一种基于金纳米颗粒表面等离子激元的晶硅hit太阳能电池的制作方法

文档序号:8924011阅读:446来源:国知局
一种基于金纳米颗粒表面等离子激元的晶硅hit太阳能电池的制作方法
【技术领域】
[0001]本发明提供了一种基于金纳米颗粒(Au-NPs)表面等离子激元的η型晶硅HIT太阳能电池结构,属于太阳能电池和光伏技术领域,可应用于各种高效的晶硅异质结太阳能电池包括单结和双结HIT太阳能电池,相互交错背接触式(IBC)异质结太阳能电池。
【背景技术】
[0002]随着能源的紧缺以及人们对友好型环境的要求,越来越多的国家将注意力投向了清洁可再生能源,尤其是光伏太阳能。硅基异质结太阳能电池结合了常规晶体硅电池的高转化效率、高稳定性及薄膜电池低温生长工艺的特点,是当今高效电池研宄领域的一个热点。日本三洋公司发明的HIT晶硅异质结太阳能电池在异质结的基础上引入了本征非晶硅薄层,即在掺杂非晶硅层与晶体硅吸收层之间加入一个用于钝化的本征薄层。这种简单而新颖的结构迅速吸引了人们的注意,因其利用薄膜制造工艺优势的同时,又充分发挥了晶体硅和非晶硅材料性能的优点,在形成ρη结的同时钝化了晶体硅表面,减少了光生载流子的表面复合进而实现较高的电池效率,具有较好的温度系数,可以获得更高的开路电压(Voc),具有实现高效、稳定、低成本太阳电池的发展前景。
[0003]一般高效的HIT太阳能电池都采用η型晶硅衬底,因为η型HIT太阳能电池被证明比P型HIT电池具有更好的光伏特性:前者具有更优良的带阶结构,如高的内建电场导致高的开路电压,良好的背场对少子的反射作用等。图1 (a)是一个典型的η型单结HIT电池的示意图,其核心部分是grid-Al/AZO/p-a-S1:H/i_a_S1:H/n-c_Si/Al结构,其中η型晶娃(n-c_Si)是衬底娃片也是太阳光吸收层,本征非晶娃(1-a_S1:H)是纯化层,p型非晶娃(p-a-S1:H)是发射结,掺铝的氧化锌(AZO)是透明导电层,grid-Al和Al分别是正面栅状电极和背面电极。图1(b)是平衡状态下该电池的能带结构图,其中导带电子与价带空穴分别用实心和空心圆球标示,它们的传输方向则分别用实心和空心箭头标示。对于η型晶体娃电池来说,其前端电极p-a-S1:Η/η-ΑΖ0会形成一个与异质结相反的内建电场,从而降低Voco另外,因为P型发射极的功函数大于AZO的功函数,两者的接触会引起发射层的载流子耗尽,如图1(b)所示,所形成的肖特基势皇将阻挡空穴向前端电极的输运,从而削弱内建电场,导致V。。甚至填充因子(FF)降低。假设前端P型发射层的激活能是0.4eV,为了在前端形成良好的欧姆接触,TCO层的功函数至少应为5.4eV才能保证两者之间形成好的欧姆接触。但通常透明导电层铟锡氧化物(Indium Tin Oxide:ΙΤ0)的功函数在4.4_4.9eV范围内,而AZO的则更低。
[0004]从上面的分析可以看出,提出一种有效的方案来解决发射层与TCO之间功函数失配而导致的肖特基势皇,对提高η型晶体硅HIT太阳能电池的转化效率具有重要的理论意义和应用价值。

【发明内容】

[0005]技术问题:本发明提出在p_a-S1:H与n-AZO之间镶嵌具有较高功函数的金纳米颗粒(Au-NPs)来改善它们的界面电学传输特性,以解决P型发射层与透明导电层之间由于功函数失配产生的肖特基势皇阻挡载流子传输的问题。
[0006]技术方案:本发明提供了一种基于Au-NPs的单结晶硅HIT太阳能电池结构,其纵向结构以及相应能带图如图2所示。其中图2(a)展示的是电池结构,该器件结构由七部分组成,包括η型晶体硅(n-c-Si)21、本征非晶硅(i_a_S1:H) 22、p型发射结(p_a_S1:H) 23、金纳米颗粒(Au-NPs) 24、透明导电层(n-AZO) 25、正面栅状电极(Al-grid) 26、背面铝电极(Al) 27。η型晶体硅一般采用l-2Qcm、300微米厚的硅片;本征非晶硅一般采用等离子体增强化学气相沉积制备,厚度约为3-5纳米;p型发射层也采用等离子体化学气相沉积制备,厚度约为5-10纳米,掺杂度约为1016-1017cm_3,激活能约为0.4eV ;金纳米颗粒一般通过对磁控溅射沉积的超薄金薄膜进行退火得到;透明导电层一般采用磁控溅射制备,导电率为5 X 10_4 Ω cm,在可见光的透光率可达80 %以上;正面栅状电极通过热蒸发结合掩膜的方式制备得到;背面铝电极直接采用热蒸发的方式制备得到。
[0007]有益效果:由于金具有较高的功函数(>5eV),故在AZ0/p-a-S1:H之间插入金的纳米颗粒层,有助于解决P型a-S1: H发射层与η型AZO之间由功函数失配而导致的肖特基势皇阻挡载流子传输问题,其对应异质结电池的平衡态能带结构如图2(b)所示。同时,本发明精心设计的Au-NPs还能形成表面等离子激元,其表面等离子共振频率主要在电磁光谱的可见光或红外区。当入射光照射到金属表面,自由电子在电磁场的驱动下,在金属和介质界面上发生集体震荡,促进可见或红外光在电池内部的散射吸收。因此,镶嵌了 Au-NPs的HIT太阳能电池由于等离子激元共振吸收增强效应可获得较高的短路电流;而且由于金纳米颗粒与P型a-S1: H发射层之间能形成较好的欧姆接触可获得较好的填充因子,大大提升了 HIT电池的光电转换效率。
【附图说明】
[0008]图1 (a)是典型的η型单结HIT电池示意图。
[0009]图1(b)是对应的异质结电池的平衡态能带结构示意图。
[0010]图2(a)是利用金纳米颗粒调节界面输运特性的η型单结HIT电池示意图。
[0011]图2(b)对应异质结电池的平衡态能带结构示意图。
[0012]符号说明
[0013]21:η 型晶体硅(n-c-Si)
[0014]22:本征非晶硅(1-a-S1:H)
[0015]23:p 型发射结(p-a-S1:H)
[0016]24:金纳米颗粒(Au-NPs)
[0017]25:透明导电层(n-AZO)
[0018]26:正面栅状电极(Al-grid)
[0019]27:背面铝电极(Al)
【具体实施方式】
[0020]本发明采用等离子体增强化学气相沉积方法(包括电容耦合和电感耦合等离子体)制备本征和P型a-S1:H。一般地,本征非晶硅和P型非晶硅分别在两个真空室内生长;本征非晶硅采用SiH4+H2作为反应气体,而P型发射结采用SiH4+H2+B2H6作为反应气体。在制备完发射结P-a-S1:H后,通过真空传输系统把样品送到磁控溅射室,通过控制磁控溅射工艺在发射结表面上沉积不连续的超薄金薄膜(5-10纳米),接着直接在该真空室内进行后续退火工艺使得金薄膜卷曲成纳米颗粒,获得Au-NPs在p-a-S1: H层薄膜上的均勾分布。然后通过磁控溅射和热蒸发分别制备透明导电薄膜和正背电极,获得单结HIT太阳能电池器件。
[0021]以上实施方式仅用于说明本发明,而并非本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。
【主权项】
1.一种η型HIT太阳能电池结构的优化方法,其特征是通过在P型发射结(p-a-s1:H)与透明导电层(n-AZO)之间镶嵌金纳米颗粒(Au-NPs)来改善它们的界面电学传输特性,提高HIT太阳能电池的填充因子;同时,Au-NPs还可实现等离子激元共振吸收增强效应,促进了不同波长的太阳光在电池内部的散射吸收,提高了 HIT太阳能电池的短路电流。2.根据权利要求1所述的Au-NPs,其特征在于:生长完P型发射结后直接通过真空输运系统将样品传输到磁控溅射室,采用磁控溅射方法制备不连续的超薄金膜,接着在同个真空室内采用退火工艺,获得均匀分布的金纳米颗粒。3.此结构还可应用于双结P型HIT太阳能电池的背接触(grid-Al/n-AZO/n-a-S1:H/1-a-S1:H/p-c-Si/i_a_S1:H/p+-a_S1:H/Au-NPs/n_AZO/Al),此结构是本发明的拓展应用,也在此权利要求之内。
【专利摘要】本发明涉及一种n型晶硅异质结(HIT)太阳能电池结构的优化方法,提出在p型发射层(p-a-Si:H)与透明导电膜(n-AZO)之间镶嵌金纳米颗粒(Au-NPs)来改善它们的界面电学传输特性,提高HIT电池的效率。兼顾光学与电学性能的高功函数Au-NPs不仅有助于解决p型发射层与n型AZO之间由功函数失配而导致的肖特基势垒阻挡载流子传输的问题,而且还可形成表面等离子激元,通过表面等离子激元共振效应增强光在电池内部的散射、吸收,从而进一步提高HIT电池的光电转换效率。本发明可应用于高效单结和双结晶硅HIT太阳能电池以及相互交错背接触式(IBC)异质结太阳能电池。
【IPC分类】H01L31/0352, H01L31/068
【公开号】CN104900730
【申请号】CN201510213988
【发明人】肖少庆, 姚尧, 顾晓峰, 张秀梅, 丁荣
【申请人】江南大学
【公开日】2015年9月9日
【申请日】2015年4月29日
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1