一种硅基异质结电池片及其TiNx阻挡层的制备方法与流程

文档序号:12749705阅读:532来源:国知局
一种硅基异质结电池片及其TiNx阻挡层的制备方法与流程

本发明涉及太阳能电池的制造技术领域,尤其涉及异质结电池的制造技术。



背景技术:

太阳能电池技术中,与传统的P型单晶/多晶太阳能电池相比,硅基异质结太阳能电池因其具有高的转换效率、简单的工艺流程和较低的温度系数而最引人注目,特别是用铜互联电镀法在异质结太阳能电池导电氧化物表面形成铜金属栅线。由于Cu在温度很低的情况下也会迅速的在Si中扩散,影响器件的少数载流子寿命和漏电流,引起器件性能下降,可靠性降低。即使Cu的含量非常低的情况下,器件的电性能也会降低。因此阻挡层材料以及阻挡层微结构的选择在保护工作器件免受铜毒害方面,对整个器件性能来说尤为重要。

通常意义上好的阻挡层材料应该有高的熔点,因为基质的扩散性与材料的熔点直接相关,其次阻挡层在热力学上应与互联材料保持稳定。在半导体产业中,高熔点金属Cr、Ti、Mo、Ta和W、及其氮化物TiN,TaN、合金TiW作为扩散阻挡层已经被应用。阻挡层增加了金属Cu与TCO的附着力,在400℃高温情况下还能有效的阻挡Cu的扩散。但普遍采用的阻挡层材料会增加异质结太阳能电池入射光的损失,降低异质结太阳能电池的转换效率。因此在电镀铜之后,还需要在不破坏TCO的条件下,去除TCO 与Cu金属栅线互联界面以外的Cu种子层和阻挡层材料。而目前现有技术的阻挡层材料具有较强的抗化学腐蚀能力,难以去除。



技术实现要素:

针对上述问题,本发明提供了一种能在低温沉积、工艺简单、成本低的硅基异质结电池片及其易于化学腐蚀的阻挡层材料的制备方法。

为解决上述技术问题,本发明所采用的技术方案是:一种硅基异质结电池片的制备方法,包括:在N型硅衬底正面沉积本征非晶硅层及P型非晶硅薄膜层,反面沉积本征非晶硅层及N型非晶硅薄膜层的硅片;在所述P型非晶硅薄膜层及N型非晶硅薄膜层上沉积透明导电氧化物薄膜;在所述透明导电氧化物薄膜上采用低温磁控溅射法沉积TiNx阻挡层;在所述TiNx阻挡层上溅射沉积铜种子层;覆盖掩膜层,将铜种子层曝光出电极栅线图,并用显影液将电极栅线图显现;在栅线图区域电镀上金属铜;去除掩膜层及电极栅线图区域外的铜种子层和TiNx阻挡层。

进一步的,所述透明导电氧化物薄膜为ITO层。

进一步的,所述低温磁控溅射法采用纯度为99%~99.99%的Ti靶。

进一步的,所述低温磁控溅射法在本底真空度为9*10-3~1*10-2Pa的真空腔内通入Ar和N2的混合气体,维持真空腔室工艺真空度在0.3Pa~0.8Pa,沉积温度在25°~105°并保持功率密度1.5~3.5w/cm2、电流为15~18A的等离子体状态。

进一步的,所述Ar和N2的混合气体比例为1:3~1:1。

进一步的,所述铜种子层纯度为99.9%~99.99%,所述溅射沉积铜种子层为在通入Ar气体的等离子体的状态下进行。

本发明还提供一种TiNx阻挡层的制备方法,包括在N型硅衬底正面沉积本征非晶硅层及P型非晶硅薄膜层,反面沉积本征非晶硅层及N型非晶硅薄膜层的硅片;在所述P型非晶硅薄膜层及N型非晶硅薄膜层上沉积透明导电氧化物薄膜;在所述透明导电氧化物薄膜采用低温磁控溅射法沉积TiNx阻挡层

进一步的,所述低温磁控溅射法采用纯度为99%~99.99%的Ti靶;

进一步的,所述低温磁控溅射法在真空度为0.3Pa~0.8Pa的真空腔通入Ar和N2的混合气体,TiNx薄膜沉积温度在25°~105°并保持功率密度1.5~3.5w/cm2、电流为15~18A的等离子体状态下。

所述Ar和N2的混合气体比例为1:3~1:1。

和现有技术相比,本发明具有如下优点:TiNx阻挡层可以有效的阻挡铜的扩散,且TiNx阻挡层具有较低的电阻率,厚度易控制。TiNx阻挡层增加了Cu与透明导电层的附着力,有利于后续异质结太阳能电池的封装,且TiNx阻挡层易于溶液腐蚀。

附图说明

构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:

图1为本发明硅片正面沉积本征非晶硅层及P型非晶硅薄膜层、反面沉积本征非晶硅层及N型非晶硅薄膜层的结构示意图;

图2为发明P型非晶硅薄膜层、N型非晶硅薄膜层上沉积透明导电氧化物薄膜后的结构示意图;

图3为发明硅片沉积P型非晶硅薄膜层、N型非晶硅薄膜层、透明导电氧化物薄膜后溅射TiNx阻挡层的结构示意图;

图4为本发明溅射TiNx阻挡层后溅射沉积种子层的结构示意图;

图5为本发明掩膜层图型形成及电化学沉积后的结构示意图;

图6为本发明一种硅基异质结电池片掩膜层图型形成后的结构示意图

图7为本发明去除掩膜层后结构示意图;

图8为本发明去除栅线区域外的铜种子层和TiNx阻挡层。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

实施例1

参考图1-图6所示一种硅基异质结电池片及其TiNx阻挡层的制备方法,主要通过制备TiNx阻挡层,并将TiNx阻挡层应用到硅基异质结电池片中,其包括以下步骤:

步骤一、采用CVD法在经过碱性或酸性溶液腐蚀过后具有陷光效果的 N型硅片1上正面沉积本征非晶硅层及P型非晶硅薄膜层2,反面沉积本征非晶硅层及N型非晶硅薄膜层3。

步骤二、采用PVD溅射法在P型非晶硅薄膜层2及N型非晶硅薄膜层3上沉积透明导电氧化物薄膜4,所述透明导电氧化物薄膜4采用ITO。

步骤三、在所述透明导电氧化物薄膜4上采用低温磁控溅射法沉积TiNx阻挡层5,所述低温磁控溅射法采用纯度为99%~99.99%的Ti靶,并在本底真空度为9*10-3~1*10-2Pa的真空腔内通入Ar和N2的混合气体,维持真空腔室工艺真空度在0.3Pa~0.8Pa,并保持功率密度1.5~3.5w/cm2、电流为15~18A的等离子体状态,Ar和N2的混合气体比例为1:3~1:1。

步骤四、在TiNx阻挡层5上溅射沉积铜种子层6,所述铜种子层纯度为99.9%~99.99%,所述溅射沉积铜种子层6为在通入Ar气体的等离子体的状态下进行。

步骤五、覆盖掩膜层7,将铜种子层6用紫外曝光出电极栅线图,并用显影液将电极栅线图显现;

步骤六、在显现的电极栅线图上采用电镀法电镀上一定厚度的铜栅线;

步骤七、用腐蚀液去除掩膜层及栅线图区域外的铜种子层和TiNx阻挡层。

实施例2

参照实施例1所述的制备步骤,本实施例在单晶硅表面沉积制备得到的TiNx阻挡层5后再进行镀铜,使得在TiNx阻挡层5上形成一层铜薄膜,然后将硅片放入400℃的条件下热处理30min后,测试结果无铜硅化合物产 生,扩散阻挡性能好。

实施例3

参照实施例1所述的制备步骤,本实施方式在单晶硅表面沉积制备得到的TiNx阻挡层5,厚度可控仅在2-50nm之间,均匀性好,能够保证后续沉积铜层的优良质量,同时低温沉积,薄膜为非晶结构,在碱性腐蚀液中处理,30~120S内薄膜被完全腐蚀去除,有效的降低光的损失。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1