具有缺陷辅助的硅吸收区域的雪崩光电二极管的制作方法

文档序号:7254669阅读:105来源:国知局
具有缺陷辅助的硅吸收区域的雪崩光电二极管的制作方法
【专利摘要】具有缺陷辅助的硅吸收区域的雪崩光电二极管。一示例包括衬底;位于衬底上的硅层,硅层包括正掺杂区域、负掺杂区域和正掺杂区域与负掺杂区域之间的吸收区域,吸收区域在其晶体结构中包括缺陷;以及与正掺杂区域和负掺杂区域电通信以接收偏置电位的多个接触。
【专利说明】具有缺陷辅助的硅吸收区域的雪崩光电二极管

【背景技术】
[0001]传统上,计算机中的电子部件和其他电器之间的信号由铜导线或者其他金属互连来承载。数字电子器件的速度增加已经使这种类型的信号承载达到其极限,即使在单个集成电路芯片上的部件之间也是如此。光信号可承载远多于金属导体中的传统电信号的数据,并且这已经导致对集成电路芯片规模的光通信器件的需求。因为硅廉价并且与硅CMOS部件制造兼容,所以对于芯片上和芯片内的光信号,硅光子器件都已经受到广泛关注。高效的硅光学调制器、滤波器和波导已经直接建造在硅衬底上。由于倍增增益,雪崩光电二极管(APD)比PIN光电二极管灵敏十倍或者更高,因此对于硅芯片之间的低功率、高敏感度数据链接来说非常引人注目。

【专利附图】

【附图说明】
[0002]附图没有按比例绘制。附图通过示例示出公开内容。
[0003]图1是具有缺陷辅助的硅吸收区域的雪崩光电二极管的示例的透视图。
[0004]图2是具有缺陷辅助的硅吸收区域的雪崩光电二极管的另一示例的透视图。
[0005]图3A是具有缺陷辅助的硅吸收区域的环形谐振器雪崩光电二极管的示例的俯视图。
[0006]图3B是沿图3A的线B-B截取的剖视图。
[0007]图3C类似于图3B,但是示出具有缺陷辅助的硅吸收区域以及单独的雪崩倍增区域的环形谐振器雪崩光电二极管的示例。
[0008]图4A到图4G是制造具有缺陷辅助的硅吸收区域的雪崩光电二极管的方法的示例的剖视图。
[0009]图5A到图5E是制造具有缺陷辅助的硅吸收区域的雪崩光电二极管的方法的另一示例的剖视图。

【具体实施方式】
[0010]附图和说明书中使用了说明性示例和细节,但是可存在并且可建议其他配置。参数如电压、温度、尺寸以及部件值是近似的。方向术语如上、下、顶部和底部仅为了方便用于指示部件相对于彼此的空间关系,并且除非另有指示,相对于外轴线的方向并不是严格的。为了清楚起见,一些已知的方法和结构不会被详细描述。权利要求限定的方法可包括除列出的那些步骤之外的步骤,并且除了如权利要求自身指示外,各步骤可以以给出的顺序以外的另一顺序执行。
[0011]硅APD可与其他硅光子器件和CMOS器件一起制造在单个硅衬底中,并且这使它们对于芯片之间的通信链接来说非常引人注目。但是,硅具有1.1电子伏特m的带隙,并且因此在光和近红外(1270到1740纳米(nm))波长处基本上是透明的。因为硅不能吸收足够的入射光信号,所以为了以这些波长操作,硅AH)需要在它们的吸收区域中包括例如锗或者铟镓砷化物(InGaAs)的其他材料。包括这种材料导致更复杂的制造序列,并且增加成本。此外,APD的噪声指数部分地由雪崩倍增区域中的k值(空穴碰撞电离率与电子碰撞电离率的比例)确定。如果具有k值=0.02(比大多数其他材料更好)的硅可以被用于雪崩倍增区域,则可获得出色的噪声指数。另外,由除了硅之外的材料制成的Aro需要远高于12伏特或较低的操作电压来操作其他数字电路,因此需要比APD能在仅12伏特的电位操作时所需要的电源更复杂的电源。存在对以12伏特或者较低的操作电位在近红外波长提供高增益和良好噪声性能的全硅APD的需求。
[0012]图1示出具有缺陷辅助的本征硅吸收区域的APD的示例。缺陷辅助的吸收区域提供具有良好增益和噪声性能的全硅APD。将缺陷辅助的吸收区域限制在小于约500nm的宽度,使得APD能够以12伏特或者较低的电位操作。
[0013]在图1的这个示例中,衬底100被氧化层102覆盖。氧化层上的硅层包括正掺杂区域104、负掺杂区域106以及正掺杂区域与负掺杂区域之间的吸收区域108,吸收区域在其晶体结构中具有缺陷。在该示例中,缺陷辅助的吸收区域还可用作APD的雪崩培增区域。在一些示例中,这些缺陷是离子诱导的。接触110和112分别与正掺杂区域104和负掺杂区域106电通信,用来接收偏置电位。
[0014]由于硅在近红外波长是透明的,因此由硅制成的吸收区域在近红外波长通常是低效的。但是,该缺陷辅助的吸收区域的晶体结构的诱导缺陷足以改变硅的光学特性,使得其在这些波长不是完全透明的,因此可有效的作为APD的吸收部分。
[0015]在横跨正掺杂区域104和负掺杂区域106的反向偏置电位的影响下,电场穿过缺陷辅助的吸收区域而在这些区域之间延伸,导致吸收区域108中的电子如箭头114所指示向负掺杂区域106迁移,并且空穴如箭头116所指示向正掺杂区域104迁移。当电场高于碰撞电离阈值时,缺陷辅助的吸收区域还用作雪崩倍增区域,这使得光生载流子效应倍增,并且在正掺杂区域和负掺杂区域两端产生输出信号。缺陷辅助的吸收区域108具有小于大约50nm的宽度118,以使器件能以不大于12伏特的电位运行。
[0016]在本示例中,以p+_1- n+(p〈sup>+〈/sup>-1-n〈sup>+〈/sup>)结构制造 APD。可通过外推来自于单位增益光响应的光电流来计算雪崩增益。由于硅的0.02的低k值,该器件具有低噪声指数。击穿电压由缺陷辅助的吸收区域108的宽度118确定,宽度118也是正掺杂区域和负掺杂区域之间的距离。通过将该距离缩减到大约400nm,实现了约5伏特的低击穿电压。
[0017]图2给出了具有缺陷辅助的硅吸收区域的APD的另一示例。如之前的示例中,衬底200被氧化层202覆盖。氧化层上的硅层包括正掺杂区域204、负掺杂区域206以及正掺杂区域与负掺杂区域之间的本征硅雪崩倍增区域208。接触210和212分别与正掺杂区域204和负掺杂区域206电通信,用来接收反向偏置电位,并在本征Si区域216中建立大的横向电场。
[0018]缺陷辅助的硅吸收区域214布置于掺杂区域204和206之间的雪崩倍增区域208的一部分216上,并且不与掺杂区域204和206接触。缺陷辅助的硅吸收区域214在其晶体结构中具有缺陷;在一些示例中,这些缺陷是离子诱导的。电接触218与缺陷辅助的吸收区域214电通信,用来接收偏置电位,在一些示例中,该偏置电位相对于正掺杂区域204是负的。
[0019]如之前的示例中,由于正掺杂区域204和负掺杂区域206两端的反向偏置,电场穿过雪崩倍增区域208在这些区域之间延伸,导致电子如箭头220所指示向负掺杂区域206迁移,并且空穴如箭头222所指示向正掺杂区域204迁移。通过使缺陷辅助的吸收区域214相对于正掺杂区域204负向偏置,所产生的光载流子将被从缺陷辅助的吸收区域214传输到雪崩倍增区域208。通过接近于雪崩击穿电压操作,实现了最大倍增增益。在一些示例中,因为具有晶体结构缺陷的缺陷辅助的吸收区域214与雪崩倍增区域208分开,所以这种结构与图1的示例中的结构相比,导致甚至更低的暗电流和更少的散射损耗。
[0020]图3A和图3B给出具有缺陷辅助的硅吸收区域的环形谐振器雪崩光电二极管的示例。衬底300上具有氧化层302。氧化层上的硅层中形成线性光波导304。硅层中形成圆形的第一电掺杂区域306,并且其被硅层中形成的环形缺陷辅助的吸收区域308包围。吸收区域308在其硅晶体结构中包括多个缺陷,这些缺陷在一些示例中是离子诱导的。该缺陷辅助的吸收区域308还作为雪崩倍增区域。缺陷辅助的吸收区域308的一部分310与波导304是光接收关系。硅层中的第二电掺杂区域312部分地环绕吸收区域。接触314和316分别与第一电掺杂区域306和第二电掺杂区域312电通信,用来接收即将施加于电掺杂区域的反向偏置电位。
[0021]光束可如箭头318所指示传播入波导的一端,并且如箭头320所指示从另一端传出。光的一部分被缺陷辅助的吸收区域310接收。
[0022]在一些示例中,第一电掺杂区域306是正掺杂,并且第二电掺杂区域312是负掺杂。在其他示例中是相反的。
[0023]在前面的示例中,缺陷辅助的吸收区域308还包括雪崩倍增区域。图3C中示出具有缺陷辅助的硅吸收区域的环形谐振器雪崩光电二极管的另一示例。在该示例中,衬底326上的硅层324中形成圆形的第一电掺杂区域322。区域322被形成在硅层324中的环形雪崩倍增区域328包围。硅层中的第二电掺杂区域330部分地环绕倍增区域328。接触332和334分别与第一电掺杂区域322和第二电掺杂区域330电通信,用来接收即将施加于电掺杂区域的反向偏置电位。环形的缺陷辅助硅吸收区域336叠在雪崩倍增区域328的一部分338上,并且既不与掺杂区域322接触也不与掺杂区域330接触。缺陷辅助的吸收区域336在其硅晶体结构中包括多个缺陷,在一些示例中,这些缺陷是离子诱导的。如之前的示例中,缺陷辅助的吸收区域336的一部分与类似于波导304的波导(未示出)是光接收关系。缺陷辅助的吸收区域336上形成接触340。
[0024]图4A至4G中示出了制造具有缺陷辅助的硅吸收区域的雪崩光电二极管的方法。在一些示例中,该方法以在绝缘体上硅(SOI)衬底402上形成硅层400开始。可以蚀刻硅层400以定义中心区408,该中心区408突出于侧面区412的表面410和侧面区416的表面414之上。中心区408可从表面410和414突出250nm,如箭头A所指示。侧面区412和416厚约200nm至2微米(μ m)之间,如箭头B所指示。在一些示例中,中心区408不突出于侧面区之上。
[0025]如图4C所示,侧面区412如箭头C所指示被正掺杂,以定义P+区域418。在一些示例中,侧面区412通过大约119CnT3的硼注入来实现。在一些示例中,P+区域418延伸至侧面区412的边缘420,但是在本示例中,P+区域418仅向边缘420部分延伸,在边缘420和P+区域418之间留下未掺杂区域422。
[0026]相似地,侧面区416如箭头D所指示被负掺杂,以定义N+区域424,例如通过大约119CnT3的磷注入。在一些示例中,N+区域424延伸至侧面区416的边缘426,但是在本示例中,N+区域424仅向边缘426部分延伸,在边缘426和N+区域424之间留下未掺杂区域428。P+区域418和N+区域424分开大约400nm至I μ m,如箭头E所指示。
[0027]在一些示例中,如图4D所示,侧面区412的一部分如箭头F所指示被重正掺杂以在P+区域418中并且邻近表面410定义浅P++区域430,例如通过超过102°cnT3的硼注入。
[0028]侧面区416的一部分如箭头G所指示被重负掺杂以在N+区域424中并且邻近表面414定义N++区域432,例如通过超过102°cm_3的磷注入。
[0029]在中心区408的晶体结构中诱导结构缺陷,例如如箭头H所指示,通过硅离子轰击在中心区408形成缺陷辅助的硅吸收区域434。在本示例中,缺陷辅助的吸收区域434还作为雪崩倍增区域。
[0030]如图4E和4F所示,钝化层436 (例如二氧化硅)沉积在前述结构上。穿过钝化层从表面438至P++区域430蚀刻开口。在开口中沉积导电材料以形成从P++区域430至表面438的导体440和442。接触444放置于导体上,这在接触444和P++区域430之间建立电通路。相似地,穿过钝化层从表面438至N++区域432蚀刻开口。在开口中沉积导电材料以形成从N++区域432至表面438的导体446和448。接触450放置于导体上,这在接触450和N++区域432之间建立电通路。在一些示例中,接触444相对于接触450被正向偏置到12伏特。
[0031]在一些示例中,可以在每个接触和其对应的掺杂区域之间仅使用一个导体。
[0032]在一些示例中,导电材料可接触P+区域418和N+区域424,而不是P++区域430和N++区域 432。
[0033]在一些示例中,可以蚀刻缺陷辅助的吸收区域434以形成波导。
[0034]如图4G所示,在一些示例中,雪崩倍增区域452可制造在缺陷辅助的吸收区域434和P+区域418之间。相似地,雪崩倍增区域可形成在缺陷辅助的吸收区域434和N+区域424之间。
[0035]图5A至图5E中示出制造具有缺陷辅助的硅吸收区域的雪崩光电二极管的方法的另一个示例。在本示例中,该方法以在绝缘体上娃衬底(SOI) 502上形成娃层500开始。娃层可厚约200nm至2 μ m之间,如箭头A所指示。
[0036]硅层500的一部分如箭头B所指示被正掺杂以定义P+区域504。在一些示例中,这是通过大约119CnT3的硼注入实现的。在一些示例中,P+区域504延伸至硅层500的边缘506,但是在本示例中,P+区域504仅向边缘506部分延伸,在边缘506和P+区域504之间留下未掺杂区域508。
[0037]相似地,硅层500的另一个部分如箭头C所指示被负掺杂以定义N+区域510,例如通过大约119CnT3的磷注入。在一些示例中,N+区域510延伸至硅层500的边缘512,但是在本示例中,N+区域510仅向边缘512部分延伸,在边缘512和N+区域510之间留下未掺杂区域514。P+区域504和N+区域510被宽约400nm至I μ m的本征区域516分开,如箭头D所指示。
[0038]如图5B所示,在一些示例中,P+区域504的一部分如箭头E所指示被重正掺杂,以在P+区域504中并且邻近硅层500表面520定义浅P++区域518,例如通过超过102°cm_3的硼注入。
[0039]相似地,N+区域510的一部分如箭头F所指示被重负掺杂,以在N+区域510中并且邻近表面520定义N++区域522,例如通过超过102°cm_3的磷注入。
[0040]同时,参考图5C,在硅晶圆524的一部分的晶体结构中诱导结构缺陷,例如如箭头G所指示通过硅离子轰击,以形成缺陷辅助的硅吸收区域526。然后,如图所示,硅晶圆524被晶圆键合到硅层500,其中缺陷辅助的硅吸收区域526覆盖本征区域516的一部分。本征区域516可作为雪崩倍增区域。
[0041 ] 可从表面528至P++区域518形成开口,在开口中沉积导电材料,以形成从P++区域518至表面528的导体530。接触532放置于导体上。相似地,从表面528至N++区域522形成开口,并且在开口中沉积导电材料,以形成从N++区域522至表面528的导体534。接触536放置于导体上。
[0042]在一些示例中,从表面528至缺陷辅助的硅吸收区域526形成开口,在开口中沉积导电材料以形成导体538,并且接触540放置于导体上。P++区域518可相对于N++区域522被负向偏置,并且吸收区域526可以以P++区域和N++区域之间的中间电位偏置。
[0043]具有缺陷辅助的硅吸收区域的雪崩光电二极管以高量子效率以近红外波长操作。由于这些光电二极管避免了对使用其他材料例如锗或者其他II1-V化合物的任何需求,因此其制造是经济的。导致极低噪声指数的硅光电二极管的低k值使得硅成为制造雪崩光电二极管的几乎理想的材料。
【权利要求】
1.一种具有缺陷辅助的硅吸收区域的雪崩光电二极管,所述光电二极管包括: 位于衬底上的硅层,所述硅层包括正掺杂区域、负掺杂区域以及所述正掺杂区域与所述负掺杂区域之间的吸收区域,所述吸收区域在所述吸收区域的晶体结构中包括缺陷;以及 与所述正掺杂区域和所述负掺杂区域电通信以接收偏置电位的接触。
2.根据权利要求1所述的光电二极管,其中所述硅晶体结构中的缺陷包括离子诱导的缺陷。
3.根据权利要求1所述的光电二极管,其中所述吸收区域的至少一部分包括雪崩倍增区域。
4.根据权利要求1所述的光电二极管,并且进一步包括位于所述正掺杂区域和所述负掺杂区域之间的本征硅雪崩倍增区域。
5.根据权利要求4所述的光电二极管,其中所述吸收区域叠在所述雪崩倍增区域上。
6.根据权利要求1所述的光电二极管,并且进一步包括位于所述吸收区域和所述掺杂区域之一之间的雪崩倍增区域。
7.根据权利要求1所述的光电二极管,其中所述正掺杂区域包括重掺杂部分,并且所述负掺杂区域包括重掺杂部分。
8.一种具有缺陷辅助的硅吸收区域的环形谐振器雪崩光电二极管,所述光电二极管包括: 位于衬底上的娃层; 形成在所述硅层中的线性光波导; 位于所述娃层中的圆形的第一电掺杂区域; 位于所述硅层中的包围所述第一电掺杂区域的环形吸收区域,所述吸收区域在所述吸收区域的硅晶体结构中包括缺陷,所述吸收区域的一部分与所述波导是光接收关系; 位于所述硅层中的部分地环绕所述吸收区域的第二电掺杂区域;以及 与所述第一电掺杂区域和所述第二电掺杂区域电通信以接收反向偏置电位的接触。
9.根据权利要求8所述的光电二极管,其中所述硅晶体结构中的缺陷包括离子诱导的缺陷。
10.根据权利要求8所述的光电二极管,其中所述吸收区域包括雪崩倍增区域。
11.根据权利要求8所述的光电二极管,并且进一步包括位于所述第一电掺杂区域和所述第二电掺杂区域之间的本征硅雪崩倍增区域,并且其中所述吸收区域布置于所述雪崩倍增区域上。
12.—种制造具有缺陷辅助的硅吸收区域的雪崩光电二极管的方法,所述方法包括: 在硅层中形成用于掺杂的第一区域和第二区域以及所述第一区域和所述第二区域之间的本征雪崩倍增区域; 掺杂所述第一区域以形成正掺杂区域; 掺杂所述第二区域以形成负掺杂区域; 在所述第一区域和所述第二区域之间的吸收区域中诱导结构缺陷;以及 形成与所述正掺杂区域和所述负掺杂区域的电接触。
13.根据权利要求12所述的方法,其中所述本征区域包括所述吸收区域。
14.根据权利要求12所述的方法,其中所述吸收区域布置于所述本征区域上。
15.根据权利要求12所述的方法,并且进一步包括对所述正掺杂区域的一部分和所述负掺杂区域的一部分进行重掺杂。
【文档编号】H01L31/107GK104247046SQ201280072708
【公开日】2014年12月24日 申请日期:2012年7月25日 优先权日:2012年7月25日
【发明者】黄志宏, 查理斯·M·圣托里, 马科斯·菲奥伦蒂诺, 雷蒙德·G·博索雷 申请人:惠普发展公司,有限责任合伙企业
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1