一种具有高金属吸杂能力的n/n<sup>+</sup>硅外延片及其制备方法

文档序号:6788145阅读:551来源:国知局
专利名称:一种具有高金属吸杂能力的n/n<sup>+</sup>硅外延片及其制备方法
技术领域
本发明属于半导体技术领域,具体涉及一种具有高金属吸杂能力的n/n+硅外延片及其制备方法。
背景技术
以重掺n型直拉硅为衬底,轻掺n型硅作为外延层的n/n+硅外延片,由于可以更为显著的减少功率器件的功耗,因而该被广泛可用于功率器件,包括MOS和双极型器件等。此外,硅外延片的另外一个主要特点是在于其优越的金属吸杂性能。偏析吸杂与内吸杂两种吸杂机制决定了硅外延片的吸杂效率。对于n/n+外延片,产生有效的偏析吸杂则要求衬底中的施主的掺杂浓度要远大于外延层中施主的掺杂浓度,才会导致金属杂质在外延层与衬底中的固溶度的较大差别,如Hoelz等报道,对于以重掺砷直拉硅为衬底的n/n+外延片,只有当衬底中砷掺杂浓度彡3X IO1Vcm3时,才会导致有效的偏析吸杂(Hoelzl,R, K.J.Range, and L Fabry, Applied Physics a—Materials Science & Processing,(2002), 75,525)。但是实际上并不是所有外延片衬底中砷掺杂浓度都满足这个要求。因而,就有必要在衬底中产生高浓度的氧沉淀,利用内吸杂以达到使金属杂质远离器件工作区的目的。但是对于以重掺n型直拉硅作为衬底的硅外延片,却难以在衬底中生成大量的氧沉淀。导致这一现象的产生有两个原因:一方面,在利用化学气相沉积制备外延层的过程中,温度高达1150°C,如此高的温度下,使得重掺n型硅衬底中的原生缺陷消融,导致外延片在随后进行的低一高两步退火过程中难以生成氧沉淀,因而导致不能达到内吸杂的要求(Tsuya, H,Shimura, F,Ogawa, K,Journal of the Electrochemical Society(1982),129,374)。延长低温形核时间到48h,高温退火后氧沉淀的浓度依旧不能达到内吸杂的要求,导致铜在外延层中形成铜沉淀(Wijaranakula, W.,J.H.Matlock, and H.Mollenkopf, Journal of the Electrochemical Society (1988), 135, 3113)。另一方面,重掺的施主原子(砷、锑)对氧沉淀形成的抑制作用所致。施主掺杂浓度超过IO1Vcm3的n型硅,由于可以更为显著的减少大功率器件中额外的热损耗及发热,得到了半导体产业界及科研上的广泛研究。伴随的问题是,施主原子对氧沉淀的抑制作用也显得更为突出。以往,对于施主掺杂浓度(砷、锑)彡IO1Vcm3的n型硅,通过缓慢升温(Ramping)工艺或低温与高温两步热处理工艺就可以得到高密度的氧沉淀。但是,当施主掺杂浓度超过IO19/cm3时,根据以往这些传统的ramping工艺与低温-高温热处理工艺,在外延片衬底内得到的氧沉淀密度仅在IOfVcm3或者以下,如此低密度的氧沉淀并不能满足充分地金属吸杂的需求。

发明内容
本发明所要解决的技术问题是提供一种具有高金属吸杂性能的以重掺n型直拉娃为衬底的n/n+外延片及其制备方法。
本发明采用以下的技术方案:
一种具有高金属吸杂能力的n/n+硅外延片,包括:
轻掺n型硅外延层,所述的外延层层错、位错、雾状微缺陷或小丘缺陷密度<0.05/cm2,并且所述的外延层不存在氧沉淀及其诱生缺陷;
氮掺杂的重掺n型直拉娃衬底,所述的氮掺杂的重掺n型直拉娃衬底的电阻率≤0.005 Q cm,近表面区域的氮掺杂浓度为7.5 X IO15 1.5 X 1016atom/cm3,在衬底表面200 iim以下的氮浓度≥4.5\1015&如111/(^3,所述的氮掺杂的重掺11型直拉硅衬底中包含稳定的氧沉淀形核中心,可生成氧沉淀的密度≥IX 107cm3。

本发明中的n/n+硅外延片以轻掺n型硅作为外延层,目的是作为器件的工作区。并且,所述的轻掺n型硅外延层中缺陷密度相对较低,可以有效的降低漏电流以及提高氧化栅压的完整性,利于器件性能的提升。本发明中的n/n+硅外延片使用氮掺杂的重掺n型直拉硅作衬底,目的在于利用氮原子对氧沉淀的促进作用,以促进衬底中高密度氧沉淀的生成,解决长久以来难以在n/n+硅外延片的重掺n型直拉硅衬底中生成高密度的氧沉淀的难题,提供一种具备高金属吸杂能力的n/n+硅外延片。氮原子显著地促进重掺n型直拉硅衬底中高密度氧沉淀的生成,有两个重要的原因:一方面,重掺n型硅衬底中的氮原子可以显著地促进氧沉淀稳定形核中心的生成,在外延层生长过程中,使得氧沉淀形核中心得以保留;另一方面,对于n/n+硅外延片,氮原子会与氧原子结合生成大量的氮氧复合体,作为氧沉淀的形核中心,最后导致重掺n型直拉硅衬底中高密度氧沉淀的生成。本发明中的n/n+娃外延片以电阻率< 0.005Q cm的重掺n型直拉娃为衬底,可以更为显著的减少功率器件的功耗,因而该n/n+硅外延片可用于功率器件,包括MOS晶体
管、双极型晶体管或二极管等。作为优选,所述氮掺杂的重掺n型直拉硅衬底的电阻率为0.001 0.005 Q cm。作为优选,所述氮掺杂的重掺n型直拉硅衬底近表面区域的氮掺杂浓度为
9X IO15 1.5 X 1016atom/cm3,在衬底表面 100 u m 以下的氮浓度 ≥ 5 X 1015atom/cm3。实现如此高浓度的氮掺杂的目的在于,更有效地促进稳定氧沉淀形核中心的生成。作为优选,所述氮掺杂的重掺n型直拉硅衬底中的氧浓度为7 X IO17 1.5 X IO18/cm3,氧沉淀密度≥I XlOVcm3,其径向分布变化≤ 0.5。作为优选,所述的轻掺n型硅外延层的电阻率为I 50 Q作为优选,所述的轻掺n型娃外延层的厚度为5 60lim。本发明还提供一种功率器件,所述的功率器件包括上述的n/n+的硅外延片,所述的功率器件包括但不限于MOS晶体管、双极型晶体管或二极管等。本发明的另一个目的是提供上述具有高金属吸杂能力的n/n+硅外延片的制备方法,包括以下步骤:
1)将重掺n型直拉硅在高纯N2气氛下进行高温快速热处理(RTP),得到氮掺杂的重掺n型直拉硅衬底;
2)在上述氮掺杂的重掺n型直拉娃衬底上生长轻掺n型娃外延层,得到n/n+娃外延
片;
3)将上述硅外延片进行低温与高温两步热处理,得到具有高金属吸杂能力的n/n+硅外延片。作为优选,上述制备具有高金属吸杂能力的n/n+硅外延片的方法中,步骤I)中所述的高温快速热处理(RTP)温度为1100 1260°C,热处理时间为40 200s,冷却速率为40 0C /s 60。。/s ;
作为优选,步骤3)中所述的低温热处理温度为600 800°C,热处理时间为8 32h ;高温热处理温度为900 1050°C,热处理时间为8 32h。上述的制备具有高金属吸杂能力的n/n+硅外延片的方法中,步骤I)的作用在于实现重掺n型直拉硅的氮掺杂,得到氮掺杂的重掺n型直拉硅衬底。重掺n型直拉硅衬底近表面区域的氮掺杂浓度可以达到7.5 X IO15 1.5X 1016atom/cm3,在衬底表面200 y m以下的氮浓度 > 4.5 X 1015atom/cm3o上述的制备具有高金属吸杂能力的n/n+硅外延片的方法中,步骤2)的作用在于,以氮掺杂的重掺n型直拉娃为衬底,在氮掺杂的重掺n型直拉娃上生长轻掺n型娃外延层,作为器件的工作区。作为优选,轻掺n型娃外延层的电阻率为I 50 Q cm,厚度为5 60 ii m,以便更好地满足器件工作的需要。上述的制备具有高金属吸杂能力的n/n+硅外延片的方法中,步骤3)的作用在于为了促进n/n+硅外延片的重掺n型硅衬底中氧沉淀的形核与长大,上述得到的n/n+硅外延片必须经过低温与高温两步热处理,两步缺一不可。利用氮原子对氧沉淀生成的促进作用,从而在衬底中得到的氧沉淀密度彡IX 109/cm3。本发明中所述的n/n+硅外延片使用氮掺杂的重掺n型直拉硅作为衬底的目的在于,利用氮原子对氧沉淀的促进作用,促进衬底中高密度氧沉淀的生成,制得具有高金属吸杂能力的n/n+硅外延片。氮原子对氧沉淀的促进,有两方面的原因。一方面,重掺n型硅衬底中的氮原子可以显著地促进氧沉淀稳定形核中心的生成,使得氧沉淀形核中心在外延层生长过程中得以保留;另一方面,n/n+在低温退火过程中,氮与氧会在重掺n型硅衬底中生成大量的氮氧复合体,作为氧沉淀的形核中心,促进重掺n型直拉硅衬底中高密度氧沉淀的生成。为了实现重掺n型直拉硅的氮掺杂,将重掺n型直拉硅在高纯N2气氛下进行高温RTP热处理,RTP热处理起到预处理的作用。RTP预处理必须在高温下进行,从而在重掺n型硅中注入足够多的氮原子,使得重掺n型直拉硅衬底近表面区域的氮掺杂浓度可以达到
7.5 X IO15 1.5 X 1016atom/cm3,在衬底表面 200 u m 以下的氣浓度> 4.5 X 1015atom/cm3,从而显著地促进重掺n型直拉硅衬底中氧沉淀稳定形核中心的生成。相对于在N2气氛下利用直拉法制备直拉硅或者在硅料中投入氮化硅的方法以实现氮掺杂,本发明中所述的通过RTP在直拉硅中掺入氮原子的方法,更为快捷,不仅可以减少生产成本,而且不存在传统掺氮方法中难以控制氮原子在整个硅锭中分布不均匀的问题。对重掺n型直拉硅衬底进行的RTP的预处理必须在高纯N2气氛下进行,若是在氩气气氛下对直拉硅衬底 进行RTP预处理,随后在该衬底上生长硅外延层,最后经过低温与高温两步热处理后,衬底中生成的氧沉淀密度提高程度不是很显著。通常,相对于n/n+硅外延片,在P型娃外延片的衬底中更容易生成氧沉淀,这是由于重掺n型施主杂质对氧沉淀的抑制作用所致。但是,即使是对于相对容易生成氧沉淀的p_/p硅外延片,在经过氩气气氛下对直拉硅衬底进行RTP预处理及随后的低温与高温两步热处理工艺后,在p_/p硅外延片衬底中生成的氧沉淀密度也仅为5.0 15.0X IOVcm2,不能满足金属吸杂所需。经过氩气气氛下的RTP预处理后氧沉淀提高程度不明显的原因在于,氩气气氛下的RTP预处理会在衬底中注入的空位,生成空位与氧的复合体,但是这些空位与氧的复合体在外延生长过程中大部分被消除,所以不能显著提高氧沉淀浓度。利用本发明生产的这种以氮掺杂的重掺n型直拉硅为衬底的n/n+硅外延片,不仅外延层质量优异,无明显的层错、位错及雾状缺陷,并且在经过低温与高温两步热处理后,由于氮原子对氧沉淀生成的促进作用,在重掺n型直拉硅衬底体内生成了高密度的氧沉淀,促进了该n/n+硅外延片金属吸杂效率的显著提高。另外,该n/n+硅外延片以电阻率(0.005 Q -cm的重掺n型直拉硅为衬底,可以更为显著的减少功率器件的功耗,因而该n/n+硅外延片可用于功率器件,包括MOS晶体管、双极型晶体管或二极管等。


图1是本发明所公布的具备高金属吸杂能力的n/n+硅外延片的示意 图2是实施例1中的n/n+硅外延片的重掺砷直拉硅衬底近表面区域以及距离表面100 u m以下的氮浓度分布图(由SIMS测得);
图3是实施例1制得的n/n+硅外延片的解理面经择优腐蚀后的氧沉淀的光学显微镜照片;
图4是实施例1制得的n/n+硅外延片的表面铜沉淀经择优腐蚀后的光学显微镜照片; 图5是参比样品I的解理面经择优腐蚀后的原生缺陷的光学显微镜照片;
图6是吸杂后的参比样品I的表面铜沉淀经择优腐蚀后的光学显微镜照片;
图7是参比样品2的解理面经择优腐蚀后的原生缺陷的光学显微镜照片;
图8是吸杂后的参比样品2的表面铜沉淀经择优腐蚀后的光学显微镜照片;
图9是参比样品3的解理面经择优腐蚀后的原生缺陷的光学显微镜照片;
图10是吸杂后的参比样品3的表面铜沉淀经择优腐蚀后的光学显微镜照片;
图11是参比样品4的解理面经择优腐蚀后的原生缺陷的光学显微镜照片;
图12是吸杂后的参比样品4的表面铜沉淀经择优腐蚀后的光学显微镜照片。
具体实施例方式下面结合实施例和附图详细说明本发明。如图1所不,本发明公布了一种具有高金属吸杂能力的n/n+娃外延片,该娃外延片包括:
——轻掺n型硅外延层,所述的外延层层错、位错、雾状微缺陷或小丘缺陷密度(0.05/cm2,并且所述的外延层不存在氧沉淀及其诱生缺陷;
-氮掺杂的重掺n型直拉娃衬底,所述的氮掺杂的重掺n型直拉娃衬底的电阻率
(0.005 Q cm,近表面区域的氮掺 杂浓度为7.5 X IO15 1.5 X 1016atom/cm3,在衬底表面200 iim以下的氮浓度彡4.5\1015&如111/(^3,所述的氮掺杂的重掺11型直拉硅衬底中包含稳定的氧沉淀形核中心,可生成氧沉淀的密度> IX 107cm3。
作为优选,所述重掺η型硅衬底的电阻率为0.001 0.005 Ω.cm。作为优选,所述重掺η型硅衬底中氧浓度为7 X IO17 1.5 X 1018/cm3,氧沉淀密度≥lX109/cm3,其径向分布变化≤0.5。作为优选,所述的轻掺η型硅外延层的电阻率为I 50 Ω.cm。作为优选,所述的轻掺η型娃外延层的厚度为5 60 μ m。实施例1
生产以重掺砷直拉硅为衬底,具有高金属吸杂能力的n/η+硅外延片的制备方法,包括以下步骤:
1)选取直径为200mm的〈100〉晶向的重掺砷直拉硅作为n/η+硅外延片的衬底,衬底电阻率为 0.003 0.005 Ω.cm,氧浓度为 1.02 X IO1Vcm3 ;
2)将该重掺砷直拉硅经过RCA清洗后,于高纯N2气氛下在快速热处理炉中1260°C热处理60s,以50°C /s的冷却速率快速冷却,得到氮掺杂的重掺砷直拉硅衬底;
3)将该氮掺杂的重掺砷直拉娃衬底置于外延炉中,于1150°C下在该衬底上生长厚度为60 μ m、电阻率为14.5 Ω.cm的轻掺磷娃外延层,得到n/n+娃外延片;
4)将该外延片进行650°C/16h与1000°C /16h低温与高温两步热处理,得到具有高金属吸杂能力的n/η+硅外延片;
图2是实施例1步骤2)中的重掺砷直拉硅在经过1250°C快速热处理后,得到的氮掺杂的重掺砷直拉硅衬底表面及距离表面100 μ m以下的氮浓度分布图(由SMS测得)。不难看出,氮掺杂的重掺砷直拉硅衬底近表面区域的氮掺杂浓度可以达到I X 1016atom/cm3,在衬底表面100 μ m以下的氮浓度> 5 X 1015atom/cm3。将得到的具有高金属吸杂能力的n/n+娃外延片经过Yangl (CrO3 (0.5mol/L):HF(49%) =1:1)腐蚀液择优腐蚀后,利用光学显微镜观察得到的该外延片截面中氧沉淀的分布情况,其光学显微镜照片见图3。从图3可以看到,由于重掺砷直拉硅衬底中氮原子对氧沉淀的促进作用,衬底中生成了大量的氧沉淀,并且外延层没有观察到缺陷,获得了高的内吸杂结构。为了验证这种吸杂结构的金属吸杂的有效性,特意引入了铜沾污,包括以下步骤:
①实施例1制得的具有高金属吸杂能力的n/η+硅外延片经过RCA清洗后,在该硅外延片表面滴CuCl2溶液;
②接着进行1000°C/2h热处理,使得表面的铜充分扩散穿透整个硅外延片,使得最后体内的铜沾污浓度为1 X 1012Cu/cm3 ;
③最后缓慢拉出硅外延片样品,在空气中冷却;
④将硅外延片置于Secco(HF(49%) IK2Cr2O7 (0.15mol/L) =2:1)腐蚀液中,于30°C下腐蚀5min,最后利用光学显微镜观察硅外延片上表面的铜沉淀分布,其光学显微镜照片照片见图4。从图4中可以看出,没有铜沉淀在硅外延片表面生成,表明铜被充分的内吸杂。在冷却过程中,表面的铜扩散到体内,氧沉淀为金属沉淀形核提供驱动力,因而金属沉淀优先在氧沉淀处生成。由于衬底中存在高浓度的氧沉淀,因而使得铜被充分的内吸杂,硅外延片表面无铜沉淀的生成。
对比实施例1
为了说明经过高纯N2气氛下RTP预处理,以氮掺杂的重掺砷直拉硅为衬底的n/n+硅外延片在吸杂性能上的优越性,经过如下步骤生成参比样品1:
1)选取直径为200mm的〈100〉晶向的重掺砷直拉硅作为n/η+硅外延片的衬底,衬底电阻率为0.003 0.005 Ω.cm,氧浓度为1.02 X 1018/cm3,得到重掺砷直拉硅衬底;
2)将该重掺砷直拉娃衬底置于外延炉中,于1150°C下在该衬底上生长厚度为60μ m、电阻率为14.5 Ω.cm的轻掺磷硅外延层,得到n/n+硅外延片(参比样品I)。将参比样品I经过Yangl (CrO3 (0.5mol/L):HF (49%) =1:1)腐蚀液择优腐蚀后,利用光学显微镜观察得到的参比样品I截面中氧沉淀的分布情况,其光学显微镜照片见图5。从图5可以看到,在重掺砷直拉硅衬底中未观察到原生缺陷,排除内吸杂存在的可能性,因而只可能存在重掺砷直拉硅衬底导致的偏析吸杂效果。因而特意引入铜沾污,观察重掺砷直拉硅衬底的铜吸杂效果。按照实施例1中引入铜沾污的方法(步骤① ④),对参比样品I进行处理,得到吸杂后的参比样品1,其光学显微照片见图6。从图6看到,在吸杂后的参比样品I上表面观察到了大量的铜沉淀,因此,由重掺砷直拉硅衬底导致的偏析吸杂并不能充分地满足铜吸杂的需求。对比实施例2
为了说明经过高纯N2气氛下RTP预处理,以氮掺杂的重掺砷直拉硅为衬底的n/n+硅外延片在吸杂性能上的优越性,经过如下步骤生成参比样品2:
1)选取直径为200mm的〈100〉晶向的重掺砷直拉硅作为n/η+硅外延片的衬底,衬底电阻率为0.003 0.005 Ω.cm,氧浓度为1.02 X 1018/cm3,得到重掺砷直拉硅衬底;
2)将该重掺砷直拉娃衬底置于外延炉中,于1150°C下在该衬底上生长厚度为60μ m、电阻率为14.5 Ω.cm的轻掺磷娃外延层,得到n/η+娃外延片;
3)将该外延片进行650°C/16h与1000°C /16h低温与高温两步热处理,得到n/n+硅外延片(参比样品2)。将参比样品2经过Yangl (CrO3 (0.5mol/L):HF (49%) =1:1)腐蚀液择优腐蚀后,利用光学显微镜观察得到的参比样品2截面中氧沉淀的分布情况,其光学显微镜照片见图7。从图7可以看到,在衬底中生成的氧沉淀密度较小,并不能满足充分的内吸杂所需。同样为了验证这种吸杂结构的金属吸杂的有效性,特意引入了铜沾污。按照实施例1中引入铜沾污的方法(步骤① ④),对参比样品2进行处理,得到吸杂后的参比样品2,其光学显微照片见图8。从图8看到,在吸杂后的参比样品2上表面观察到了大量的铜沉淀,因此,衬底中的氧沉淀密度并不能满足充分的铜吸杂的需求。对比实施例3
为了说明经过高纯N2气氛下RTP预处理,以氮掺杂的重掺砷直拉硅为衬底的n/n+硅外延片在吸杂性能上的优越性,经过如下步骤生成参比样品3:
1)选取直径为200mm的〈100〉晶向的重掺砷直拉硅作为n/η+硅外延片的衬底,衬底电阻率为0.003 0.005 Ω.cm,氧浓度为1.02 X 1018/cm3,得到重掺砷直拉硅衬底;
2)将该重掺砷直拉娃衬底置于外延炉中,于1150°C下在该衬底上生长厚度为60μ m、电阻率为14.5 Ω.cm的轻掺磷娃外延层,得到n/η+娃外延片; 3)将该外延片进行如下热处理:以1°C /min的升温速率,从350°C缓慢升温到1100。。,并在1100°C下保温16h,得到n/n+硅外延片(参比样品3)。将参比样品3经过Yangl (CrO3 (0.5mol/L):HF (49%) =1:1)腐蚀液择优腐蚀后,利用光学显微镜观察得到的参比样品3截面中氧沉淀的分布情况,其光学显微镜照片见图9。从图9可以看到,在衬底中生成的氧沉淀密度较小,并不能满足充分的内吸杂所需。同样为了验证这种吸杂结构的金属吸杂的有效性,特意引入了铜沾污。按照实施例1中引入铜沾污的方法(步骤① ④),对参比样品3进行处理,得到吸杂后的参比样品3,其光学显微照片见图10。从图10看到,在吸杂后的参比样品3上表面观察到了大量的铜沉淀,因此,衬底中的氧沉淀密度并不能满足充分的铜吸杂的需求。对比实施例4
为了说明必须对氮掺杂的重掺砷直拉硅为衬底的n/η+硅外延片进行低温与高温两步热处理,才可以在重掺砷直拉硅衬底中得到高密度的氧沉淀,经过如下步骤生成参比样品4:
1)选取直径为200mm的〈100〉晶向的重掺砷直拉硅作为n/η+硅外延片的衬底,衬底电阻率为0.003 0.005 Ω.cm,氧浓度为1.02 X 1018/cm3,得到重掺砷直拉硅衬底;
2)将该重掺砷直拉硅经过RCA清洗后,N2气氛下在快速热处理炉中1250°C下热处理60s,以50°C /s的冷却速率快速冷却,得到氮掺杂的重掺砷直拉硅衬底;
3)将该氮掺杂的重掺砷直拉娃衬底置于外延炉中,于1150°C下在该衬底上生长厚度为60 μ m、电阻率为14.5 Ω.cm的轻掺磷娃外延层,得到n/n+娃外延片;
4)将该外延片进行900°C/16h单步热处理,得到n/η+娃外延片(参比样品4)。将参比样品4经过Yangl (CrO3 (0.5mol/L):HF (49%) =1:1)腐蚀液择优腐蚀后,利用光学显微镜观察得到的参比样品4截面中氧沉淀的分布情况,其光学显微镜照片见图11。从图11可以看到,在衬底中生成的氧沉淀密度较小,并不能满足充分的内吸杂所需。因而,对于氮掺杂的重掺砷直拉硅为衬底的n/η+硅外延片,仅仅依靠单步热处理工艺并不能在衬底中得到高密度的氧沉淀,必须经过低温与高温两步热处理,使氧沉淀充分的形核与长大,从而在衬底中得到高密度的氧沉淀。同样为了验证这种吸杂结构的金属吸杂的有效性,特意引入了铜沾污。按照实施例1中引入铜沾污的方法(步骤① ④),对参比样品4进行处理,得到吸杂后的参比样品4,其光学显微照片见图12。从图12看到,在吸杂后的参比样品4上表面观察到了大量的铜沉淀,因此,衬底中的氧沉淀密度并不能满足充分的铜吸杂的需求。通过实施例1与参比样品1、2、3、4的比较,发现通过快速热处理在重掺砷直拉硅衬底中注入的氮原子,对氧沉淀的生成有极大的促进作用,产生高的内吸杂效果。另外,该氮掺杂的重掺砷直拉硅为衬底的n/η.硅外延片若只是进行单步热处理,并不能在重掺砷直拉硅衬底中得到高密度的氧沉淀,有必要进行低温与高温两步热处理,使氧沉淀得到形核与长大。因此,本发明的制备工艺可以提供一种具有高内吸杂能力的n/n+硅外延片,达到较好的内吸杂效率,达到使得金属杂质远离器件工作区的目的。实施例2
生产以重掺锑直拉硅为衬底,具有高金属吸杂能力的n/η+硅外延片的制备方法,包括以下步骤: 1)选取直径为200mm的〈100〉晶向的重掺锑直拉硅作为n/η+硅外延片的衬底,衬底电阻率为 0.001 0.003 Ω.cm,氧浓度为 7 X IO1Vcm3 ;
2)将该重掺砷直拉硅经过RCA清洗后,于高纯N2气氛下在快速热处理炉中1200°C热处理40s,以100°C /s的冷却速率快速冷却,得到氮掺杂的重掺锑直拉硅衬底;
3)将该氮掺杂的重掺铺直拉娃衬底置于外延炉中,于1150°C下在该衬底上生长厚度为20 μ m、电阻率为50 Ω * cm的轻掺磷硅外延层,得到n/n+硅外延片;
4)将该外延片进行800°C/8h与1050°C /8h的低温与高温两步热处理,得到具有高金属吸杂能力的n/η+娃外延片。将得到的具有高金属吸杂能力的n/n+娃外延片经过Yangl (CrO3 (0.5mol/L):HF(49%) =1:1)腐蚀液择优腐蚀后,利用光学显微镜观察得到的该外延片截面中氧沉淀的分布情况。在n/η+硅外延片的重掺锑直拉硅衬底中生成了大量的氧沉淀,并且外延层中无缺陷产生,获得了高的内吸杂结构。为了验证这种吸杂结构的金属吸杂的有效性,特意引入了铜沾污,包括以下步骤:
①实施例2制得的具有高金属吸杂能力的n/n+硅外延片经过RCA清洗后,在该硅外延片表面滴CuCl2溶液;
②接着进行1000°C/2h热处理,使得表面的铜充分扩散穿透整个硅外延片,使得最后体内的铜沾污浓度为I X 1012Cu/cm3 ;
③最后缓慢拉出硅外延片样品,在空气中冷却;
④将硅外延片置于Secco(HF(49%) IK2Cr2O7 (0.15mol/L) =2:1)腐蚀液中,于30°C下腐蚀5min,最后利用光学显微镜观察硅外延片上表面的铜沉淀分布。没有铜沉淀在硅外延片表面生成,表明铜被充分的内吸杂。在冷却过程中,表面的铜扩散到体内,氧沉淀为金属沉淀形核提供驱动力,因而金属沉淀优先在氧沉淀处生成。由于衬底中存在高浓度的氧沉淀,因而使得铜被充分的内吸杂,硅外延片表面无铜沉淀的生成。实施例3
生产以重掺磷直拉硅为衬底,具有高金属吸杂能力的n/η+硅外延片的制备方法,包括以下步骤:
1)选取直径为200mm的〈100〉晶向的重掺磷直拉硅作为n/η+硅外延片的衬底,衬底电阻率为 0.002 0.004 Ω.cm,氧浓度为 1.5 X IO1Vcm3 ;
2)将该重掺砷直拉硅经过RCA清洗后,于高纯N2气氛下在快速热处理炉中1100°C热处理200s,以40°C /s的冷却速率快速冷却,得到氮掺杂的重掺磷直拉硅衬底;
3)将该氮掺杂的重掺磷直拉娃衬底置于外延炉中,于1150°C下在该衬底上生长厚度为5μηι、电阻率为I Ω.αιι的轻掺磷娃外延层,得到η/η+娃外延片;
4)将该外延片进行600°C/32h与900°C /32h低温与高温两步热处理,得到具有高金属吸杂能力的n/η+娃外延片;
将得到的具有高金属吸杂能力的n/η+娃外延片经过Yangl (CrO3 (0.5mol/L):HF(49%) =1:1)腐蚀液择优腐蚀后,利用光学显微镜观察得到的该外延片截面中氧沉淀的分布情况。在n/η+硅外延片的重掺磷直拉硅衬底中生成了大量的氧沉淀,并且外延层中无缺陷产生,获得了高的内吸杂结构。为了验证这种吸杂结构的金属吸杂的有效性,特意引入了铜沾污,包括以下步骤:
①实施例3制得的具有高金属吸杂能力的n/n+硅外延片经过RCA清洗后,在该硅外延片表面滴CuCl2溶液;
②接着进行1000°C/2h热处理,使得表面的铜充分扩散穿透整个硅外延片,使得最后体内的铜沾污浓度为I X 1012Cu/cm3 ;
③最后缓慢拉出硅外延片样品,在空气中冷却;
④将硅外延片置于Secco(HF(49%) IK2Cr2O7 (0.15mol/L) =2:1)腐蚀液中,于30°C下腐蚀5min,最后利用光学显微镜观察硅外延片上表面的铜沉淀分布。没有铜沉淀在硅外延片表面生成,表明铜被充分的内吸杂。在冷却过程中,表面的铜扩散到体内,氧沉淀为金属沉淀形核提供驱动力,因而金属沉淀优先在氧沉淀处生成。由于衬底中存在高浓度的氧沉淀,因而使得铜被充分的内吸杂,硅外延片表面无铜沉淀的生成。需要说明的是,上述实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
权利要求
1.一种具有高金属吸杂能力的n/n+娃外延片,该娃外延片包括: 轻掺n型硅外延层,所述的外延层层错、位错、雾状微缺陷或小丘缺陷密度<0.05/cm2,并且所述的外延层不存在氧沉淀及其诱生缺陷; 氮掺杂的重掺n型直拉娃衬底,所述的氮掺杂的重掺n型直拉娃衬底的电阻率(0.005 Q cm,近表面区域的氮掺杂浓度为7.5 X IO15 1.5 X 1016atom/cm3,在衬底表面200 iim以下的氮浓度彡4.5\1015&如111/(^3,所述的氮掺杂的重掺11型直拉硅衬底中包含稳定的氧沉淀形核中心,可生成氧沉淀的密度> IX 107cm3。
2.根据权利要求1所述的n/n+的硅外延片,其特征在于:所述氮掺杂的重掺n型直拉硅衬底的电阻率为0.001 0.005 Q ^cm0
3.根据权利要求1所述的n/n+的硅外延片,其特征在于:所述氮掺杂的重掺n型直拉硅衬底中氧浓度为7 X IO17 1.5 XlO1Vcm3,氧沉淀密度彡I X 109/cm3,其径向分布变化(0.5。
4.根据权利要求1所述的n/n+的硅外延片,其特征在于:所述的轻掺n型硅外延层的电阻率为I 50 Q cm。
5.根据权利要求1所述的n/n+的硅外延片,其特征在于:所述的轻掺n型硅外延层的厚度为5 60 ii m。
6.备权利要求1所述的具有高金属吸杂能力的n/n+硅外延片的方法,其特征在于其包括以下步骤: 1)将重掺n型直拉硅在高纯N2气氛下进行高温快速热处理,得到氮掺杂的重掺n型直拉硅衬底; 2)在上述氮掺杂的重掺n型直拉娃衬底上生长轻掺n型娃外延层,得到n/n+娃外延片; 3)将上述硅外延片进行低温与高温两步热处理,得到具有高金属吸杂能力的n/n+硅外延片。
7.根据权利要求6所述的n/n+硅外延片的制备方法,其特征在于:步骤I)中所述的高温快速热处理温度为1100 1260°C,热处理时间为40 200s,冷却速率为40°C /s IOO0C /s。
8.根据权利要求6所述的n/n+硅外延片的制备方法,其特征在于:步骤3)中所述的低温热处理温度为600 800°C,热处理时间为8 32h ;高温热处理温度为900 1050°C,热处理时间为8 32h。
9.一种功率器件,其特征在于:所述的功率器件包括权利要求1-5任一项所述的n/n+的娃外延片。
10.根据权利要求9所述的功率器件,其特征在于:所述的功率器件为MOS晶体管、双极型晶体管或二极管。
全文摘要
本发明提供一种具有高金属吸杂能力的n/n+硅外延片,包括轻掺n型硅为外延层,外延层中层错、位错等缺陷密度≤0.05/cm2;氮掺杂的重掺n型直拉硅为衬底,衬底的电阻率≤0.005Ω cm,并且衬底中包含稳定的氧沉淀形核中心,可生成氧沉淀密度≥1×109/cm3。本发明还提供上述n/n+硅外延片的制备方法,其步骤包括将重掺n型直拉硅在N2气氛下进行高温快速热处理;在热处理后的重掺n型的直拉硅上生长轻掺n型硅外延层;经低温与高温两步热处理,得到本发明的n/n+硅外延片。本发明解决了长久以来难以在n/n+硅外延片重掺n型直拉硅衬底中生成高密度的氧沉淀的难题,具有良好的应用前景。
文档编号H01L21/18GK103094316SQ201310032160
公开日2013年5月8日 申请日期2013年1月25日 优先权日2013年1月25日
发明者马向阳, 董鹏, 杨德仁 申请人:浙江大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1