;使用单晶 YAG、YV04、镁橄榄石(Mg2SiO4) ,YAlO3 或者 GdVO4,或者使用掺杂了 Nd、Yb、Cr、Ti、Ho、Er,Tm和Ta中的一种或多种作为掺杂剂的多晶(陶瓷)YAG、Y203、YV04、YA103或者GdVO4作为介质的激光器;玻璃激光器;红宝石激光器;变石激光器;Ti:蓝宝石激光器;铜蒸气激光器;和金蒸气激光器。用上述激光器的基波激光光束或者上述基波的第二至第四谐波福照对象,以便可以得到具有大粒径的晶体。例如,可以使用NchYVO4激光器(基波1064nm)的第二谐波(532nm)或者第三谐波(355nm)。此时,要求激光器的能量密度为大约O. OlmW/cm2 100mW/cm2(优选 O. lmff/cm2 10MW/cm2)。用设置在大约 10cm/sec 2000cm/sec的扫描速率进行辐照。应当指出,每种使用单晶YAG、YVO4、镁橄榄石(Mg2SiO4)、YAlO3或者GdVO4,或者使用掺杂Nd、Yb、Cr、Ti、Ho、Er、Tm和Ta中的一种或多种作为掺杂剂的多晶(陶瓷)YAG、Y203、YV04、YA103或者GdVO4作为介质的激光器;Ar离子激光器;和Ti :蓝宝石激光器可以连续振动。此外,通过进行Q开关操作或者模式锁定,其脉冲振动可以IOMHz或更多的重复速率进行。当激光光束以IOMHz或更多的重复速率振动时,在半导体薄膜经激光光束被熔化以及然后的固化周期期间,以另ー种脉冲辐照半导体薄膜。因此,与使用低重复速率的脉冲激光器的情形不同,固相和液相之间的界面可以在半导体薄膜中连续移动,并且可以在扫描方向上形成晶粒连续生长的半导体薄膜。
使用促进结晶的金属元素的非晶态半导体薄膜的结晶化具有以下优点能够在低温下在短时间内结晶和对准晶体方向;另一方面,所述结晶具有如下缺点由于金属元素留存在晶态半导体薄膜内而使断开电流升高和使晶态半导体薄膜的特性不稳定。因此,优选将充当吸气位点的非晶态半导体薄膜形成在晶态半导体薄膜上。因为充当吸气位点的非晶态 半导体薄膜需要含有杂质元素(比如磷或者氩),因此优选非晶态半导体薄膜是通过溅射方法形成的,通过此方法非晶态半导体薄膜可以含有高浓度的氩。此后,进行热处理(使用RTA方法或者退火炉等的热退火)以使金属元素扩散到非晶态半导体薄膜中。随后,将含有金属元素的非晶态半导体薄膜除去。这使得減少或者除去包含在晶态半导体薄膜中的金属元素成为可能。
其次,形成栅绝缘薄膜705以覆盖晶态半导体薄膜706 710。通过使用含有硅的氧化物和/或硅的氮化物的薄膜单层或者层压层,经CVD方法或者溅射方法等,所述栅绝缘薄膜705得到形成。具体而言,通过使用含有氧化硅的薄膜、含有氧氮化硅的薄膜或者含有氮氧化硅的薄膜单层或者层压层,所述栅绝缘薄膜705得到形成。
另外,通过对晶态半导体薄膜706 710进行上述高密度等离子处理并且氧化或者氮化其表面,栅绝缘薄膜705可以得到形成。例如,通过用引入的惰性气体(比如,He、Ar、Kr或者Xe)与氧气、氧化氮(NO2)、氨气、氮气或者氢气等的混合气体进行等离子处理,栅绝缘薄膜705得到形成。在这种情形中通过引入微波进行等离子激发时,高密度等离子体可以在低电子温度下产生。所述半导体薄膜的表面可以用氧自由基(可以含有OH自由基)或者氮自由基(可以含有NH自由基)进行氧化或者氮化,所述氧自由基或者氮自由基是通过高密度等离子体产生的。
通过用上述高密度等离子体处理,厚度为Inm 20nm,通常为5nm IOnm的绝缘薄膜形成于半导体薄膜之上。在这种情形下反应为固相反应;因此,绝缘薄膜和半导体薄膜之间的界面态密度可以得到极大降低。因为上述高密度等离子处理直接氧化(或者氮化)了半导体薄膜(晶体硅或者多晶硅的半导体薄膜),因此欲形成的绝缘薄膜的厚度变化可以得到理想地显著地抑制。此外,在晶体硅的晶粒边界,氧化作用并没有同样强烈地进行,这导致一种极优越的状态产生。换句话说,当每个半导体薄膜表面通过在此所示高密度等离子处理经受固相氧化时,可以形成具有低界面态密度和良好均匀性的绝缘薄膜,不会在晶粒边界处引起异常的氧化反应。作为栅绝缘薄膜,可以使用仅仅通过高密度等离子处理形成的绝缘薄膜。此外,氧化硅、氧氮化硅或者氮化硅绝缘薄膜可以通过应用等离子体或者热反应的CVD方法得到沉积或者层压。在任何情形中,被形成为包含绝缘薄膜的晶体管可以减少特性上的变化,其中绝缘薄膜是采用高密度等离子体在栅绝缘薄膜的一部分或全部中形成的。
通过用连续波激光光束或者以IOMHz或更多的重复速率振动的激光光束照射而结晶半导体薄膜同时用激光光束沿ー个方向扫描半导体薄膜而形成的晶态半导体薄膜706 710,具有晶体沿激光光束扫描方向生长的特征。当布置晶体管使得扫描方向与各通道长度方向对齐(通道形成区被形成时运载电流的方向)并且晶体管与栅绝缘薄膜结合时,可以获得特性差异极小和高电子场效应迁移率的晶体管(TFTs)。
其次,将第一导电薄膜和第二导电薄膜层压在栅绝缘薄膜705上。第一导电薄膜是通过等离子CVD方法或者溅射方法等而形成的,其厚度为20nm lOOnm。第二导电薄膜是通过已知方法形成的,其厚度为IOOnm 400nm。第一导电薄膜和第二导电薄膜是采用选自钽(Ta)、钨(W)、钛(Ti)、钥(Mo)、铝(Al)、铜(Cu)、铬(Cr)和铌(Nb)等的元素或者含有该元素作为主要组分的合金材料或复合材料形成的。可选择地,第一导电薄膜和导电薄膜由典型地为掺杂杂质元素(比如磷)的多晶硅的半导体材料形成。作为第一导电薄膜和第二导电薄膜组合的实例,可以给出氮化钽(TaN)薄膜和钨(W)薄膜、氮化钨(WN)薄膜和钨薄膜或者氮化钥(MoN)薄膜和钥(Mo)薄膜等。由于钨和氮化钽具有高耐热性,因此用于热活化的热处理可以在第一导电薄膜和第二导电薄膜形成后进行。在不是双层结构而是三层结构的情形中,可以使用由钥薄膜、铝薄膜和钥薄膜组成的层压结构。
其次,通过利用照相平版印刷法和用于形成栅电极的蚀刻处理来形成抗蚀刻的掩模并且制作栅线,从而形成起栅电极作用的导电薄膜716 725。
然后,通过照相平版印刷法形成抗蚀刻的掩模,并且将赋予N-型导电性的杂质元素通过离子掺杂方法或者离子注入方法以低浓度加入到晶态半导体薄膜706和708 710中,从而形成N-型杂质区711和713 715以及通道形成区780和782 784。作为赋予N-型导电性的杂质元素,可以使用属于第15族的元素,并且可以使用例如磷⑵或者砷(As)。
此后,通过照相平版印刷法形成防掩模和将赋予P-型导电性的杂质元素加入到晶态半导体薄膜707中,从而形成P-型杂质区712和通道形成区781。作为赋予P-型导电性的杂质元素,可以使用例如硼(B)。
其次,形成绝缘薄膜以覆盖栅绝缘薄膜705和导电薄膜716 725。所述栅绝缘薄膜使用含有无机材料(比如硅、硅的氧化物和/或硅氮化物)的薄膜或者含有有机材料(比如有机树脂)的薄膜单层或者层压层,通过等离子CVD方法或者溅射方法等得到形成。其次,通过非均质蚀刻对绝缘薄膜进行选择性地蚀刻,由此蚀刻主要在垂直方向上进行,从而形成与导电薄膜716 725侧面接触的绝缘薄膜(还称为侧壁)(图9C)。在制造绝缘薄膜739 743的同时,对栅绝缘薄膜705进行蚀刻,从而形成绝缘薄膜734 738。当后来形成源区和漏区时,绝缘薄膜739 743被用作掺杂用的掩模。
随后,借助于通过照相平版印刷法形成的防掩模和作为掩模的绝缘薄膜739 743,将赋予N-型导电性的杂质元素被加入到晶态半导体薄膜706和708 710中,从而形成充当LDD (低掺杂的泄漏)区的N-型杂质区727、729、731和733和第二 N-型杂质区726、728、730和732。包含于第一 N-型杂质区727、729、731和733中的杂质元素浓度低于第二 N-型杂质区726、728、730和732中的浓度。经过以上步骤,N-型薄膜晶体管744和746 748以及P-型薄膜晶体管745得以完成。
应当指出,存在为了形成LDD区而利用侧壁绝缘薄膜作为掩模的技木。通过使用侧壁绝缘薄膜作为掩模的技木,LDD区的宽度可以很容易地得到控制并且LDD区可以确定地形 成。
随后,形成绝缘薄膜单层或者层压层以覆盖薄膜晶体管744 748 (图10A)。覆盖薄膜晶体管744 748的绝缘薄膜由无机材料(比如硅的氧化物和/或硅的氮化物)或者有机材料(比如聚酰亚胺、聚酰胺、苯并环丁烯、丙烯酸类、环氧或者硅氧烷)等通过SOG方法或者微滴放电方法等而得到形成。基于硅氧烷的材料相应于其中骨架由硅氧键形成并且其中至少含有氢作为取代基的材料,或者其中骨架由硅氧键形成并且其中至少包含ー个氟、烷基和芳香烃作为取代基的材料。例如,在其中覆盖薄膜晶体管744 748的绝缘薄膜具有三层结构的情形中,含有氧化硅的薄膜可以被形成为第一绝缘薄膜749,含有树脂的薄膜可以被形成为第二绝缘薄膜750,而含有氮化硅的薄膜可以被形成为第三绝缘薄膜751。
应当指出,用于恢复半导体薄膜的结晶性、活化加入到半导体薄膜的杂质元素或者氢化半导体薄膜的热处理优选在形成绝缘薄膜749 751之前或者在形成一个或多个绝缘薄膜749 751之后进行。所述热处理优选通过应用热退火方法、激光退火方法或者RTA方法等进行。
其次,通过照相平版印刷法对绝缘薄膜749 751进行蚀刻,从而形成将第二 N-型杂质区726和728-732以及P-型杂质区712暴露的接触孔。随后,形成导电薄膜以填充接触孔。将导电薄膜图案化,从而形成起源线和泄漏线作用的导电薄膜752 761。
导电薄膜 752 761 由选自铝(Al)、钨(W)、钛(Ti)、钽(Ta)、· (Mo)JM (Ni)、钼(Pt)、铜(Cu)、金(Au)、银(Ag)、猛(Mn)、钕(Nd)、碳(C)和娃(Si)的元素或者含有该元素作为其主要组分的合金材料或者复合材料单层或者层压层通过CVD方法得到形成。含有铝作为其主要组分的合金材料相应于,例如含有铝作为其主要组分以及还含有镍的材料,或者含有铝作为其主要组分、还含有镍和碳和/或硅的合金材料。导电薄膜752 761可以具有,例如由阻挡膜、铝硅合金(Al-Si)薄膜和阻挡膜组成的层压结构或者由阻挡膜、铝硅合金(Al-Si)薄膜、氮化钛(TiN)薄膜和阻挡膜组成的层压结构。应当指出,阻挡膜对应于钛、氮化钛、钥或者氮化钥的薄膜。铝和铝硅合金具有低电阻并且价格低廉,它们是导电薄膜752 761材料的最佳选择。当设置上下阻挡层时,可以防止铝或者铝硅合金小丘的产生。通过形成钛(具有强还原性的元素)阻挡膜,即使在晶态半导体薄膜上形成薄的自然氧化膜吋,自然氧化膜也会被还原,以致可以与晶态半导体薄膜形成良好的接触。
其次,形成绝缘薄膜762以覆盖导电薄膜752 761 (图10B)。所述绝缘薄膜762由无机材料或者有机材料的单层或者层压层通过SOG方法、微滴放电方法或者印刷方法(比如丝网印法或者凹板印刷法)形成。此外,优选以O. 75μπι 3μπι的厚度形成绝缘薄膜762。
随后,通过照相平版印刷法对绝缘薄膜762进行蚀刻以形成暴露导电薄膜757、759和761的接触孔。然后,形成导电薄膜以填充接触孔。所述导电薄膜由导电材料利用等离子 CVD方法或者溅射方法等形成。其次,将导电薄膜图案化,从而形成导电薄膜763 765。应当指出,导电薄膜763和764的每ー个都充当包括在存储元件中的导电薄膜对中的ー个。因而,导电薄膜763 765优选采用钛或者合金材料或者含有钛作为其主要组分的复合材料的单层或者层压层形成。钛具有低电阻,这会使得存储元件的尺寸降低和实现更高的集成。在形成导电薄膜763 765的照相平版印刷步骤中,优选进行润湿蚀刻方法以不损害其下面的薄膜晶体管744 748,以及氟化氢(HF)或者氨过氧化物优选被用作蚀刻剂。
其次,形成绝缘薄膜766以覆盖导电薄膜763 765。所述绝缘薄膜766由无机材料或者有机材料的单层或者层压层通过SOG方法或者微滴放电方法等形成。优选以O. 75 μ m 3 μ m的厚度形成绝缘薄膜762。随后,通过照相平版印刷法对绝缘薄膜766进行蚀刻以形成暴露导电薄膜763 765的接触孔767 769。
其次,形成与导电薄膜765接触的起天线作用的导电薄膜786 (图11A)。所述导电薄膜786由导电材料通过CVD方法、溅射方法、印刷方法或者微滴放电方法形成。优选,导电薄膜786由选自铝(Al)、钛(Ti)、银(Ag)、铜(Cu)和金(Au)的元素或者含有该元素作为其主要组分的合金材料或复合材料的单层或者层压层形成。具体而言,导电薄膜786是通过使用含有银的糊通过丝网印刷法,然后在50°C 350°C的温度下进行热处理而形成的。可选择地,导电薄膜786是通过经溅射方法形成铝薄膜以及将铝薄膜图案化而形成的。所述铝薄膜可以通过润湿蚀刻方法而被图案化,并且在润湿蚀刻方法后可以在200°C 300°C的温度下进行热处理。
其次,形成起存储元件作用的有机化合物层787,以与导电薄膜763和764接触(图11B)。其性质或状态因电学作用、光学作用或者热作用等而发生改变的材料被用作存储元件的材料。例如,可以使用性质或者状态由于焦耳热熔化或者介电击穿等而发生改变从而引起上电极和下电极发生短路的材料。因此,优选用于存储元件的层(在此为有机化合物层)的厚度为5nm IOOnm,更优选为IOnm 60nm。
在此,有机化合物层787通过微滴放电方法、旋涂方法或者汽相淀积方法等形成。随后,形成导电薄膜771以与有机化合物层787接触。所述导电薄膜771通过溅射方法、旋涂方法、微滴放电方法或者汽相淀积方法等形成。
经过上述步骤,形成了包含导电薄膜763、有机化合物层787和导电薄膜771的层压体的存储元件部分789以及包含导电薄膜764、有机化合物层787和导电薄膜771的层压体的存储元件部分790。
应当指出,上述制造步骤的特征是在形成起天线作用的导电薄膜786后进行形成有机化合物层787的步骤,这是因为有机化合物层787的耐热性不高。
作为用于有机化合物层的有机材料,可以使用,例如基于芳香胺的化合物(即,具有苯环-氮键的化合物)(比如4,4' - ニ [N-(I-萘基)-N-苯基-氨基]-联苯(缩写a-NPD)、4,4/ - ニ [N-(3-甲基苯基)-N-苯基-氨基]-联苯(缩写TPD)、4,4',4"-三(N,N-ニ苯基-氨基)-三苯胺(缩写TDATA)、4,4',4"-三[N-(3-甲基苯基)-N-苯基-氨基]-三苯胺(缩写=MTDATA)和4,4' -ニ {N-[4-(N,N-ニ-间甲苯基氨基)苯基]-N-苯基氨基}联苯(缩写=DNTro))、聚こ烯基咔唑(缩写PVK)或者酞菁化合物(比如酞菁(缩写H2Pc)、铜酞菁(縮写CuPc)或者氧钒基酞菁(縮写V0Pc))等。这些物质具有高空穴迁移性能。
此外,可以使用由具有喹啉骨架或者苯并喹啉骨架的金属配合物等形成的材料(比如三(8-羟基喹啉根)合铝(縮写Alq3)、三(4-甲基-8-羟基喹啉根)合铝(縮写=Almq3)、ニ(10-羟基苯并[h]_喹啉根)合铍(縮写=BeBq2)或者ニ(2_甲基-8_羟基喹啉根)-4_苯基苯酚根合铝(縮写=Balq))或者由具有基于喝唑或者基于噻唑的配体的金属配合物等形成的材料(比如ニ [2-(2-羟基苯基)苯并喝唑根]合锌(缩写Zn(BOX)2)或者ニ [2-(2-羟基苯基)苯并噻唑根]合锌(缩写=Zn(BTZ)2))等。这些物质具有高电子传导性能。
其它金属配合物或者化合物等,比如2- (4-联苯基)-5- (4-叔丁基苯基)-1,3,4- ニ唑(缩写:PBD)、1,3-ニ [5-(对-叔丁基苯基)-1,3,4-讀I ニ唑-2-基]苯(缩写:0XD_7)、3- (4-叔丁基)-4-苯基-5- (4-联苯基)-I,2,4-三唑(缩写TAZ)、3- (4-叔丁基)-4- (4-こ基苯基)-5- (4-联苯基)-1,2,4-三唑(缩写p-EtTAZ)、4,7- ニ苯基-ニ苯基-1,10-菲绕啉(缩写BPhen)或者2,9-ニ甲基-4,7-ニ苯基-ニ苯基-1,10-菲绕啉(缩写BCP)等都可以使用。
所述有机化合物层可以具有单层结构或者层压结构。在具有层压结构的情形中,材料可以选自上述物质以形成层压结构。此外,可以对上述有机材料和光发射材料进行层压。作为光发射材料,可以使用4- ニ氰基亚甲基-2-甲基_6-[2-(1,1,7,7-四甲基久洛尼定-9-基)こ烯基]-4H-吡喃(缩写DCJT)、4-ニ氰基亚甲基-2-叔丁基-6-[2-(1,1,7,7-四甲基久洛尼定-9-基)こ烯基]-4H-吡喃、迫flanthene、2,5- ニ氰基_1,4_ ニ[(10-甲氧基-1,1,7,7-四甲基久洛尼定-9-基)こ烯基]苯、N,N' - ニ甲基喹吖酮(缩写DMQd)、香豆素6、香豆素545T、三(8-羟基喹啉根)合铝(缩写=Alq3)、9,9'-联蒽、9,10-二苯基蒽(缩写DPA)、9,10-二(2-萘基)蒽(缩写DNA)或者2,5,8,11-四叔丁基茈(缩写TBP)等。
可以应用其中分散有上述光发射材料的层。在其中分散有上述光发射材料的层中,可以将蒽衍生物(比如9,10_ 二(2-萘基)-2-叔丁基蒽(缩写t-BuDNA))、咔唑衍生物(比如4,4' -二(N-咔唑基)联苯(缩写CBP))或者金属配合物(比如二 [2-(2-羟基苯基)吡啶根]合锌(缩写=Znpp2)或者二 [2-(2-羟基苯基)苯并胃緣唑根]合锌(缩写=ZnBOX))等用作基底材料。此外,也可以使用三(8-羟基喹啉根)合铝(缩写=Alq3)、9,10-二(2-萘基)蒽(缩写DNA)或者二(2-甲基-8-羟基喹啉根合)-4_苯基苯酚根合铝(缩写Balq) 坐寸O
上述有机材料通过热作用等而改变其性质;因此,优选其玻璃态转化温度(Tg)为50°C 300°C,更优选为 80°C 120°C。
此外,可以使用其中金属氧化物与有机材料或者光发射材料混合的材料。应当指出,其中混合了金属氧化物的材料包括其中金属氧化物与上述有机材料或者上述光发射材料混合或者层压的状态。具体而言,这表示一个通过利用多个蒸发源共蒸发而形成的状态。这种材料可以被称为有机-无机复合材料。
例如,在将具有高空穴传导特性的物质与金属氧化物混合的情形中,优选使用氧化钒、氧化钥、氧化铌、氧化铼、氧化钨、氧化钌、氧化钛、氧化铬、氧化锆、氧化铪或者氧化钽作为金属氧化物。
在将具有高电子传递性能的物质与金属氧化物混合的情形中,优选使用氧化锂、氧化钙、氧化钠、氧化钾或者氧化镁作为金属氧化物。
其性质通过电学作用、光学作用或者热作用而发生变化的材料可以被用作有机化合物层;因此,例如,也可以使用掺杂有通过吸收光线而产生酸的化合物(光酸产生器)的共轭高分子化合物。作为共轭高分子化合物,可以使用聚乙炔、聚亚苯基亚乙烯基、聚噻吩、聚苯胺或者聚亚苯基亚乙炔基等。作为光酸产生器,可以使用芳基锍盐、芳基碘録I盐、邻-硝基苄基甲苯磺酸盐、芳基磺酸对-硝基苄基酯、磺酰基苯乙酮或者Fe-芳烃配合物PF6盐等。
应当指出,在此描述了用于存储元件部分789和790的有机化合物材料的实例,但是本发明并不限于上述。例如,也可以使用相变材料,比如可以使用在晶态和非晶态之间可逆地变化的材料或者在第一晶态和第二晶态之间可以可逆地变化的材料。此外,也可以使用仅仅由非晶态向晶态变化的材料。
在晶态和非晶态之间可逆地变化的材料是含有许多种选自以下元素的材料锗(Ge)、碲(Te)、锑(Sb)、硫⑶、氧化碲(TeOx)、锡(Sn)、金(Au)、镓(Ga)、硒(Se)、铟(In)、铊(Tl)、钴(Co)和银(Ag)。例如,可以使用基于 Ge-Te-Sb-S、Te-TeO2-Ge-Sru Te-Ge-Sn-Au、Ge-Te-Sn、Sn-Se-Te、Sb-Se-Te, Sb-Se, Ga-Se-Te, Ga-Se-Te-Ge、In_Se、In-Se-Tl-Co、Ge-Sb-Te, In-Se-Te或者Ag-In-Sb-Te的材料。在第一晶态和第二晶态之间可逆地变化的材料是含有许多种选自以下元素的材料银(Ag)、锌(Zn)、铜(Cu)、铝(Al)、镍(Ni)、铟(In)、锑(Sb)、硒(Se)和碲(Te),例如 Te_Te02、Te-TeO2-Pd 或者 Sb2Se3/Bi2Te3。当使用这种材料时,在两种不同晶态之间发生相变。所述仅仅由非晶态向晶态变化的材料包含许多种选自碲(Te)、氧化碲(TeOx)、铺(Sb)、硒(Se)和铋(Bi)的元素,例如,Ag_Zn、Cu_Al_Ni、In-Sb、In-Sb-Se 或者 In-Sb-Te。
其次,通过SOG方法、旋涂方法、微滴放电方法或者印刷方法等形成起防护膜作用的绝缘薄膜772,以覆盖存储元件部分789和790以及起天线作用的导电薄膜786。所述绝缘薄膜772由含碳的薄膜(比如DLC(金刚石形碳))、含氮化硅的薄膜、含氮氧化硅的薄膜或者 有机材料(优选环氧树脂)形成。
然后,如上述实施方案所述将基片薄化或者除去(图12A)。在此,如图4A 4C所示,对通过对基片701进行研磨处理、抛光处理或者经由化学处理的蚀刻等除去基片701从而暴露绝缘薄膜702的实例进行了描述。在此,使用研磨构件795使基片701薄化。应当指出,抛光处理或者利用化学处理的蚀刻等可以在通过研磨构件795使基片701薄化之后进行。由此,在对基片701进行研磨处理、抛光处理或者经化学处理的蚀刻等直至绝缘薄膜702暴露的情形中,绝缘薄膜702可以被用作为阻止物。
另外,在使基片701薄化从而使其部分留存后,通过对留存基片701进行表面处理,如图6B所示的起防护膜作用的绝缘薄膜可以得到形成,或者,在薄化基片701而不形成绝缘薄膜702后,通过进行表面处理,如图5A 所示的起防护膜作用的绝缘薄膜可以得到形成。
其次,利用第一板材791和第二板材792进行密封处理(图12B)。
用于密封的第一板材791和第二板材792可以是由聚丙烯、聚酯、乙烯基、聚氟乙烯或者聚氯乙烯等制成的薄膜、由纤维材料构成的纸、或者由基底薄膜(聚酯、聚酰胺、无机蒸气沉积薄膜或者纸张等)和粘合性合成树脂薄膜(基于丙烯酸的合成树脂或者基于环氧的合成树脂等)构成的层压薄膜。此薄膜可以与欲进行处理的对象一起经受热处理和加压处理。在进行热处理和加压处理中,设置于所述薄膜最上层的粘合层或者设置在最外层的层(不是粘合层)经热处理被熔化,以通过加压处理得到连接。粘合层可以设置在第一板材791和第二板材792的表面,但是是非必需地设置。所述粘合层相应于含有粘合剂(比如热固性树脂、UV固化树脂、基于环氧的树脂或者树脂助剂)的层。优选用于密封的板材涂有硅土以防止密封后水分等进入其中,并且例如可以使用其中粘合层、聚酯薄膜等和硅土涂层被层压的板材。
作为第一板材791和第二板材792,也可以使用经受抗静电处理以防止静电等的薄膜(在下文中称为抗静电薄膜)。抗静电薄膜包含其中抗静电材料被分散在树脂中的薄膜、其中抗静电材料被连接的薄膜等。包含抗静电材料的薄膜可以是一个表面提供有抗静电材料的薄膜或者两个表面都提供有抗静电材料的薄膜。在一个表面提供有抗静电材料的薄膜中,包含抗静电材料的表面可以连接在薄膜的内部或者外部。应当指出,抗静电材料可以提供在薄膜的整个或者部分表面上。本文中的抗静电材料包括金属、铟锡氧化物(ITO)和表面活性剂(比如两性离子表面活性剂、阳离子表面活性剂和非离子型表面活性剂)。作为替代,含有在侧链上具有羧基和季铵碱的交联共聚物高分子化合物的树脂材料也可以被用作抗静电材料。可以通过将这些材料附着、捏合或者施加到薄膜上而获得抗静电薄膜。当用抗静电薄膜密封半导体器件时,可以使半导体元件在作为产品被处理时免于外部静电等。
应当指出,在并不特别需要密封处理的情形中,可以使用图12A中所示的结构来完成半导体器件。在密封处理中,可以选择性地对基片701或者绝缘薄膜772进行密封。
应当指出,此实施方案可以与上述实施方案自由组合。换言之,上述实施方案所述的材料或者形成方法也可以在此实施方案中被组合使用,以及此实施方案中所述的材料或者形成方法也可以在上述实施方案中被组合使用。
(实施方案4)
在此实施方案中,参考图13A 13C对在不接触的情况下就能交换数据的半导体器件的应用进行了说明。取决于应用方式,可以不接触就能交换数据的半导体器件还被称为RFID (无线电频率识别)标签、ID标签、IC标签、IC电路片、RF (无线电频率)标签、无线电标签、电子标签或者无线电电路片。
半导体器件80具有不接触就能传递数据的功能,并且包括高频电路81、电源电路82、复位电路83、时钟产生电路84、数据解调电路85、数据调制电路86、控制其它电路的控制电路87、存储电路88和天线89 (图13A)。高频电路81是接收来自天线89的信号和输出通过数据调制电路86接收的来自天线89的信号的电路。电源电路82是根据接收信号产生电源电位的电路。复位电路83是产生复位信号的电路。时钟产生电路84是基于从天线89接收的信号输入而产生多种时钟信号的电路。数据解调电路85是解调接收信号和将信号输出到控制电路87的电路。数据调制电路86是调制接收自控制电路87的信号的电路。作为控制电路87,例如提供了密码提取电路91、密码确定电路92、CRC确定电路93和输出单元电路94。应当指出,密码提取电路91是单独提取许多包含在被传输到控制电路87的指令中的密码的电路。密码确定电路92是比较提取密码和相应参照密码以确定指令内容的电路。CRC电路是基于确定的密码检查是否存在传送误差等的电路。
此外,提供的存储电路的数目并不限于一个,可以是多个。也可以使用在存储元件部分中,使用上述实施方案中所述的有机化合物层的SRAM、闪速存储器、ROM或者FeRAM等。
其次,对本发明的可以不接触就能传送数据的半导体器件的操作实例进行了说明。首先,通过天线89接收无线电信号。该无线电信号经高频电路81被传送到电源电路82,并且产生高电源电位(以下称为VDD)。VDD被提供给包括在半导体器件80中的每个电路。此夕卜,经高频电路81被传送到数据解调电路85的信号得到解调(在下文中为已解调信号)。此外,经高频电路81和解调电路85传送通过复位电路83和时钟产生电路84的信号被传送到控制电路87。被传送到控制电路87的信号接受密码提取电路91、密码确定电路92和CRC评定电路93等的分析。然后,根据分析的信号,贮存在存储电路88中的半导体器件信息被输出。半导体器件的输出信息经由输出单元电路94被编码。此外,通过天线89,半导体器件80的编码信息作为通过数据调制电路86的无线电信号被传送。应当指出,低电源电位(在下文中为VSS)在许多包含半导体器件80的电路中是通用的,并且可以将VSS设置成GND。
由此,通过将信号由读出器/记录器传送到半导体器件80和通过读出器/记录器接收由半导体器件80传送的信号,半导体器件的数据可以得到读出。
此外,半导体器件80可以通过电磁波而非固定的电源(电池)或者通过电磁波和固定的电源(电池)向各个电路提供供电电压。
因为可以弯曲的半导体器件可以通过利用上述实施方案所述结构进行制造,因此通过连接可以将半导体器件设置在具有曲面的物体上。
随后,对可以不接触就能交换数据的半导体器件的应用实例进行了说明。包含显示部分3210的便携式终端侧面装配有读出器/记录器3200,并且制品3220的侧面装配有半导体器件3230(图13B)。当将读出器/记录器3200固定在包含于制品3220之内的半导体器件3230上时,有关制品3220的信息(比如原材料、原产地、各生产过程的检查结果、销售历史或者制品说明)将显示在显示部分3210上。此外,当制品3260通过运输带进行运送时,利用读出器/记录器3240和设置在制品3260上的半导体器件3250,可以对制品3260进行检查(图13C)。由此,通过将半导体器件用于系统,可以容易地获得信息,并且系统的功能改进和增值可以得到实现。如上实施方案所述,即使当半导体器件被连接到具有曲面的物体上时,包括在半导体器件中的晶体管等可以免于受到损害,并且可以提供安全的半导体器件。
此外,作为可以不接触就能交换数据的上述半导体器件的信号传送方法,电磁耦合方法、电磁感应方法或者微波方法等都可以使用。考虑到预想的应用,本领域技术人员可以恰当地选择传送系统,并且根据传送方法可以提供最优的天线。
在使用例如电磁耦合方法或者电磁感应方法(例如,13. 56MHz频带)作为半导体器件中信号传送方法的情形中,磁场强度的改变引起了电磁感应。因此,充当天线的导电薄膜被形成为环形(例如,环形天线)或者螺旋形(例如,螺旋天线)。
在使用例如微波方法(例如UHF频带(860 960MHz频带)或者2. 45GHz频带等)作为半导体器件中信号传送方法的情形中,考虑用于信号传送的电磁波波长,充当天线的导电薄膜的形状(比如长短)可以被恰当地设定。例如,提供天线的导电薄膜可以被成形为直线形(例如,偶极天线)或者平面形状(例如贴片天线)等。充当天线的导电薄膜的形状并不限于直线形,考虑到电磁波的波长,充当天线的导电薄膜还可以以曲线形状、卷轴形状或者其组合的形状提供。
起天线作用的导电薄膜由导电材料通过CVD方法、溅射方法、印刷方法(比如丝网印刷或者凹板印刷)、微滴放电方法、分配器方法或者电镀法等而形成。该导电薄膜用选自铝(Al)、钛(Ti)、银(Ag)、铜(Cu)、金(Au)、钼(Pt)、镍(Ni)、钯(Pd)、钽(Ta)和钥(Mo)的元素含有这些元素作为其主要组分的或者合金材料或复合材料的单层结构或者层压结构形成。
在通过例如丝网印刷法形成起天线作用的导电薄膜的情形中,可以通过选择性地印刷导电糊而提供该导电薄膜,在导电糊中粒径为几纳米至几微米的导电微粒溶解或分散于有机树脂中。作为导电颗粒,可以使用一种或多种选自银(Ag)、金(Au)、铜(Cu)、镍(Ni)、钼(Pt)、钯(Pd)、钽(Ta)、钥(Mo)和钛(Ti)的金属或卤化银的微粒或者分散的纳米颗粒。此夕卜,作为包含在导电糊中的有机树脂,可以使用一种或多种各自起结合剂、溶剂、分散剂或者金属微粒包衣作用的有机树脂。一般,有机树脂可以使用比如环氧树脂或者硅树脂。当形成导电薄膜时,优选在施加导电糊后进行烘烤。例如,在将含有银作为其主要组分的微粒用作导电糊材料的情形中,通过在150°C 300°C的温度下烘烤固化导电膏,可以获得导电薄膜。另外,可以使用含有焊剂或者无铅焊剂作为其主要组分的微粒;在这种情形下,优选使用粒径为20 μ m的微粒。焊剂或者无铅焊剂具有比如低成本的优点。
除以上所述材料之外,陶瓷或者铁氧体等也可以被用于天线。此外,其介电常数和磁导率在微波波段中为负的材料(超颖物质)也可以被用于天线。
在应用电磁耦合方法或者电磁感应方法并且设置包含天线的半导体器件与金属接触的情形中,具有磁导性的磁性材料优选被设置在半导体器件和金属之间。在设置包含天线的半导体器件与金属接触的情形中,伴随着磁场变化涡流电流在金属中流动,并且通过涡流电流产生的去磁磁场削弱了磁场变化和降低了通信距离。因此,通过在半导体器件和金属之间提供具有磁导性的材料,金属涡流电流以及通信距离的降低可以得到抑制。应当指出,铁氧体或者具有高磁导率和低高频波损失的金属薄膜可以被用作所述的磁性材料。
在设置天线的情形中,半导体元件(比如晶体管)和起天线作用的导电薄膜可以被直接形成在一个基片上,或者半导体元件和起天线作用的导电薄膜可以被设置在单独的基片上,然后将其连接至彼此电连接。
应当指出,除上述之外挠性半导体器件的应用范围还具有宽泛的应用范围,所述挠性半导体器件可以用于任何产品,只要它在不接触的情况下能阐明信息(比如对象的历史)以及用于生产或者管理等。例如,所述半导体器件可以被固定在纸币、铸币、单据、证书、无记名债券、包装容器、书、记录媒体、私人财产、车辆、食物、衣着、保健产品、日用品、药品和电子器件等之上。参考图14A 14H对它们的实例进行说明。
所述纸币和铸币是分发到市场的货币并且包含某些领域的有效物(收款收据)和纪念币等。所述担保品是指支票、单据和期票等(图14A)。所述单据是指驾驶执照和住宅凭证等(如14B)。所述无记名债券是指邮票、粮票和多种礼券等(图14C)。所述包装容器是指食物容器等的包装纸以及塑料瓶等(图14D)。所述书籍是指硬皮书和平装书等(图14E)。所述记录媒体是指DVD软件和录像带等(图14F)。所述车辆是指比如自行车的轮式车辆以及船等(图14G)。所述私人财产是指书包和眼镜等(图14H)。所述食品是指食物制品和 饮料等。所述衣着是指衣服和鞋袜等。所述保健产品是指诊疗器械和健康仪器等。所述日用品是指家具和照明设备等。所述药品是指医药品和杀虫剂等。所述电子器件是指液晶显示器、EL显示器、电视器件(电视和平板电视)和移动电话等。
通过对纸币、铸币、担保品、单据或者无记名债券等设置半导体器件可以防止伪造。监察系统或者用于出租店的系统等的效力可以通过对包装容器、书籍、记录媒体、私人财产、食物、日用品或者电子器件等装备所述半导体器件而得到改善。通过对车辆、保健产品或者药品等设置所述半导体器件,可以防止伪造或者盗窃;此外,在药品的情形中,可以防止药物被错拿。所述半导体器件可以通过连接到表面或者嵌入其中而被固定在上述制品上。例如,在书籍的情形中,所述半导体器件可以被嵌入纸张中;在有机树脂制造的包装的情形中,所述半导体器件可以被嵌入有机树脂中。通过使用具有上述实施方案所述结构的挠性半导体器件,包含在半导体器件中的元件的断裂等可以得到防止,即使当所述半导体器件被固定在纸上等时也可以防止。
如上所述,监察系统或者用于出租店的系统等的效力可以通过对包装容器、记录媒体、私人财产、食物、衣着、日用品或者电子器件等设置所述半导体器件而得到改善。此外,通过对车辆设置所述半导体器件,可以防止伪造或者盗窃。此外,通过将所述半导体器件植入生物(比如动物)中,个体生物可以容易地得到鉴别。例如,通过将带有传感器的所述半导体器件植入生物(比如家畜)中,它的健康状况(比如当前体温)以及它的出生年、性别或者生育等可以容易地被管理。
应当指出,此实施方案可以与上述实施方案自由组合。换言之,上述实施方案所述的材料或者形成方法也可以在此实施方案中被组合使用,以及此实施方案中所述的材料或者形成方法也可以在上述实施方案中被组合使用。
(实施方案5)在此实施方案中,参考附图对不同于上述实施方案的本发明半导体器件的结构进行了说明。具体而言,对具有象素部分的半导体器件的实例进行了说明。
首先,参考图15A和15B对给象素部分提供光发射元件的情形进行了说明。应当指出,图15A是表示本发明半导体器件的实例的俯视图,而图15B是图15A沿直线a_b和c_d的剖视图。
如图15A所示,本实施方案所述的半导体器件包括设置在基片501上的扫描线路驱动电路502、信号线路驱动电路503和象素部分504。此外,设置相反的基片506,从而将象素部分夹在它与基片501之间。通过形成各个具有上述实施方案所述任意结构的薄膜晶体管, 可以提供所述扫描线路的驱动电路502、信号线路驱动电路503和象素部分504。使用密封层505将所述基片501和相对的基片506彼此连接。所述扫描线路的驱动电路502和信号线路的驱动电路503接收来自充当外部输入末端的FPC (软性印刷电路)507的视频信号、时钟信号、起动信号或者复位信号等。应当指出,在此仅仅显示了 FPC ;然而,所述FPC可以装配有印刷布线板(PWB)。
图15B是图15A沿直线a-b和c-d的剖视图。在此,包含在信号线路的驱动电路503和象素部分504内的薄膜晶体管被设置在基片501上,同时起防护膜作用的绝缘薄膜520被放入两者之间。CMOS电路被形成作为所述信号线路驱动电路503,所述CMOS电路是具有上述实施方案所述任何结构的N-型薄膜晶体管510a和P-型薄膜晶体管510b的组合。所述驱动电路(比如扫描线路的驱动电路502或者信号线路的驱动电路503)可以利用CMOS电路、PMOS电路或者NMOS电路形成。在此实施方案中对其中在基片501上形成驱动电路(比如扫描线路的驱动电路502和信号线路的驱动电路503)的驱动器集成类型进行了描述,但是它不是必需的并且驱动电路可以被形成在基片501的外侧。此外,起防护膜作用的绝缘薄膜526被设置在相对的基片506的表面上。应当指出,所述基片501可以具有上述实施方案所述的任意结构。在此,通过对基片的一个侧面进行表面处理而形成起防护膜作用的绝缘薄膜520后,将半导体元件设置在绝缘薄膜520上,并且从另一侧使基片薄化从而获得基片501。此外,通过在薄化基片后进行表面处理,给相对的基片506提供了起防护膜作用的绝缘薄膜。
所述象素部分504是用许多各自包含光发射元件516和驱动所述光发射部分516的薄膜晶体管511的象素形成的。具有上述实施方案中任意结构的薄膜晶体管都可以被用于所述薄膜晶体管511。在此,第一电极513被设置以便与导电薄膜512连接,所述导电薄膜512连接到薄膜晶体管511的源区或者漏区,和绝缘薄膜509被形成以覆盖第一电极513的末端部分。所述绝缘薄膜509在许多象素中起隔板的作用。
作为绝缘薄膜509,在此使用阳性类型感光丙烯酸树脂薄膜。为了使得覆盖良好,将绝缘薄膜成形为使其上端部分或者下端部分具有一个曲面。例如,在使用阳性类型感光丙烯酸作为绝缘薄膜509的材料的情形中,优选仅仅将绝缘薄膜上端部分做成有曲率半径(0.2μπι 3μπι)的曲面。或者经光线照射后变得不溶于蚀刻剂的阴性类型或者经光线照射后变得溶于蚀刻剂的阳性类型都可以被用作绝缘薄膜509。另外,所述绝缘薄膜509可以具有有机材料单层或者层压结构,有机材料比如环氧树脂、聚酰亚胺、聚酰胺、聚乙烯基苯酹或者苯并环丁烯或者娃氧烧树脂。如上实施方案所述,通过对所述绝缘薄膜509进行等离子处理以及氧化或者氮化该绝缘薄膜509,绝缘薄膜509的表面可以得到改性,从而获得致密膜。通过对绝缘薄膜509的表面进行改性,绝缘薄膜509的强度可以得到改善,并且物理损坏(比如在形成开口等的同时产生裂缝或者在蚀刻的同时薄膜减薄)可以得到降低。此外,通过改性绝缘薄膜509的表面,界面性能(比如与欲提供到绝缘薄膜509上的光线发射层514的粘结)会得到改善。
此外,在不于图15Α和15Β的半导体器件中,在第一电极513上形成光线发射层514,并且在光线发射层514上形成第二电极515。给光线发射兀件516提供了由第一电极513、光线发射层514和第二电极515组成的层压结构。
第一电极513和第二电极515中的一个被用作阳极,而另一个被用作阴极。
优选将具有高功函的材料用作阳极。例如,单层薄膜,比如ITO薄膜、含硅的铟锡氧化物薄膜、利用其中氧化铟混有2wt% 20wt%氧化锌(ZnO)的祀板通过派射方法形成的透明导电薄膜、氧化锌(ZnO)薄膜、氮化钛薄膜、铬薄膜、钨薄膜、Zn薄膜、Pt薄膜;由含有氮化钛作为其主要组分的薄膜和含有铝作为其主要组分的薄膜构成的层压层;由氮化钛薄膜、含有铝作为其主要组分的薄膜和另一氮化钛薄膜构成的三层结构;或者其它等。当使用层压结构时,电极会有低的导线电阻并且形成良好的电阻接触。此外,所述电极可以起阳极的作用。
优选将具有低功函的材料(Al、Ag、Li、Ca或者其合金,比如MgAg、MgIn, AlLi、CaF2或者氮化钙)用作阴极。在用作阴极的电极被用于透射光线的情形中,优选将由具有低厚度的金属薄膜和透明的导电薄膜构成的层压层(由ΙΤ0、含硅的铟锡氧化物、利用其中氧化铟混有2wt% 20wt%氧化锌(ZnO)的祀板通过派射方法形成的透明导电薄膜、氧化锌(ZnO)等构成)用作电极。
在此,采用具有光线透射性质的ITO来形成第一电极513作为阳极,并且光线采自基片501侧面。应当指出,通过将具有光线透射性质的材料用作第二电极515,光线可以采自相对的基片506侧面,或者通过使用具有光线透射性质的材料形成第一电极513和第二电极515,光线可以采自基片501侧面和相对的基片506侧面(这种结构称为双发射)。
所述光线发射层514可以采用低分子材料、中分子材料(包含低聚物和树枝状聚合物)或者高分子材料(还称为聚合物)的单层或者层压结构通过多种方法形成,比如利用蒸发罩的汽相淀积方法、喷墨方法和旋涂方法。通过用密封层505将基片501连接到相对的基片506,根据本发明的光线发射元件516被设置在由基片501、相对的基片506和密封层505围绕的空间508内。应当指出,存在着空间508被密封层505以及惰性气体(氮气或者氩气等)所充满的情形。
应当指出,优选将基于环氧的树脂用作密封层505。优选所述材料允许尽可能少的水分和氧气渗入。作为相对的基片506的材料,除了玻璃基片或者石英基片之外,还可以使用由FRP(玻璃纤维增强的塑料)、PVF(聚氟乙烯)、Myler、聚酯或者丙烯酸树脂等形成的塑料基片。可以按照类似于上述实施方案所述的方式将所述相对的基片506薄化。可以在薄化后通过进行表面处理而形成防护膜;在此,对通过对相对的基片506进行表面处理而提供起防护膜作用的绝缘薄膜526的实例进行了描述。另外,在预先提供塑料基片后,通过进 行上述实施方案所述的表面处理,可以提供所述的起防护膜作用的绝缘薄膜526。
应当指出,包含象素部分的半导体器件并不限于上述在象素部分中使用光线发射元件的结构,并且还包括在象素部分中使用液晶的半导体器件。所述的在象素部分使用液晶的半导体器件被示于图16中。
图16表示在象素部分中具有液晶的半导体器件的实例。液晶522被设置在定向薄膜521和定向薄膜523之间,所述定向薄膜521被设置以覆盖导电薄膜512和第一电极513,所述定向薄膜523设置在相对的基片506之上。此外,第二电极524被设置在相对的基片506之上。通过控制应用于设置在第一电极513和第二电极524之间的液晶的电压而控制透光率,来显示图像。此外,将球形隔离物525设置在液晶中以控制第一电极513和第二电极524之间的距离(电池间隙)。应当指出,此实施方案中所述的任何结构都可以应用于薄膜晶体管510a,510b和511。
如上所述,在此实施方案所述的半导体器件中,可以给象素部分装配光线发射元件或者液晶。
其次,参考附图对包含上述象素部分的半导体器件的应用进行了说明。
包含上述象素部分的半导体器件的应用实例可以给出以下相机(比如摄像机或者数码相机)、护目镜型显示器(头戴式显示器)、导航系统、音频再现器件(汽车声频或者音频组件等)、电脑、游戏机、便携式信息终端(便携式电脑、移动电话、便携式游戏机或者电子图书等)或者包含记录媒体读出部分的图像再现器件(具体地,能够处理记录媒体(比如数字多用磁盘(DVD)中数据的器件)和具有能够显示数据图像的显示器的器件)等。这些电子器件的实用实例如下所述。
图17A表示包含底盘2001、支座2002、显示部分2003、扬声器部分2004或者视频输入终端2005等的TV接收机。通过将实施方案I或者2中所述的结构应用到具有设置在显示部分2003内的薄膜晶体管、或者驱动电路等的半导体器件上,可以制造所述的TV接收机。
图17B表示数码相机,其包括主体2101、显示部分2102、图像接收部分2103、操作键2104、外接孔2105或者快门2106等。通过将上述实施方案中所述的结构或者制造方法应用到具有设置在显示部分2102内的薄膜晶体管、或者驱动电路等的半导体器件上,可以制造所述的数码相机。
图17C表示电脑,其包括主体2201、机壳2202、显示部分2203、键盘2204、外接孔2205或者点击鼠标2206等。通过将上述实施方案中所述的结构或者制造方法应用到具有设置在显示部分2203内的薄膜晶体管、或者驱动电路等的半导体器件上,可以制造所述的电脑。
图17D表示便携式电脑,其包括主体2301、显示部分2302、开关2303、操作键2304或者红外线孔2305等。通过将上述实施方案中所述的结构或者制造方法应用到具有设置在显示部分2302内的薄膜晶体管、或者驱动电路等的半导体器件上,可以制造所述便携式电脑。
图17E表示具有记录媒体读出部分(DVD再现器件等)的便携式图像再现器件,其包含主体2401、机壳2402、显示部分A 2403、显示部分B 2404、记录媒体(DVD等)读出部分2405、操作键2406或者扬声器部分2407等。所述显示部分A 2403主要显像图像信息,而显示部分B 2404主要显示文本信息。通过将上述实施方案中所述的结构或者制造方法应用到具有设置在显示部分A 2403、显示部分B 2404内的薄膜晶体管、或者驱动电路等的半导体器件上,可以制造所述的图像再现器件。应当指出,具有记录媒体读出部分的图像再现器件包含游戏机等。
图17F表示摄像机,其包含主体2601、显示部分2602、机壳2603、外接孔2604、遥控接收部分2605、图像接收部分2606、电池2607、音频输入部分2608、操作键2609或者目镜部分2610等。通过将上述实施方案中所述的结构或者制造方法应用到具有设置在显示部分2602内的薄膜晶体管、或者驱动电路等的半导体器件上,可以制造所述摄像机。
图17G表示移动电话,其包括主体2701、机壳2702、显示部分2703、声音输入部分2704、声音输出部分2705、操作键2706、外接孔2707或者天线2708等。通过将上述实施方案中所述的结构或者制造方法应用到具有设置在显示部分2703内的薄膜晶体管、或者驱动电路等的半导体器件上,可以制造所述移动电话。
通过薄化基片可以使本发明半导体器件具有挠性。在下文中,参考附图对具有象素部分的挠性半导体器件的具体实例进行了说明。
图18A表示包括主体4101、支座4102和显示部分4103等的显示器。利用挠性基片形成所述的显示部分4103,这可以获得轻便和薄化的显示器。此外,所述显示部分4103可以被弯曲,并且可以与支座4102分开以及显示器可以沿曲壁被固定。由此,所述挠性显示器可以被设置在弯曲部分以及平面上;因此,它可以被用于多种应用。通过将此实施方案或者上述实施方案中所述的挠性半导体器件用于显示部分4103或者电路等,可以制造所述的挠性显示器。
图18B表示可以被卷轴的显示器,其包括主体4201和显示部分4202等。因为主体4201和显示部分4202是利用挠性基片形成的,因此该显示器可以以弯曲或者卷轴状态被装载。因此,即使在显示器是大尺寸的情形中,也可以将所述显示 器以弯曲或者卷轴状态携带于包内。通过将此实施方案或者上述实施方案中所述的挠性半导体器件用于显示部分4202或者电路等,可以制造所述的挠性、轻便和薄化的大型显示器。
图18C表示片型电脑,其包括主体4401、显示部分4402、键盘4403、接触垫4404、外接孔4405和电源插头4406等。所述显示部分4402是利用挠性基片形成的,这可以获得轻便和薄化的电脑。此外,如果主体4401部分具有存储空间,所述显示部分4402也可以卷轴并且储存在主体内。此外,还通过将键盘4403形成为挠性键盘,可以以与显示部分4402类似的方式将键盘4403卷轴和储存在主体4401的存储空间内,这样易于随身带来带去。通过在不使用时将其弯曲,所述电脑可以不占空间地得到贮存。通过将此实施方案或者上述实施方案中所述的挠性半导体器件用于显示部分4402或者电路等,所述挠性、轻便和薄化的电脑可以得到制造。
图18D表示具有20英寸 80英寸的大型显示部分的显示器件,其包括主体4300、作为操作部分的键盘4301、显示部分4302和扬声器4303等。所述显示部分4302是利用挠性基片形成的,并且主体部分4300可以以弯曲或者卷轴状态被装载,同时键盘4301是分离。此夕卜,键盘4301和显示部分4302之间的连接可以不通过布线进行。例如,所述主体4300可以沿曲壁被固定并且可以不通过布线利用键盘4301进行操作。在这种情况下,通过将此实施方案或者上述实施方案中所述的挠性半导体器件用于显示器件部分4302或者电路等,所述挠性、轻便和薄化的大型显示器件可以得到制造。
图18E表示包括主体4501、显示部分4502和操作键4503等的电子图书。此外,调制解调器可以被并入主体4501中。所述显示部分4502是利用挠性基片形成的并且可以被弯曲或者卷轴。因此,所述电子图书可以不占空间地被装载。此外,所述显示部分4502可以显示活动图像以及静止图像(比如字符)。通过将此实施方案或者上述实施方案中所述的挠性半导体器件用于显示部分4502或者电路等,所述挠性、轻便和薄化的电子图书可以得到制造。
图18F表示包括主体4601、显示部分4602和连接末端4603等的IC卡。由于利用挠性基片将显示部分4602做成了轻便和薄片型,所以可以通过连接将它形成在卡表面上。当IC卡可以在不接触的情况下接收数据时,从外界获得的信息可以显示在显示部分4602上。通过将此实施方案或者上述实施方案中所述的挠性半导体器件用于显示部分4602或者电路等,所述挠性、轻便和薄化的IC卡可以得到制造。
如上所述,本发明的半导体器件的适用范围如此之宽,以致本发明的半导体器件可以被用到各种领域的电子器件上。应当指出,此实施方案可以与上述实施方案自由组合。
本申请以2005年6月30日向日本专利局提交的日本专利申请系列号2005-192420为基础,其内容在此引入作为参考。
权利要求
1.一种制造半导体器件的方法,其包括以下步骤 通过在氮气氛中使用微波而对玻璃基片进行等离子处理; 在进行所述等离子处理后,在所述玻璃基片上形成元件组;和 在形成所述元件组后,薄化所述玻璃基片。
2.一种制造半导体器件的方法,其包括以下步骤 通过在氮气氛中使用微波而对玻璃基片进行等离子处理; 在进行所述等离子处理后,在所述玻璃基片上形成元件组; 薄化所述玻璃基片从而形成薄化的玻璃基片;和 用挠性薄膜进行密封,以便覆盖所述薄化的玻璃基片和元件组。
3.—种制造半导体器件的方法,其包括以下步骤 通过在氮气氛中使用微波而对基片进行等离子处理; 在进行所述等离子处理后,在所述基片上形成元件组; 薄化所述基片从而形成薄化的基片;和 对所述薄化的基片进行化学处理而除去所述薄化的基片。
4.一种制造半导体器件的方法,其包括以下步骤 通过在氮气氛中使用微波而对基片进行等离子处理; 在进行所述等离子处理后,在所述基片上形成元件组; 薄化所述基片从而形成薄化的基片; 对所述薄化的基片进行化学处理而除去所述薄化的基片;和 用挠性薄膜进行密封,以便覆盖所述元件组。
5.根据权利要求1-4中任一项的制造半导体器件的方法,其中通过进行研磨处理和抛光处理中的任一种或两者而薄化所述基片。
6.一种制造半导体器件的方法,其包括以下步骤 通过在氮气氛中使用微波而对玻璃基片进行等离子处理; 在进行所述等离子处理后,在所述玻璃基片上形成元件组;和 除去所述玻璃基片。
7.根据权利要求6的制造半导体器件的方法,其中通过进行至少化学处理而除去所述玻璃基片。
8.根据权利要求6的制造半导体器件的方法,其中用挠性薄膜进行密封,以便覆盖所述的元件组。
9.根据权利要求1-4和6中任一项的制造半导体器件的方法,其中氮气氛是包含氮气和惰性气体的气氛、包含NH3和惰性气体的气氛、包含NO2和惰性气体的气氛或者包含N2O和惰性气体的气氛。
10.根据权利要求1-4和6中任一项的制造半导体器件的方法,其中所述等离子处理是在电子密度为IXio11 cm_3 IXlO13 cm_3并且电子温度为O. 5 eV I. 5 eV的条件下进行的。
全文摘要
本发明的一个目的在于提供制造半导体器件的方法,该方法消除了在将半导体元件形成在基片上后基片变薄或者除去基片的情形中,由于杂质元素或者水分等从外界进入而对半导体元件产生的影响。其一个特征是通过对基片进行表面处理在基片的至少一个侧面上形成起防护膜作用的绝缘薄膜,将半导体元件(比如薄膜晶体管)形成在所述绝缘薄膜上,和薄化所述基片。作为表面处理,对基片进行杂质元素的加入或者等离子处理。作为薄化基片的方法,通过对基片另一侧面进行研磨处理或者抛光处理等可以使基片被部分除去。
文档编号H01L21/77GK102820263SQ20121024169
公开日2012年12月12日 申请日期2006年6月30日 优先权日2005年6月30日
发明者大力浩二, 楠本直人, 鹤目卓也 申请人:株式会社半导体能源研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1