用于均衡能量存储器系统的方法与流程

文档序号:11635963阅读:190来源:国知局
用于均衡能量存储器系统的方法与流程

本发明涉及一种用于均衡能量存储器系统的方法,其中能量存储器系统包括存储器模块的串联电路,其中存储器模块的串联电路具有至少两个电容性的存储器模块,其中电容性的存储器模块与均衡装置连接,使得借助于在均衡装置和电容性的存储器模块之间的电通量分别能够影响电容性的存储器模块的载荷,其中电容性的存储器模块分别具有电容。本发明还涉及用于执行方法的控制装置以及具有控制装置的能量存储器装置。



背景技术:

在均衡能量存储器系统中重要的是,影响各个存储器模块的电压。各个存储器模块为能量存储器,即例如电容器、尤其双层电容器(ultracaps)或者电池。电容器或双层电容器也称作为电容性的能量存储器。其他的能量存储器例如是锂电容器,其能够被分配给电容性的能量存储器组。通常称作为混合存储器的其他混合式存储器(hybridspeicher)能够归为电容性的能量存储器,其中混合存储器至少部分地具有电容特性。类似于此,由这些部件构成的存储器模块称作为电容性的存储器模块。在所考虑的能量存储器系统中,各个存储器模块布置在串联电路中,其也称作为串联连接电路。均衡的目的在于,在运行状态中在各个存储器模块的连接端子处产生可预设的电压。例如,在充电状态下,所有存储器模块在其连接端子处应占有(annehmen)最大电压。因此防止该串联电路的各个单元占有比其他的更高的电压,进而超过各个存储器模块的允许的最大电压。超过最大电压意味着相应的存储器模块的过载并且引起相应的存储器模块的显著加强的老化。在正常运行期间应当进行均衡。同样在完全放电的情况下需要将全部存储器模块置于电压零。此外,均衡还起到以下作用,即在放电时防止各个存储器模块再充电(umladen)到负电压上。

此外,在各个电容性的存储器模块运行中的不同的电压通过存储器模块的不同的电容引起。不同的电容例如能够由于电容性的存储器模块的老化过程来产生。在此,通常,存储器模块的电容随逐渐的老化而下降。电容下降受到运行条件和环境条件影响,即例如电压和温度。

均衡时常用的方法在于,在超过存储器模块的特定电压阈值时,接通与存储器模块并联的均衡电阻,以便借此影响存储器模块的电压。因此,在一个状态下,例如最大载荷的状态下能够执行均衡。在最大载荷的状态下,此时全部存储器模块具有最大电压。同样地,经由这些均衡电阻能够使各个存储器模块完全地放电到电压零。

同样地,已知如下电路,其中为了均衡的目的,来自存储器模块的载荷不输送给均衡电阻而是在各个存储器模块之间进行载荷的交换。



技术实现要素:

本发明基于以下目的,即提供一种用于均衡能量存储器系统的理想方法。

该目的通过一种用于均衡能量存储器系统的方法来实现,其中能量存储器系统包括存储器模块的串联电路,其中存储器模块的串联电路具有至少两个电容性的存储器模块,其中电容性的存储器模块与均衡装置连接,使得借助于在均衡装置和电容性的存储器模块之间的电通量分别能够影响电容性的存储器模块的载荷,其中电容性的存储器模块分别具有电容,其中该方法包括如下步骤:

-分别测定电容性的存储器模块的电容,

-至少从相应的电容性的存储器模块的电压和能预设的均衡电压中为电容性的存储器模块分别确定模块载荷,

-至少从电容性的存储器模块的模块载荷中确定基准载荷,

-至少从相应的电容性的存储器模块的模块载荷和基准载荷中为电容性的存储器模块分别确定均衡载荷,和

-通过在相应的电容性的存储器模块和均衡装置之间交换相应的均衡载荷来分别影响电容性的存储器模块的载荷。

所述目的还通过一种用于执行该方法的控制装置以及通过一种能量存储器装置来实现,能量存储器装置具有存储器模块的串联电路和控制装置。所述目的还通过具有这种能量存储器装置的交通工具来实现。

本发明基于以下认知,通过观察电载荷能够以简单的方式执行对布置在串联电路中的存储器模块的均衡。在电容性的存储器模块的载荷qi和电压ui之间的物理关系式为:

qi=ci·ui

由于各个电容性的存储器模块的不同电容ci并且由于可能已经存在的不同初始载荷,当电容性的存储器模块加载相同的载荷时,各个电容性的存储器模块的电压不同。相同的载荷由此产生,即串联电路布置中的存储器模块由相同的电流穿流。现在,均衡的目的是,如下地影响各个电容性的存储器模块的电压,使得在一个工作点中,各个存储器模块分别占有可预设的均衡电压。各个电容性的存储器模块的均衡电压不必强制性是相同的。更确切地说,各个存储器模块的各个均衡电压能够彼此不同。

在第一步骤中,在均衡时测定各个串联布置的电容性的存储器模块的电容。在此,各个电容性的存储器模块的电容值通常已经被测定,以确定各个存储器模块的老化状态。该值能够用于均衡方法。也可行的是:借助于估算在第一步骤中确定电容。对此,例如能够考虑电容的标称值。在此,该值能够逐步地在时间上更精确地确定。在此提出,重复确定电容,尤其周期性地重复。

补充地或替选地,也能够经由在电容性的存储器模块处的电压并经由载荷测定电容。在此,载荷是电流关于时间的积分,使得经过电容性的存储器模块的电流和各个存储器模块的电压能够用于测定相应的存储器模块的电容。从该值中能够以足够的精度测定各个存储器模块的电容。在此,证实为有利的是:在存储器模块第一次充电时、也称作起动(hochlauf)时,确定各个存储器模块的电容ci。

因为电容对于一些能量存储器而言也是与工作点相关的、即非线性的,所以补充地或替选地,也能够经由事先确定的特征曲线或表格测定或考虑存储器模块的电压。对于电容与存储器模块的电压相关的情况而言,该方法也证实为是有利的。这种测定能够随后通过测量、例如像上述或在从属权利要求中描述的那样优化和改进。

在第二步骤中,为各个电容性的存储器模块测定所需要的模块载荷qeq_i,以便将相应的电容性的存储器模块从当前施加的电压ui改变为可预设的均衡电压ueq_i。在此,指数i描述第i个存储器模块。模块载荷qeq_i由此得出:

qeq_i=ci·(ueq_i-ui)。

由于各个存储器模块的电容值不同,在电压差相同的情况下对于相应的电容性的存储器模块也能够产生不同的模块载荷。

在第三步骤中,从各个模块载荷中确定基准载荷qref。此外,基准载荷的确定与均衡装置如何构成相关。证实为特别有利的是,在借助电阻进行均衡时,从模块载荷的最大值中形成基准载荷。由此得出基准载荷

qref=max[ci·(ueq_i-ui)]

对于通过在各个电容性的存储器模块之间的载荷交换来均衡的情况而言,有利地提出,经由下式

将基准载荷确定作为模块载荷的平均值。通过在各个电容性的存储器模块之间的载荷交换进行的均衡也称作为借助于再充电电路进行均衡。

在第四步骤中,从各个电容性的存储器模块的模块载荷和基准载荷中确定均衡载荷。例如,从基准载荷和模块载荷之间的差值中能够确定均衡载荷。此外,也还能够将其他参量、例如均衡电压的公差引入到该确定中。通过该公差,能够再次降低执行该方法的耗费。同样可行的是:降低所产生的损失,以便执行有效的且低损失的均衡。

在第五步骤中,在相应的电容性的存储器模块和均衡装置之间交换特定的均衡载荷。在此,该方法的特别的优点是:能够在每个运行状态下执行均衡。在从现有技术中已知的方法中,当超过和/或低于一个或多个阈值时,均衡系统才被激活。这在系统的运行状态处于应当被均衡的状态附近时发生。相反,在根据本发明的方法中,在达到存储器模块具有均衡电压的运行状态之前也可以进行均衡。借此能够实现前瞻性的均衡。当各个存储器模块的均衡电压qsym_i变零时,达到均衡的状态,而与电压模块当前具有何种电压ui无关。

借助根据本发明的方法,在每个任意的运行状态中前瞻性地、即在准备阶段中、在达到均衡电压ueq_i之前能够进行均衡。因此可行的是,在任意电压中且在任意的运行状态下,将由存储器模块构成的总系统置于如下状态,该状态在均衡之后被提供用于加载均衡电压。在均衡状态下,对于模块电压不等于均衡电压的情况而言,模块电压能够与在未均衡的状态下相比彼此更强烈地偏离。然而重要的是充电到均衡电压上的情况。该均衡电压能够对于各个存储器模块而言任意地且彼此独立地被确定。因此能够将均衡电压确定为存储器模块的最大电压。但是,有用的是,例如当应准备放电时,也在其他的时间点将均衡电压改变为零。如果系统从完全放电的状态起动,那么有意义的是,尽可能短时间地、在电压低的情况下已经根据该方法执行均衡以均衡到均衡电压、即例如最大电压上。借此在系统中实现了,在第一次达到最大电压时已经存在均衡关系。由此能够可靠地防止超过最大电压和由其引起的单独的或多个模块的加载。通过防止超过各个存储器模块的最大电压,由如下方式得到另一优点,即各个存储器模块的可用的能量含量与在未均衡的状态下相比更大。使用根据本发明的方法实现了对上述优点的充分利用,而不必在特定的、部分也更长的时间段上使各个存储器模块占有最大电压。

借助不为零的基准载荷,能够在达到特定状态之前已经激活或者甚至结束均衡。通过该前瞻性的均衡,也可以借助相对小的电流进行快速均衡。均衡电路由于针对小电流设计规格而能够成本显著更低廉地构成。

随后,当通过经过串联电路的电流能达到各个存储器模块的均衡电压ueq_i而不必激活均衡装置时,能量存储器系统此时称作为是均衡的。在该情况下,均衡载荷等于零。由此,当还未达到均衡电压时,能量存储器系统也处于均衡状态。

借助根据本发明的方法同样可行的是:在将均衡电压预设为零时,即使存储器尚处于运行中,也准备存储器模块的放电。通过应用根据本发明的方法能够可靠地防止在放电过程期间的再充电、即存储器模块的端子电压中的符号切换。这在以下方面是重要的,即存储器模块的再充电会引起相关的存储器模块更快速的老化。通过根据本发明的方法能够快速地、部分甚至在关断能量存储器系统之后立即达到无电压的状态。借此,能够确保维护人员安全地处理此时完全放电的能量存储器。

此外,根据本发明的方法具有以下优点,即能够对每个电压状态执行均衡。此外,在每个任意的时间段中能够执行均衡,使得均衡也能够在极其长的时间段上利用小的电流执行。因此,要排出的损耗功率极其小。另一优点在于,所有电容性的存储器模块能够同时被均衡。借此,根据本发明的方法能够同时均衡电容性的存储器模块。当电压检测相应地精确时,均衡能够以受到微处理器控制的方式极其精确地执行。借此,在电阻中仅损失很小的能量。均衡状态能够在任意的电压水平下达到,因此尤其在电压为零时以及在最大电压下达到。均衡电压能够随时改变进而重新预设。即使还未到达应存在均衡关系时的电压,也已经前瞻性地执行均衡。这尤其在从放电状态中起动时是有意义的,在该状况中在存储器模块的电容不同的情况下不可避免地出现电压差。为了避免由于不精确性而不必要地频繁重复地均衡,均衡能够配有任意的公差。因此,能够保持很低的损失能量。在根据本发明的方法中,不需要在由现有技术已知的方法中必需的将存储器模块的重新充电到最大电压极限。借此也不需要存在损失的能量源。通过在总系统上求和可以计算各个存储器模块的充电频数和放电功率以及放电能量。从中能够确定老化的趋势以及统计学上的损失系数。

证实为尤其有利的是,交通工具、尤其公共汽车或轨道交通工具配设能量存储器装置。通过具有启动和制动过程的多次负载循环,能量存储器的应用能够正面地作用于能量消耗。根据本发明的方法保证能量存储器系统的充分利用,使得能量存储器系统相应地紧凑地设计并且能够集成到所提供的结构空间中,该结构空间通常在交通工具中显得小。

本发明的有利的设计方案在从属权利要求中说明。

在方法的一个有利的设计方式中,各个电容性的存储器模块的均衡电压能彼此独立地预设。在此,能够为个别的或每个电容性的存储器模块预设与其他的电容性的存储器模块的均衡电压不相关的自有的均衡电压。各个存储器模块的均衡电压能够是相同的,或者分别是不同的。借此也能够运行串联电路中的存储器模块,这些存储器模块具有例如由于老化引起的不同的结构和/或不同的最大电压。也能够为各个电容性的存储器模块预设在时间上改变的均衡电压。能够为电容性的存储器模块同时或也以时间错开的方式执行改变。特别地,证实为有利的是,存储器模块的最大电压预设为均衡电压。此外或替选地证实为有利的是,当预见到能量存储器系统的关断或者在能量存储器系统中检测到故障时,将各个存储器模块的均衡电压设置为零。

在另一有利的设计方式中,通过模块载荷的最大值形成基准载荷。这尤其当均衡装置具有电阻时是有利的。通过电阻能够仅降低或不增加存储器模块的载荷。如果将基准载荷选择为模块载荷的最大值,那么对于均衡过程来说从存储器模块中仅引出如下载荷,其在电阻中转换成热量。通过将基准电压选择为模块载荷的最大值,在任何存储器模块中都不必借助均衡装置将载荷输送给存储器模块。对于基准电压的这种选择,能够尤其简单且成本低廉以及可靠地借助电阻实现均衡。

在另一有利的设计方式中,通过模块载荷的平均值形成基准载荷。如果可以借助于均衡装置在各个电容性的存储器模块之间交换载荷,那么形成模块载荷的平均值以确定基准载荷是尤其有利的。均衡装置也称作为均衡再充电电路。此时,均衡载荷能够如下地确定,使得正的均衡载荷的绝对值的总和等于负的均衡载荷的绝对值的总和。因此,既不必从外部为均衡装置输送能量,也不存在消除来自存储器模块中的电能或将其转换成热量的需求。由此,该设计方式是尤其低损耗的。低损耗引起本方法的经济应用。尤其对于频繁变化的均衡电压而言,该设计方式由于其低损耗而能够尤其经济地使用。

在另一有利的设计方案中,各个电容性的存储器模块的电容分别从经过电容性的存储器模块的串联电路的电流和相应的电容性的存储器模块的电压的变化中被确定。根据各个电容性的存储器模块的电容由寿命观察监控各个电容性的存储器模块的老化状态,如果电容没有已经由寿命观察提供出,那么能够以尤其简单的方式从存储器模块的电压和流过存储器模块的电流中确定各个存储器模块的电容。当对于相应的存储器模块不进行与均衡装置的载荷交换时,经过存储器模块的电流等于存储器模块的串联电路中的电流。存储器模块的电压为了执行相应的调节装置的方法而已经是已知的。为了保护能量存储器系统证实为有意义的是:也检测经过存储器模块的串联电路的电流。由此能够及早地识别和避免存储器模块的过载和可能随之产生的可能的热损害。从经过存储器模块的串联电路的电流与相应的存储器模块的电压变化的商值中,能够以简单的方式快速且可靠地确定相应的存储器模块的电容。

在另一有利的设计方式中,各个电容性的存储器模块分别与电阻耦联,其中从相应的电容性的存储器模块的电压中或从经过电阻的电流中确定各个电容性的存储器模块的电容。因为通常均衡装置具有电阻,所以该电阻能够简单地用于电容测定。当并联布置的电阻的电阻值是已知的时,那么从电容性的存储器模块处的电压、尤其从电压的时间上的变化中能够确定存储器模块的电容。这例如能够通过时间常量进行,该时间常量作为电阻值与存储器模块的电容的乘积得出。时间常量能够从电容性的存储器模块的电压的时间上的变化中、尤其从电压斜率中、或从经过电阻的电流的时间上的变化中得出。该方法的优点是,确定仅一个用于必须对存储器模块处的电压进行评估的测量点,以用于可靠地测定电容。借此,该方法是不太易受干扰的。为了控制载荷或为了可靠地使存储器模块放电通常已经存在电阻,从而能够以尤其简单的方式借助已经存在的部件和测量装置执行电容测定。

在另一有利的设计方式中,从在相应的电容性的存储器模块的基准载荷与模块载荷之间的差值中为电容性的存储器模块确定均衡载荷。在该方法中,以尤其简单的方式确定均衡载荷。该方法不仅能够当为了均衡存储器模块而使用电阻时被应用,还能够用于例如借助于电流源在各个存储器模块之间进行载荷的再加载。如果模块载荷超过基准载荷的数值,那么为相应的存储器模块增加为均衡载荷的绝对值的载荷。在基准载荷超过模块电压值的情况下,则应从存储器模块中提取出均衡载荷的运行。形成差值的数学运算能够以尤其简单的方式通过用于计算的相应部件、尤其开环/闭环控制装置的微处理器执行,使得能够简单且成本低廉地建立对于方法的执行而言相应的结构。

在另一有利的设计方式中,根据均衡电压的能预设的公差带为电容性的存储器模块确定均衡载荷。公差带能够用于在闭环控制中实现自由度。例如可行的是,通过接入一个或多个电阻而放弃降低存储器模块的电压,以便借此降低均衡过程的电损失。同样地,当存储器模块的所形成的电压处于均衡电压附近的可预设的公差带中时,在实现存储器模块之间的载荷交换的均衡装置中能够放弃载荷交换和随之产生的电损失。借此,能够避免均衡装置的频繁干预,而不必承担由此引发的与预设的均衡电压的过高偏差。这能够降低均衡装置的末级施控元件的负荷,进而得到均衡装置的高寿命。此外,该设计方式能够降低在存储器模块与均衡装置之间的电流,进而使运行中的损失最小化并且提高能量存储器系统的效率。低损耗功率在能量方面具有以下优点,即必须导出的热损失更小,因为避免了不必要的频繁均衡、尤其是也由于系统中的不精确性引起的不必要的频繁均衡。

在一个有利的设计方式中,借助于均衡装置在电容性的存储器模块之间交换载荷。对于可以在存储器模块之间交换载荷的情况,能够完全地、但是至少显著地或至少部分地降低均衡的损失。通过适当地选择基准载荷、尤其通过将基准载荷确定为模块载荷的平均值,能够避免或至少降低电阻的应用和随之产生的电损失。因此,不产生或仅少量地产生欧姆损失。在现有的电阻处的冷却耗费和尤其关于热学可负荷性方面的要求能够部分地显著降低。这引起相应的能量存储器系统的运行和结构中的低成本。

在另一有利的设计方式中,根据相应的电容性的存储器模块的能预设的维护间隔和/或电容来预设各个电容性的存储器模块的均衡电压。此外,存储器模块的老化以相关的存储器模块的已降低的电容来体现。由于电容降低,提高了电压波动。在此,来自电压波动的最大值的更高电压和由于通过电压波动的最小值引起的更高电流产生的更高温度引起存储器模块的更强烈的老化过程。该老化过程引起电容的进一步降低。为了克服老化,能够以更小的电压运行相应的存储器模块。这减缓了老化过程。在对于寿命结束有预设标准的情况下,能够通过更小的运行电压延迟达到寿命尽头,其中预设标准例如通过限定特定的最小电容给出,该最小电容中已经实现相关的存储器模块的交换。对此,相应地更低地选择相应的电容性的存储器模块的可预设的均衡电压。通过该措施延缓老化过程。通过为各个电容性的存储器模块预设不同的均衡电压ueq_i,能够如下地补偿各个存储器模块的老化过程,使得存储器模块以相同的程度老化。在预设的维护间隔中,能够经由降低的均衡电压如下地调整老化过程的延缓,使得能够取消或至少显著地减少计划外的维护。同样地,对存储器模块的老化的考虑使得各个存储器模块的故障概率更小。借此获得的更高可靠性引起能量储存器系统的经济运行。

在另一有利的设计方式中,均衡装置具有电阻。电阻是用于影响存储器模块的载荷的成本尤其低廉的可行性方案。证实为有利的是,为了开环/闭环控制经过电阻的电流将开关设置为末级施控元件。在此,其能够是机械的、电子的或功率电子的开关,尤其为晶体管。借助该装置能够以尤其简单的方式执行均衡。此外,从充电/放电变化中也能够以尤其简单且可靠的方式可靠地测定存储器模块的电容。

在另一有利的设计方案中,均衡装置具有电流源。电流源允许沿两个方向与存储器模块交换载荷。相反于电阻,由此不仅能够从存储器模块中提取出载荷,而且也能够提高存储器模块的载荷。因此,电流源为用于与存储器模块交换载荷的末级施控元件。相反于根据存储器模块处的电压和电阻值形成电流的电阻,电流源能够产生几乎任意的电流。特别地,能够与存储器模块的电压无关地产生电流。如果用于均衡的电流源与每个存储器模块并联地布置并且将电流源相互连接,那么借助所产生的装置能够在各个存储器模块之间进行载荷交换。在各个存储器模块的要接收和要发送的载荷之间达成平衡的情况下,能够放弃输送能量。以该方式能够实现能量供应系统的几乎无损失的均衡。

在另一有利的设计方式中,存储器模块的串联电路包括至少一个另外的存储器模块。其示出:当在电容性的存储器模块的串联电路中存在至少一个另外的存储器模块时,此时也能够应用用于均衡的方法。在此,另外的存储器模块例如能够为电池、旋转存储器或其他任意的能量存储器。也能够将另外的电容性的存储器模块作为另外的存储器模块布置在串联电路中。例如,其与其余的电容性的存储器模块的区别例如在于,该另外的存储器模块间不必强制地与均衡装置连接。在这种布置中,也能够可靠地执行电容性的存储器模块的均衡。

在另一有利的设计方式中,至少一个电容性的存储器模块具有存储器单元的并联电路和/或串联电路。为了例如提高要存储的能量额,或者为了例如进一步提高存储器模块的最大电压或最大电流,证实为有利的是,多个存储器单元集成为一个存储器模块。存储器单元为能量存储器,其具有电容性表现。特别地,电容器对此已经被证明是合格的。借此能够制造存储器模块,其尤其关于结构大小、构型、可存储的能量额、可更换性、可维护性等适合于使用在能量存储器系统中。借此,存储器模块的结构与技术研发或继续研发脱离,因为各个存储器单元不一定为了能够制成更高质量的存储器模块而总是必须为更高效能的。借助将多个或大量存储器单元集成为一个存储器模块,也能够制造有相应能力的存储器模块。由此,能够简单地缩放存储器模块并且能够根据相应的应用领域来调整存储器模块和设计其规格。

在另一有利的设计方式中,能量存储器装置具有至少一个结构单元,其中结构单元具有至少一个电容性的存储器模块和均衡装置的至少一部分。在能量存储器装置中能够将多个存储器模块组合成一个结构单元。也能够将均衡装置的如下部分集成到该结构单元中,该部分用于均衡该结构单元的存储器模块。借此,在可操作性方面、尤其在尺寸和重量方面能够实现易于更换的单元。证实为尤其有利的是,由多个相同的结构单元构成能量存储器系统。

附图说明

下面,根据附图中示出的实施例详细地描述和阐述本发明。其示出:

图1示出能量存储器系统的第一实施例,

图2示出用于执行该方法的电路框图,

图3示出用于执行该方法的另一电路框图,

图4、图5示出存储器模块的电特性的图表,

图6至图8示出不同实施例的存储器模块的载荷和电压之间的关联,

图9示出存储器模块和均衡装置的一部分的一个实施例,

图10示出存储器模块和均衡装置的一部分的另一实施例,和

图11示出能量存储器装置。

具体实施方式

图1示出能量存储器系统1,能量存储器系统包括电容性的存储器模块2和均衡装置4。电容性的存储器模块2布置在串联电路中。每个该电容性的存储器模块与均衡装置4连接。串联电路的两个端部作为能量存储器系统1的接口向外引导。

图2示出用于确定均衡载荷qsym_i的电路框图。电路框图具有用于确定电容ci的部件31、用于确定模块载荷qeq_i的部件32、用于确定基准载荷qref的部件33以及用于确定均衡载荷qsym_i的部件34。用于确定电容ci、模块载荷qeq_i和均衡载荷qsym_i的部件31、32、34的计算步骤分别针对各个电容性的存储器模块2执行。指数i说明:相应的计算涉及至少两个电容性的存储器模块2的第i个电容性的存储器模块2。用于确定基准载荷qref的部件33为了确定基准载荷qref需要各个存储器模块的模块载荷qeq_i。在此,参考图3和基准载荷qref的相应计算。模块载荷qeq_i借助用于确定模块载荷qeq_i的部件32来确定。相应的电容性的存储器模块2的电容ci、电容性的存储器模块2的电压ui以及相应的电容性的存储器模块2的均衡电压ueq_i作为对此的输入参量。在此,电容ci能够例如由能量存储器系统的状态监控装置接收,状态监控装置监控各个电容性的存储器模块2的老化状态。在图2中示出的实施例中,通过用于确定电容ci的部件31确定相应的存储器模块2的电容ci。在此,电容性的存储器模块2的电压ui以及经过存储器模块2的串联电路的电流i作为输入参量给出。替选地,如果在通过具有已知电阻值的电阻对电容性的存储器模块2进行放电时通过电压ui的电压变化确定电容ci,那么能够弃用经过电容性的存储器模块2的串联电路的电流i。

随后,将模块载荷qeq_i输送给用于确定均衡载荷qsym_i的部件34。需要将基准载荷qref作为用于确定均衡载荷qsym_i的部件34的另外的输入参量。基于如图3中示出的各个模块载荷qeq_i确定基准载荷qref。在所示出的实施例中,通过形成相应的电容性的存储器模块2的基准载荷qref和模块载荷qeq_i的差值来确定均衡载荷qsym_i。作为结果得到均衡载荷qsym_i。

图3示出根据各个模块载荷qeq_i确定基准载荷qref。将串联布置的电容性的存储器模块2的模块载荷qeq_i用作为输入参量。普适地,在该实施例中,串联的电容性的存储器模块2的数量用n表示。从中可见的是:在该实施例中,将全部串联布置的电容性的存储器模块2的模块载荷用于计算基准载荷qref。在此,根据模块载荷qeq_i的输入参量能够确定基准载荷qref。证实为尤其有利的是,通过模块载荷qeq_i的最大值确定基准载荷qref。此外,替选地证实为有利的是,使用各个模块载荷qeq_i的平均值用于确定基准载荷qref。

图4示出在加入载荷qi时的不同的电容性的存储器模块2的电压ui的表现。在引入载荷qi时,电压ui根据各个电容性的存储器模块2的电容ci提高。电容ci越小,在结合相应的载荷qi时的电压ui上升越强烈。从经过存储器模块的电流i中得到载荷qi。相应的电流连续地提高存储器模块的载荷qi。从电流i关于时间的积分中确定载荷qi。图4中示出的实施例为能量存储器系统,其在运行状态ui=0时均衡。在该实施例中,均衡电压ueq_i为0v。要识别的是:在没有均衡装置的干预的情况下,随着引入的载荷qi增加,即在电流i流动时,由于各个电容性的存储器模块2的电容ci不同使电压ui彼此不同。

图5示出相应的能量存储器系统1,其中与图4不同,均衡电压ueq_i对应于最大电压umax。为了避免在图表的一致的组成部分方面的重复,参考对于图4的描述以及在那里引入的附图标记。

图6针对用于均衡的方法示出各个电容性的存储器模块2的电压和载荷之间的关联。在此,水平轴线上给出各个电容性的存储器模块2的电压ui。在此,给出各个电容性的存储器模块2的电压ui以及相应的均衡电压ueq_i。对于各个电容性的存储器模块2的电容ci大小相同的情况,箭头的长度代表对于相应的载荷的度量。然而通常,各个电容性的存储器模块2的电容ci不同,使得箭头的长度此时不是对于相应的模块载荷qeq_i的度量。电容性的存储器模块2的电容ci越大,就需要更多的载荷,以改变存储器模块的相应的电压。

在该实施例中,应对于各个电容性的存储器模块2借助均衡电压ueq_i进行均衡。为了阐述原理,如从图中可见,均衡电压ueq_i针对全部电容性的存储器模块2相同地预设。通常,各个存储器模块2的均衡电压ueq_i能够彼此独立地被预设。各个电容性的存储器模块2在当前的运行状态下具有不同的电压ui。在第一步骤中,必须测定所需要的载荷qeq_i,以用于将各个电容性的存储器模块2置于电压ueq_i。

从各个模块载荷qeq_i中确定基准电压qref。在该实施例中,由各个模块载荷qeq_i的最大值确定基准载荷uref。借此,在该实例中,模块载荷qeq_3是基准载荷qref。基准载荷qref在通过串联电路的电流i对能量存储器系统1进行充电/放电时影响各个电容性的存储器模块2的电压ui。随后得出的不相等的电压必须通过均衡载荷qsym_i来补偿。在图中由此示出,通过均衡载荷qsym_i影响基准载荷qref的作用,使得各个电容性的存储器模块2的电压占有均衡电压ueq_i。该实施例尤其适合于均衡装置4,均衡装置能够借助于一个或多个电阻从各个电容性的存储器模块2中提取载荷。通过选择基准载荷qref作为各个模块载荷qeq_i的最大值,仅得出在图6中向下指向的均衡载荷qsym_i。在此,向下指向的均衡载荷为从电容性的存储器模块2中提取的载荷。这能够以简单的方式借助电阻进行。在该实施例中不需要将载荷输送至电容性的存储器模块2。从中可见的是:不存在在图6中表示为向上指向的箭头的均衡载荷qsym_i。

图7示出用于均衡的方法的另一实施例。在该实例中,除了均衡载荷ueq_i以外,给出了均衡电压的公差带δueq_i。为了避免在图表的一致的组成部分方面的重复,参考图6的描述以及那里的附图标记。从公差带δueq_i的预设中,各个均衡载荷qsym_i在绝对值方面能够显得较小。借此,降低了由于均衡时的电通量、尤其由于电阻产生的电损失。在第二电容性的存储器模块2的情况中,不需要激活均衡装置4,因为由于基准载荷qref使得第二电容性的存储器模块2的电压已经位于均衡电压ueq_i的公差带δueq_i之内。该实施例尤其也适合于借助于一个或多个电阻进行的均衡。

图8示出存储器模块的电特性的另一图表。在此,基准载荷qref作为各个模块电压qeq_i的平均值产生。由此产生了均衡载荷qsym_i,在该均衡载荷的情况中必须从电容性的存储器模块2中进行提取,也产生了均衡载荷qsym_i,在该均衡载荷的情况中必须为电容性的存储器模块进行添加。在图中通过如下方式识别要提取的均衡载荷qsym_i,通过向下指向的箭头示出相应的均衡载荷qsym_i。这发生于编号为1和2的电容性的存储器模块中。在编号为3和n的电容性的存储器模块中,均衡载荷qsym_i的向上指向的箭头示出,将载荷添加给这些相应的电容性的存储器模块2。为了避免在附图的一致的组成部分方面进行重复,又参考图6和7的描述以及在那里引入的附图标记。图8中示出的实例尤其适合于具有用于均衡各个电容性的存储器模块2的电流源的结构。在此,证实为尤其有利的是:电流源实施为双向的电流源。这基于:不仅必须从各个电容性的存储器模块2提取载荷,而且也必须为各个电容性的存储器模块2添加载荷。对此需要相应的能量源。证实为尤其有利的是:当存在对各个电容性的存储器模块2再充电(umladung)的可能性时,那么应用在此示出的方法。在该再充电时,将要放电的各个电容性的存储器模块2的载荷输送给其他的电容性的存储器模块2,为其他的电容性的存储器模块添加相应的均衡载荷qsym_i。对于电容性的存储器模块2的要输出的且要吸收的载荷在总和上相同大小的情况,不必从外部为均衡装置4输送能量。通过各个电容性的存储器模块2之间的再充电能够相应地供应载荷。借此,在均衡时不形成或至少仅形成很少的电损失。

图9示出电容性的存储器模块2和均衡装置4的一部分的实施例。电容性的存储器模块2在此具有存储器单元3的串联电路。存储器单元3例如为电容器。在电容性的存储器模块的端子处施加电压ui。电流i流动经过串联电路进而也流动经过图9中示出的电容性的存储器模块2。在所示出的实施例中,电容性的存储器模块3与均衡装置4的末级施控元件7和电阻5连接。末级施控元件7在此为开关。证实为有利的是:为每个电容性的存储器模块2设有相应的电阻5和末级施控元件7。借助于电阻5能够经由末级施控元件7、即开关从电容性的存储器模块2中提取载荷。在此,末级施控元件7由相应的开环/闭环控制装置控制,开环/闭环控制装置在该实施例中未示出。

图10示出均衡装置4的一部分和存储器模块的另一实施例。为了避免重复,参考图9的描述和在那里的附图标记。均衡装置4在该实例中具有电流源6,电流源同时用作为末级施控元件7。该电流源与电容性的存储器模块2电连接。相反于具有电阻的装置,在该结构中不仅能够从电容性的存储器模块2中提取载荷,而且也能够为其添加载荷。此外,电容性的存储器模块2与电流源6之间的电流能够与电容性的存储器模块2的电压ui无关地预设。证实为有利的是:每个电容性的存储器模块2分别与电流源6连接。此外,当可以在电流源6之间进行载荷交换时,由此能在各个电容性的存储器模块2之间交换载荷。这代表了再充电电路的实现可行性。由此能够降低能量存储器系统1中的电损失。

图11示出能量存储器装置12。能量存储器装置包括能量存储器系统1和控制装置10。能量存储器系统1又具有电容性的存储器模块2的串联电路。此外,该串联电路具有多个存储器模块21。这些另外的存储器模块21同样能够是另外的电容性的存储器模块21或者是电池、惯性存储器或其他电的或化学的能量存储器。原则上,能够使用所有能量存储器作为另外的存储器模块21。电容性的存储器模块2分别与均衡装置4电连接。通过控制装置10来控制在电容性的存储器模块2和均衡装置4之间的载荷交换的控制。对此,由电容性的存储器模块2将状态参量传输给控制装置12的输入端11。从该信息中测定用于均衡装置4的至少一个末级施控元件7的控制命令。末级施控元件7能够为开关,开关实现有电通量经过电阻7,或者末级施控元件为电流源6。在此,控制装置10能够布置在能量存储器系统1之内或者如所示出的那样布置在能量存储器系统1之外。证实为尤其有利的是,将电容性的存储器模块的电压ui作为状态参量传输给控制装置10的输入端11。借此,可以可靠地执行用于均衡的所描述的方法。附加地,还证实为有意义的是:将经过存储器模块2、21的串联电路的电流i提供给控制装置10。对此,将电流i的相应的测量值输送给控制装置10的输入端11。测量值能够用于监控能量存储器系统的功能作用或也用于确定各个电容性的存储器模块的电容ci。

尽管在细节上通过优选的实施例详细阐明和描述本发明,但本发明不局限于所公开的实例并且本领域技术人员能够从中推导出其他的变体,而没有偏离本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1