TSV连接的背侧去耦的制作方法

文档序号:12288836阅读:516来源:国知局
TSV连接的背侧去耦的制作方法与工艺

集成电路结构。



背景技术:

当前的微处理器能够引起在非常短的时间内(常常快于10纳秒(ns))出现的大的负载瞬变。为了避免可能导致执行错误的电压下降,微处理器功率输送网通常包含高频去耦电容器,这些高频去耦电容器稳健地邻接至微处理器管芯,或者被集成到管芯自身中。这对于将来的工艺节点会趋向于变得更加困难,因为预期器件密度将显著地增大,而预期负载瞬变的幅度和速度将保持大致相同。对应地,对于每个新的工艺节点而言,在缩小了大约50%的区域中将会需要相同量的功率输送去耦。在过去和当前的产品上通常使用两种解决方案(有时被组合)。第一种解决方案是将多个陶瓷电容器放置在管芯侧上、焊盘侧上、或者嵌入封装体衬底中。电容器使用宽的电源面或者通过密集阵列的镀覆通孔(PTH)连接到管芯。这提供了大量的去耦电容,但是响应速度根本上受限于电容器与管芯的物理距离以及电容器所连接到的管芯的面积,这会降低将来工艺节点的有效性并导致较大的电压下降。第二种解决方案是在管芯上实现金属-绝缘体-金属(MIM)电容器。MIM电容器几乎立即地对局部负载瞬变进行响应,但是具有有限的电荷储存容量。理想地,MIM密度将会与器件密度成反比,但这在实践中已证实是具有挑战性的,因此存在使MIM密度保持恒定的趋势。

附图说明

图1示出了封装体组件的实施例的横截面侧视图,其中封装体组件包括具有穿硅过孔(TSV)的管芯以及连接到管芯的背侧(backside)的MIM电容器。

图2示出了图1的结构的俯视图。

图3示出了封装体组件的另一个实施例的横截面侧视图,其中封装体组件包括管芯以及连接到管芯的去耦电容器。

图4示出了封装体组件的另一个实施例的横截面侧视图,其中封装体组件包括管芯以及连接到管芯的背侧的去耦电容器。

图5示出了计算设备的实施例。

具体实施方式

一种包括穿硅过孔(TSV)管芯以及连接到TSV的至少一个去耦电容器的装置被描述为包含该装置以及将去耦电容器连接到管芯(例如,TSV管芯)的背侧的方法的封装体结构和计算设备。实施例包括被实现在管芯的背侧上并与TSV连接的、用于微处理器(或芯片组)的去耦电容器。管芯减薄至代表性地100微米数量级的管芯厚度通常意味着个体TSV的长度会是小的,因此TSV阵列会具有相对低的电感,从而允许非常快速的瞬变响应。实施例包括:在管芯的背侧上的(多个)电容器,其被实现为管芯自身的背面上的MIM电容器层(与背侧的再分布层类似地构造);被置于管芯的顶部上的阵列电容器;或者使用实现在堆叠的管芯上的MIM或器件电容器(例如,使用被添加到存储器管芯的MIM层)。所描述的实施例提供了去耦电容的显著增加,这在非常高的速度下是有效的,以便在不需要昂贵的MIM缩放(scaling)的情况下产生对于将来工艺节点而言相等或减小的电压下降。

图1示出了封装体组件的实施例,其中封装体组件包括TSV管芯和连接到管芯的背侧的MIM电容器以及用作为MIM的导电层的背侧金属化/分布层。参考图1,结构100包括具有器件侧115和背侧120的管芯110。在该实施例中,管芯110是TSV管芯,其包括TSV 125,TSV 125从器件侧115延伸至背侧120并且界定背侧上的接触点127。接触点为器件(例如在该实施例中,MIM电容器)提供连接点。接触点可以位于对应的TSV的位置处。替代地,可以提供导电金属化层或分布层(例如,铜迹线),以传送与管芯110的背侧120相关联的区域中的一个或多个接触点的位置,以便连接到器件。将诸如去耦电容器(例如,MIM电容器)之类的器件直接连接到由TSV界定的接触点包括:将该电容器连接到位于对应的TSV的位置处或者通过金属化层被路由到背侧120上的不同位置处的接触点。在该实施例中,被连接到管芯110的背侧120上的接触点的一部分是MIM电容器。更具体而言,MIM电容器130由以下各项构成:例如铜的金属层135,例如具有大于二氧化硅(“高k电介质材料”)的电介质常数的电介质材料(例如,基于铪的电介质(例如,氧化铪))的绝缘体140;以及例如铜的金属层145。在一个实施例中,通过例如形成图案并引入铜材料(通过例如化学沉积晶种材料、随后在暴露出的晶种区域上电镀铜金属),在背侧金属化工艺中引入金属层135。可以通过沉积(例如,化学气相沉积)来形成绝缘体140。可以通过针对金属层135所描述的铜引入工艺来形成金属层145。在管芯的背侧上的MIM 130可以占据管芯的背侧的区域中的一部分(包括整个部分)。在一个实施例中,除了在管芯110的背侧120上的MIM 130之外,还可以存在连接到接触点127与TSV 125的其它器件,这些其它器件或者与MIM 130相邻或者在MIM 130上方(例如,通过穿过MIM 130的路由互连件连接)。

图1还示出了在管芯110的器件侧115上的MIM 150。在一个实施例中,MIM 150包括:例如铜的金属层155;例如高k电介质(例如,氧化铪)的电介质层160;以及例如铜的金属层165。在一个实施例中,MIM 150可以根据用于形成MIM 130的类似工艺,形成在器件侧的最终金属层(N)中作为金属层165,其中金属层165通过例如在倒数第二金属层(N-1)与金属层155和金属层165中的每一层之间的单独的导电过孔来连接到倒数第二金属层。与MIM 130的情况一样,MIM 150可以占据管芯110的器件侧115的一部分(包括整个部分)。被布置在金属层165上的是电介质层(未示出)以及导电接触点。在一个实施例中,器件互连件可以从管芯110的器件侧115延伸通过MIM 150的金属层165至接触盘。当这种互连件延伸通过MIM 150时,它们与MIM 150电隔离。可选地,连接到互连件的导电金属化层或分布层(例如,铜迹线)然后可以被布置在金属层165上的电介质层上。金属化层用于置放接触点以便连接到另一个衬底,例如封装体170。图1示出了电介质材料的外部钝化层167,其中外部钝化层167覆盖任何金属化层(例如,铜迹线)并具有至接触盘的开口,以允许这种互连件连接到焊料连接部180。如图1中所示出的,在该实施例中,管芯110通过焊料连接部180连接到封装体170。

图1中的插图示出了MIM 150的另一个实施例。在该实施例中,可以通过以下步骤来形成MIM 150:在最终金属层155上沉积电介质层(电介质层1552),随后沉积钽金属层(层1553)、MIM电介质层150、第二钽层(层1653)、电介质层1652以及铜层1651。导电过孔单独地形成至层1553与层1653。可以使用类似的配置和工艺在管芯110的背侧上形成MIM 130。

图2示出了图1的结构100的俯视图。图2示出了连接到封装体170的管芯110,并示出了与连接到MIM 130的对应的TSV 125相关联的接触点127。

图3示出了封装体的另一个实施例的横截面侧视图,其中封装体包括管芯以及连接到管芯的去耦电容器,管芯和去耦电容器转而连接到封装体衬底。在该实施例中,通过被置于管芯的背侧上的阵列电容器来实现去耦电容。参考图3,组件200包括具有器件侧215与背侧220的管芯210。管芯210还包括TSV 225,其中TSV 225从器件侧215延伸至背侧220并连接到或界定背侧上的接触点。

在管芯210的器件侧215上的是MIM 250。MIM 250包括:例如铜的第一导电层255;氧化硅、氮化硅的电介质层260或用于半导体制造中的其它常见电介质层;以及例如铜的导电层265。MIM 250被布置在器件侧215的一部分上(包括整个部分),并且可以如参考图1中的MIM电容器所描述的来形成。导电过孔可以延伸通过MIM 250至金属化层267,其中导电过孔界定了接触点以便连接到焊料连接部280,以将管芯连接到封装体270。在管芯210的背侧220上,由TSV 225界定的接触点用于通过至金属化层235(例如通过电镀工艺被形成为图案化的铜层)的焊料连接部285将管芯连接到陶瓷阵列电容器280。在一个实施例中,阵列电容器使用交错的地和Vcc凸块的球栅阵列(BGA)。以此方式,减小或消除了对于双端子电容器有问题的任何过量电感。

图4示出了组件的另一个实施例的横截面侧视图,其中组件包括管芯以及连接到管芯的背侧的去耦电容器。参考图4,组件300包括管芯310,其中管芯310包括器件侧315与背侧320。管芯310包括TSV 325,其中TSV 325从器件侧延伸至背侧320,并连接到管芯的背侧上的接触点或将接触点界定至图案化的分布(导电)层335。连接到管芯310的器件侧315的是MIM 350。MIM 350包括:连接到管芯上的接触点的、例如铜的导电层355;例如氧化铪的电介质层360;以及例如铜的导电层365。MIM 350在管芯310的器件侧315的一部分(包括整个部分)上延伸,并且可以如上针对图1中的MIM 150所描述的来形成。被布置在导电层365上的是电介质层(未示出)和接触盘(铜接触盘)以及可选地作为金属化层或分布层的导电(例如,铜)迹线。图4示出了电介质材料的外部钝化层367,其中外部钝化层367覆盖任何金属化层(例如,铜迹线)并具有至接触盘的开口,以使得焊料连接部380可以与接触盘进行电接触。焊料连接部380将管芯310连接到封装体370。

在管芯310的背侧320上的是存储器管芯390。在该实施例中,存储器390包括MIM 380,其中MIM 380包括:例如铜的导电层382;例如氧化铪的电介质层383;以及例如铜或铝的导电层384。MIM 380可以如上针对例如图1中的MIM 130所描述的来形成。包括MIM 380的存储器管芯390通过焊料连接部385连接到管芯310。

不具有互补功率缩放的器件尺寸缩放使得高速负载瞬变成为性能限制因素。所描述的实施例能够显著地缓解与高速负载瞬变相关的问题,从而允许产品以较低的电压操作(用于较低的功率操作以增加电池寿命或者以积极得多的设置进行操作以用于改善的峰值性能)。

图5示出了根据一种实施方式的计算设备400。计算设备400容纳板402。板402可以包括多个部件,包括,但不限于,处理器404和至少一个通信芯片406。处理器404物理地耦合并电耦合到板402。在一些实施方式中,至少一个通信芯片406也物理地耦合并电耦合到板402。在另外的实施方式中,通信芯片406是处理器404的一部分。

取决于计算设备400的应用,计算设备400可以包括其它部件,这些其它部件可能或者可能没有物理地耦合并电耦合到板402。这些其它部件包括,但不限于,易失性存储器(例如,DRAM)、非易失性存储器(例如,ROM)、闪存、图形处理器、数字信号处理器、密码处理器、芯片组、天线、显示器、触摸屏显示器、触摸屏控制器、电池、音频编解码器、视频编解码器、功率放大器、全球定位系统(GPS)设备、指南针、加速计、陀螺仪、扬声器、照相机、以及大容量储存设备(例如,硬盘驱动器、光盘(CD)、数字多功能光盘(DVD)等等)。

通信芯片406实现了用于往来于计算设备400而进行数据的传输的无线通信。术语“无线”及其派生词可以用于描述可以通过使用穿过非固态介质的调制电磁辐射来传送数据的电路、设备、系统、方法、技术、通信信道等等。该术语并非暗示相关联的设备不包含任何线,尽管在一些实施例中相关联的设备可能不包含任何线。通信芯片406可以实现多个无线标准或协议中的任何标准或协议,包括,但不限于,Wi-Fi(IEEE 802.11族)、WiMAX(IEEE 802.16族)、IEEE 802.20、长期演进(LTE)、Ev-DO、HSPA+、HSDPA+、HSUPA+、EDGE、GSM、GPRS、CDMA、TDMA、DECT、蓝牙、其派生物、以及被指定为3G、4G、5G及以上的任何其它无线协议。计算设备400可以包括多个通信芯片406。例如,第一通信芯片406可以专用于较短距离的无线通信(例如,Wi-Fi和蓝牙),并且第二通信芯片406可以专用于较长距离的无线通信(例如,GPS、EDGE、GPRS、CDMA、WiMAX、LTE、Ev-DO等等)。

计算设备400的处理器404包括被称为处理器404中所封装的集成电路管芯。在本发明的一些实施方式中,处理器的集成电路管芯是包含TSV的管芯,并且以例如上面所描述的方式连接到一个或多个无源器件,例如MIM电容器和/或去耦电容器。术语“处理器”可以指代对来自寄存器和/或存储器的电子数据进行处理以将该电子数据转换为可以被储存在寄存器和/或存储器中的其它电子数据的任何设备或设备的一部分。

通信芯片406还包括被封装在通信芯片406内的集成电路管芯。根据另一实施方式,通信芯片的集成电路管芯是包含TSV的管芯,并且以例如上面所描述的方式连接到一个或多个无源器件,例如MIM电容器和/或去耦电容器。

在其它实施方式中,容纳在计算设备400内的另一个部件可以包含通信芯片的集成电路管芯,该集成电路管芯是包含TSV的管芯,并且以例如上面所描述的方式连接到一个或多个器件,例如MIM电容器和/或去耦电容器。

在各种实施方式中,计算设备400可以是膝上型计算机、上网本、笔记本、超级本、智能电话、平板设备、个人数字助理(PDA)、超级移动PC、移动电话、台式计算机、服务器、打印机、扫描仪、监视器、机顶盒、娱乐控制单元、数字照相机、便携式音乐播放器、或者数字视频记录器。在其它实施方式中,计算设备400可以是处理数据的任何其它电子设备。

示例

示例1是一种装置,包括:管芯,所述管芯包括从所述管芯的器件侧延伸至所述管芯的背侧的多个穿硅过孔(TSV);以及去耦电容器,所述去耦电容器耦合到所述TSV。

在示例2中,示例1的所述装置中的所述去耦电容器包括金属-绝缘体-金属(MIM)电容器。

在示例3中,示例1的所述装置中的所述TSV界定所述管芯的所述背侧上的接触点,并且所述MIM电容器包括直接耦合到所述接触点的金属层。

在示例4中,示例2的所述装置还包括次级管芯,其中,所述MIM电容器形成在所述次级管芯上。

在示例5中,示例4的所述装置中的所述TSV界定所述管芯的所述背侧上的接触点,并且所述MIM电容器的金属层耦合到所述接触点。

在示例6中,示例5的所述装置中的所述MIM电容器的第一层通过焊料连接部耦合到所述接触点。

在示例7中,示例1的所述装置中的所述TSV界定所述管芯的所述背侧上的接触点,并且所述去耦电容器包括耦合到所述接触点的陶瓷阵列电容器。

在示例8中,示例7的所述装置中的所述陶瓷阵列电容器通过焊料连接部耦合到所述接触点。

在示例9中,示例1中的所述装置还包括位于所述管芯的器件侧的金属-绝缘体-金属(MIM)电容器。

示例10是一种方法,包括:提供管芯,所述管芯包括从所述管芯的器件侧延伸至所述管芯的背侧的多个穿硅过孔(TSV);以及将去耦电容器耦合到所述管芯的所述背侧。

在示例11中,示例10的所述方法中的所述去耦电容器包括金属-绝缘体-金属(MIM)电容器。

在示例12中,示例10的所述方法中的所述TSV界定所述管芯的所述背侧上的接触点,并且耦合所述MIM电容器包括:将所述MIM的金属层直接耦合到所述接触点。

在示例13中,示例11的所述方法中的将去耦电容器耦合到所述管芯的所述背侧包括:将次级管芯耦合到所述管芯的所述背侧,并且所述MIM电容器形成在所述次级管芯上。

在示例14中,示例13的所述方法中的所述TSV界定所述管芯的所述背侧上的接触点,并且所述MIM电容器的金属层耦合到所述接触点。

在示例15中,示例14的所述方法中的所述MIM电容器的所述金属层通过焊料连接部耦合到所述接触点。

在示例16中,示例10的所述方法中的所述TSV界定所述管芯的所述背侧上的接触点,并且所述去耦电容器包括陶瓷阵列电容器,并且耦合到所述管芯的所述背侧包括:将所述陶瓷阵列电容器耦合到所述接触点。

在示例17中,示例16的所述方法中的所述陶瓷阵列电容器通过焊料连接部耦合到所述接触点。

在示例18中,示例10中的所述方法还包括将金属-绝缘体-金属(MIM)电容器耦合到所述管芯的器件侧。

示例19是一种装置,包括:计算设备,所述计算设备包括封装体,所述封装体包括包含有器件侧和背侧的微处理器,其中穿硅过孔(TSV)从所述器件侧延伸至所述背侧,以及去耦电容器,所述去耦电容器耦合到所述管芯的所述背侧;以及印刷电路板,其中,所述封装体耦合到所述印刷电路板。

在示例20中,示例19的所述装置中的所述去耦电容器包括金属-绝缘体-金属(MIM)电容器。

在示例21中,示例20的所述装置中的所述TSV界定所述管芯的所述背侧上的接触点,并且所述MIM电容器包括直接耦合到所述接触点的金属层。

在示例22中,示例20的所述装置还包括次级管芯,其中,所述MIM电容器形成在所述次级管芯上。

在示例23中,示例22的所述装置中的所述TSV界定所述管芯的所述背侧上的接触点,并且所述MIM电容器的金属层耦合到所述接触点。

在示例24中,示例23的所述装置中的所述MIM电容器的第一层通过焊料连接部耦合到所述接触点。

在示例25中,示例19的所述装置中的所述TSV界定所述管芯的所述背侧上的接触点,并且所述去耦电容器包括耦合到所述接触点的陶瓷阵列电容器。

在示例26中,示例19的所述装置中的所述陶瓷阵列电容器通过焊料连接部耦合到所述接触点。

在示例27中,示例19中的所述装置还包括连接到所述微处理器的所述器件侧的金属-绝缘体-金属(MIM)电容器。

在以上描述中,出于解释的目的,阐述了众多具体细节,以便提供对实施例的透彻理解。然而,对于本领域技术人员而言将显而易见的是,可以在没有这些具体细节中的一些细节的情况下实践一个或多个其它实施例。提供所描述的具体实施例并非为了限制本发明,而是为了对本发明进行说明。本发明的保护范围不应由以上所提供的特定示例来确定,而仅由所附权利要求书来确定。在其它实例中,以框图形式或者未详细示出公知的结构、设备和操作,以便避免混淆对本说明书的理解。在认为适当的地方,附图标记或附图标记的末尾部分在附图中重复,以指示相对应或相似的元件,这些元件可选地可以具有类似的特征。

还应当意识到,贯穿本说明书对例如“一个实施例”、“实施例”、“一个或多个实施例”或“不同的实施例”的引用表示在本发明的实践中可以包括特定特征。类似地,应当意识到,在本说明中,出于简化公开内容并帮助理解各个创造性方面的目的,各个特征有时一起被组合在单个实施例、附图或者对其的描述中。然而,本公开内容的方法不应解释为反映如下意图:本发明需要比每项权利要求中明确记载的特征更多的特征。相反,如所附权利要求书反映的,创造性方面可以在于比单个公开的实施例的所有特征少的特征中。因此,随附具体实施方式的权利要求书故此被明确地并入该具体实施方式中,其中每项权利要求本身代表本发明的单独实施例。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1