用于制备阳极短路的场阑绝缘栅双极晶体管的方法与流程

文档序号:11521829阅读:185来源:国知局
用于制备阳极短路的场阑绝缘栅双极晶体管的方法与流程

本案是分案申请

原案名称:用于制备阳极短路的场阑绝缘栅双极晶体管的方法

原案申请号:201210251772.3

原案申请日:2012年07月20日。

本发明涉及一种用于制备阳极短路的场阑绝缘栅双极晶体管(igbt)的方法。



背景技术:

绝缘栅双极晶体管(igbt)为三端子功率半导体器件。igbt把金属-氧化物-半导体场效应晶体管(mosfet)的简单栅极-驱动性能,与双极晶体管的高电流、低饱和电压等性能相结合。在一个单独器件中,通过将绝缘栅fet与双极晶体管相结合,绝缘栅fet作为igbt的控制输入,双极晶体管作为igbt的开关。

如图1a所示,为一种原有技术的传统igbt的剖面示意图。传统的igbt包含一个位于p+衬底101上的n-型场阑层103。n-外延/电压闭锁层105生长在场阑层103上方。可以在外延/电压闭锁层105中形成一个或多个器件元。每个器件元可以含有形成在外延/电压闭锁层105中的p-型本体区107,以及形成在p-型本体区107中的一个或多个n+发射区109。每个器件元还可以包含形成在p-型本体区107和n+发射区109的裸露部分上的栅极绝缘物111(例如氧化物)。栅极电极113形成在栅极绝缘物111上。发射极电极115形成在本体区107和发射区109的不同部分上。集电极电极117形成在p+衬底101的背面。igbt100的结构除了用n+漏极代替p+集电极层101之外,其他都与n-通道垂直mosfet的结构类似,从而构成一个垂直pnp双极结型晶体管。额外的p+集电极层101构成pnp双极结型晶体管与背面n-通道mosfet的串联连接。

在一些应用中,igbt具有比传统的mosfet器件更加优越的性能。这主要是由于igbt与mosfet相比,具有极其低的正向电压降。然而,igbt器件正向电压降上的改进,被其缓慢的开关速度抵消。注入到n-外延层/电压闭锁层105中的少数载流子,需要时间进入并退出,或者在开启和断开时再结合,造成比mosfet更长的开关时间以及更高的开关损耗。

为了响应传统igbt器件缓慢的开关速度,推出了阳极-短路的igbt器件。阳极-短路的igbt器件优于传统igbt的地方在于,它不仅保持了提升后的正向电压降,同时还具有更令人满意的开关性能。如图1b所示,为现有技术的传统阳极-短路的igbt的剖面示意图。如图1b所示,阳极-短路的igbt100’除了用图1b中的p-型区101和n-型区119交替构成的层,代替图1a中的p+衬底101之外,其他都与图1a中的igbt大致相同。通过交替p-型区101和n-型区119,igbt成为高效的附加体二极管,并且改善了开关速度。



技术实现要素:

本发明提供一种用于制备阳极短路的场阑绝缘栅双极晶体管的方法,用于制备阳极-短路的绝缘栅双极晶体管。

为实现上述目的,本发明提供一种用于制备阳极短路的场阑绝缘栅双极晶体管的方法,其特点是,该方法包含:

a、在半导体衬底的顶面中,选择性地构成第一导电类型的第一半导体区,其中第一导电类型与衬底的导电类型相反;

b、在衬底的顶面上生长一个第一导电类型的场阑层,其中场阑层的电荷载流子浓度低于第一半导体区;

c、在场阑层上方,生长一个第一导电类型的外延层,其中外延层的电荷载流子浓度低于场阑层;

d、在外延层中,制备一个或多个绝缘栅双极晶体管器件元;

e、将衬底背面减薄至所需厚度,并且裸露出第一半导体区;

f、进行无掩膜植入,制备第二导电类型的植入区,第二导电类型与衬底背面中的外延层和场阑层的导电类型相反;以及

g、蒸发金属到衬底背面上。

上述的衬底为p-型衬底。

上述的第一半导体区掺杂n+,场阑层掺杂n,外延层掺杂n-。

上述的植入区掺杂p+。

其中制备第一半导体区包含在带掩膜的植入后进行扩散。

其中第一半导体区扩散进入衬底顶面至少10µm。

上述步骤e中所需的厚度为场阑层以下5µm。

上述步骤f中的无掩膜植入为40kev下,1e16浓度的硼植入。

上述步骤g是在450℃下进行。

一种用于制备阳极短路的场阑绝缘栅双极晶体管的方法,其特点是,该方法包含:

a、在第一导电类型的外延层的顶面中,制备一个或多个绝缘栅双极晶体管器件元;

b、将外延层的背面减薄至所需厚度;

c、对外延层的背面进行第一导电类型的无掩膜植入,构成场阑层,其中场阑层中电荷载流子的浓度高于外延层;

d、利用第一阴影掩膜,在场阑层的背面中,选择性地植入第二导电类型的第一半导体区,第二导电类型与第一导电类型相反,其中第一半导体区的电荷载流子浓度高于场阑层;

e、利用第二阴影掩膜,在场阑层的背面中,选择性地植入第一导电类型的第二半导体区,其中第二半导体区的电荷载流子浓度高于场阑层;并且

f、激光激活第一和第二半导体区;

g、在第一和第二半导体区的背面沉积一个金属层。

上述外延层掺杂n-,场阑层掺杂n,第一半导体区掺杂p+,第二半导体区掺杂n+。

上述第一阴影掩膜和第二阴影掩膜是互补的。

上述第二导电类型的第一植入区的宽度远大于第一导电类型的第二半导体区的宽度。

上述步骤c中的无掩膜植入为100-300kev下,在1×1013/cm3和2×1013/cm3之间的浓度下的磷植入。

一种用于制备阳极短路的场阑绝缘栅双极晶体管的方法,其特点是,该方法包含:

a、在第一导电类型的外延层的顶面中,制备一个或多个绝缘栅双极晶体管器件元;

b、将外延层的背面减薄至所需厚度;

c、对外延层的背面进行第一导电类型的无掩膜植入,构成场阑层,其中场阑层中电荷载流子的浓度高于外延层;

d、对场阑层的背面进行第二导电类型的无掩膜植入,以形成第一半导体植入区,第二导电类型与第一导电类型相反;

e、激光激活场阑层和第一半导体区;

f、在第一半导体层的表面沉积第一金属层;

g、通过激光切割第一金属层和第一半导体植入区的一个或多个部分,选择性地形成分立的半导体植入区,以便使场阑层的一个或多个部分裸露出来;

h、对场阑层的裸露部分进行第一导电类型的无掩膜植入,以便在场阑层的裸露部分中形成第二半导体植入区,其中第二半导体植入区的电荷载流子浓度高于场阑层;

i、在第一金属层和第二半导体植入区的裸露部分上,沉积一个第二金属层。

上述外延层掺杂n-,场阑层掺杂n,第二半导体区掺杂n+。

上述第一半导体层掺杂p+。

上述第一金属层与第一半导体植入区形成良好的接触,第二金属层与第二半导体植入区形成良好的接触。

一种用于制备阳极短路的场阑绝缘栅双极晶体管的方法,其特点是,该方法包含:

a、在半导体衬底的顶面上,制备一个半导电的第一外延层,其中第一外延层和衬底的导电类型相同,第一外延层的电荷载流子浓度低于衬底;

b、在第一外延层上方,制备一个半导电的场阑层,其中场阑层的导电类型与衬底和第一外延层相同,其中场阑层的电荷载流子浓度高于第一外延层,低于衬底的电荷载流子浓度;

c、在场阑层上方,制备一个半导电的第二外延层,其中第二外延层的导电类型与衬底、第一外延层和场阑层相同,其中第二外延层的电荷载流子浓度低于衬底和场阑层;

d、在第二外延层中,制备一个或多个绝缘栅双极晶体管器件元;

e、通过除去衬底背面的材料,将衬底减薄至所需厚度;

f、在衬底的背面,形成一个金属图案;

g、利用金属图案作为掩膜,在衬底的背面进行各向异性的刻蚀,其中各向异性的刻蚀使第一外延层的一个或多个部分裸露出来;

h、在第一外延层的裸露部分中进行掺杂物的背面无掩膜植入,以构成植入区,其中植入区的导电类型与衬底、第一外延层、场阑层和第二外延层的导电类型相反;

i、在植入区和金属图案的背面,形成一个金属层。

上述衬底掺杂n+型,第一外延层掺杂n-型,场阑层掺杂n型。

上述第二外延层掺杂n-型。

上述植入区掺杂p+型。

本发明一种用于制备阳极短路的场阑绝缘栅双极晶体管的方法和现有技术相比,其优点在于,本发明制备方法所制备的阳极短路的场阑绝缘栅双极晶体管,相比现有技术的绝缘栅双极晶体管器件,保持了提升后的正向电压降,同时还具有更令人满意的开关性能,通过交替p-型区和n-型区,使绝缘栅双极晶体管器件成为高效的附加体二极管,并且改善了开关速度。

附图说明

图1a表示一种现有技术的传统绝缘栅双极晶体管(igbt)的剖面示意图;

图1b表示一种现有技术的传统阳极-短路的绝缘栅双极晶体管(igbt)的剖面示意图;

图2a-2h表示依据本发明的一个实施例,一种用于制备阳极-短路的场阑绝缘栅双极晶体管(igbt)的剖面示意图;

图3a-3f表示依据本发明的一个可选实施例,一种用于制备阳极-短路的场阑绝缘栅双极晶体管(igbt)的剖面示意图;

图4a-4h表示依据本发明的另一个可选实施例,一种用于制备阳极-短路的场阑绝缘栅双极晶体管(igbt)的剖面示意图;

图5a-5j表示依据本发明的另一个可选实施例,一种用于制备阳极-短路的场阑绝缘栅双极晶体管(igbt)的剖面示意图。

具体实施方式

虽然为了解释说明,以下详细说明包含了许多具体细节,但是本领域的技术人员都将明确,以下细节的各种变化和修正都在本发明的范围内。因此,下文所述的本发明的实施例,并没有对所声明的发明造成任何一般性的损失,并且没有提出局限。

在以下详细说明中,请参考附图,附图构成本发明的典型实施例的一部分,并且作为典型实施例的注解说明。在这种情况下,所使用的方向术语,例如“顶部”、“底部”、“正面”、“背面”、“在前”、“在后”等,参考上述附图的方向。由于本发明的实施例可以置于多种不同的方向中,因此,所用的方向术语仅用于解释说明,并不作为局限。应明确,在不违背本发明范围的前提下,可以使用其他的实施例,并且改变结构或逻辑。因此,下文的详细说明并不构成限制,本发明的范围应由所附的权利要求书限定。

为了简便,在导电性符号或电荷载流子类型(p或n)之后使用+或-,通常表示半导体材料中指定类型的电荷载流子浓度的相对级别。一般来说,n+材料的负电荷载流子(例如电子)浓度高于n材料,n材料的载流子浓度高于n-材料。与之类似,p+材料的正电荷载流子(例如空穴)浓度高于p材料,p材料的浓度高于p-材料。要注意的是,我们关心的是电荷载流子浓度,并不一定是掺杂物。例如,可以用n-型掺杂物重掺杂一种材料,但是如果这种材料也充分地反向掺杂p-型掺杂物,那么它仍然具有比较低的电荷载流子浓度。因此,文中所用的掺杂物浓度小于1016/cm3可以称为“轻掺杂”,掺杂物浓度高于1017/cm3可以称为“重掺杂”。

本发明的实施例涉及用于制备这种阳极-短路的绝缘栅双极晶体管(igbt)的方法。

如图2a-2h所示,为依据本发明的一个实施例,一种阳极-短路的场阑绝缘栅双极晶体管(igbt)的制备方法的剖面示意图。如图2a所示,该制备方法从轻掺杂的p-衬底201开始。在衬底201的顶面上,进行带掩膜的植入(掩膜没有表示出),以便如图2b所示,在衬底201的顶面内,选择性地形成第一导电类型的多个第一半导体区203。作为示例,但不作为局限,第一导电类型可以为n+。然后,将第一半导体区203扩散到所需深度。在某些应用中,至少将第一半导体区的深度扩散至10μm比较合适。在其他应用中,第一半导体区的宽度可以比相邻的第一半导体区之间的距离小得多,将完成器件的快速返回问题降至最低。

形成一个或多个第一半导体区203之后,如图2c所示,可以在衬底201的顶面上方,生长一个第一导电类型的场阑层205。场阑层205的电荷载流子浓度低于第一半导体区203。作为示例,但不作为局限,场阑层205可以是n型掺杂的。如图2d所示,然后在场阑层205上方,生长一个第一导电类型的外延/电压闭锁层207。电压闭锁层207的电荷载流子浓度低于场阑层205。

如图2e所示,在外延/电压闭锁层207中的顶部,形成一个或多个igbt器件元209。此处所述的名词“igbt器件元”是指含有一个本体区、一个或多个发射区、一个栅极电极、一个或多个相应的发射极电极以及绝缘层的单元。虽然igbt器件元必须包含这些特定的零件,但是本领域的技术人员应明确配置这些igbt零件很可能有许多不同的结构。例如,图1a中的igbt表示一种可能的结构,实现igbt器件元含有形成在本体区中的发射区以及绝缘栅极。只要形成在外延/电压闭锁层207中的igbt器件元209含有上述零件,并且保持它们的功能性,那么它们就可以具有任何结构。

然后,将衬底201的背面减薄(例如通过taiko研磨)到所需厚度,如图2f所示,使第一半导体区203裸露出来。此处所述的名词“taiko研磨”是指研磨晶圆内表面的过程,同时保留最外面的圆周上的外边缘不受影响。该方法降低了薄晶片处理的风险,减少了器件处理时歪曲晶圆的现象。对于特殊的应用,必须将衬底201的背面研磨至场阑层205以下5μm的厚度。

然后,在衬底201的背面进行第二导电类型的无掩膜植入,如图2g所示,致使植入区211形成在衬底201背面中。作为示例,但不作为局限,植入区可以掺杂p+型。再次作为示例,不作为局限,无掩膜植入可以是在40kev的能级下,用1×1016cm-3的掺杂浓度进行硼植入。由于完全激活植入区211所需的高温(通常要求900-1000℃保持30分钟)会损坏igbt器件元209,因此无掩膜植入仅仅局限于最低程度的激活。正是这种无掩膜植入的受限激活,使第一半导体区203不受p+植入的影响。

最后,在衬底201的背面蒸发金属213,如图2h所示,构成igbt的集电极。该过程可以在450℃下进行,从而部分激活植入区211。所形成的结构为阳极-短路的场阑igbt,交替的p区201、211和n区203构成阳极短路电路。

在本实施例中,在该工艺的最后,从背部植入p+区211,从而精准地控制igbt的注入效率,不受正温度系数的igbt场阑性能的影响,快速开关,无寿命控制,断开能量eoff不会随温度增加。而且,无需掩膜就能进行p+植入。这使得晶圆接地到较薄的程度,与已有技术相比,降低了导通电阻,已有技术仅由于掩膜在薄晶圆上很难实现,所以使用掩膜工艺。

图3a-3f表示依据本发明的一个可选实施例,制备阳极-短路的场阑绝缘栅双极晶体管(igbt)方法的剖面示意图。制备方法从外延/电压闭锁层303开始,外延/电压闭锁层303形成在极其轻掺杂的衬底301上。衬底和外延层可以用相反的导电类型掺杂。作为示例,但不作为局限,闭锁层303可以掺杂n-型,衬底301可以掺杂p-型。然后,如图3b所示,在外延/电压闭锁层303中形成一个或多个igbt零件部分304。如上所述,名称“igbt器件元”是指一个单元中含有一个本体区、一个或多个发射区、一个栅极电极、一个或多个相应的发射极电极以及具有任意适宜的/功能性结构的绝缘层,如图1a所示。

例如通过研磨,将衬底301减薄至所需厚度。然后,在外延/电压闭锁层301的背面进行第一导电类型的无掩膜植入,如图3c所示,形成场阑层305。场阑层305的电荷载流子浓度高于闭锁层301。作为示例,但不作为局限,场阑层305可以掺杂n型。再次作为示例,但不作为局限,无掩膜植入可以在能级范围100-300kev之间进行,掺杂浓度为1-2×1013cm-3的磷植入。

在场阑层305的背面进行第一带掩膜的阴影(掩膜没有表示出)植入,以便在场阑层305的背面,选择性地形成第二导电类型的一个或多个第一半导体区307,如图3d所示。名词“阴影掩膜”是指带有孔图案的金属掩膜,可以直接接触晶圆,或者位于晶圆附近,以便在晶圆内或晶圆上方形成所需的图案。作为示例,但不作为局限,第一半导体区307可以为p+型掺杂。再次作为示例,但不作为局限,第一带掩膜的阴影植入可以在40kev的能级下,用掺杂浓度为1×1016cm-3的硼植入。

在场阑层305的背面进行第二带掩膜的阴影(掩膜没有表示出)植入,以便在场阑层305的背面,选择性地形成第一导电类型的一个或多个第一半导体区309,如图3e所示。第二半导体区309的掺杂浓度高于闭锁层301和场阑层305。作为示例,但不作为局限,第二半导体区309可以为n+型掺杂。再次作为示例,但不作为局限,第二带掩膜的阴影植入可以在40kev的能级下,用掺杂浓度为1×1016cm-3的磷植入。然后,用激光激活第一半导体区和第二半导体区。激光激活的过程包含将高能激光脉沉对准所需位置。由于时滞很短,因此激光脉沉能够在不触及器件结构的正面,并且不损坏igbt器件元303的前提下,激活掺杂物。

最后,在第一和第二半导体区307、309的背面,沉积金属311,以构成igbt的集电极,如图3f所示。作为示例,但不作为局限,金属311可以是铝-锡-镍-银(al-ti-ni-ag)合金。最终的结构为阳极-短路的场阑igbt,交替的p区307和n区309构成阳极短路电路。如图2g中的过程所示,使用两个掩膜,避免了重掺杂区的反向掺杂。在一个实施例中,第一阴影掩膜和第二阴影掩膜是互补的。在另一个实施例中,第二导电类型的半导体区307的宽度远大于第一导电类型的半导体区309的宽度。

图4a-4h表示依据本发明的另一个可选实施例,用于一种阳极短路的场阑绝缘栅双极晶体管(igbt)的制备方法的剖面示意图。如图4a所示,该制备方法从外延/电压闭锁层403开始,外延/电压闭锁层403形成在衬底401上。衬底和外延层的导电类型相同,但电荷载流子的浓度不同。作为示例,但不作为局限,衬底401可以为n+型,外延层403可以为n-型。如图4b所示,一个或多个igbt器件元404构成外延/电压闭锁层403。如上所述,名词“igbt器件元”是指一个单元中含有一个本体区、一个或多个发射区、一个栅极电极、一个或多个相应的发射极电极以及具有任意适宜的/功能性结构的绝缘层。

例如通过taiko研磨,将外延/电压闭锁层401的背面减薄至所需厚度。如上所论,名词“taiko研磨”是指研磨晶圆内表面的过程,同时保留最外面的圆周上的外边缘不受影响(图中没有表示出)。然后,在衬底401的背面进行第一导电类型的无掩膜植入,如图4c所示,形成场阑层405。场阑层405的电荷载流子浓度高于闭锁层403,电荷载流子浓度低于衬底401。作为示例,但不作为局限,如果衬底401为n+掺杂,闭锁层403为n-掺杂,那么场阑层405可以掺杂n型。再次作为示例,但不作为局限,无掩膜植入可以在上至1mev的交错能级处,进行掺杂浓度为1-2×1013cm-3的磷植入,以获得几微米的场阑层405。

在场阑层405的背面进行第二导电类型的无掩膜植入,以便在场阑层405的背面,形成第二导电类型的第一植入层407,如图4d所示。作为示例,但不作为局限,第一植入层407可以为p+型掺杂。再次作为示例,但不作为局限,无掩膜植入可以在40kev的能级下,用掺杂浓度为1×1016cm-3的硼植入。

然后,用激光激活第一植入层407和场阑层405。如上所述,激光激活的过程包含将高能激光脉沉对准所需位置。由于时滞很短,因此激光脉沉并不能穿透器件结构的正面。

激光激活第一植入层407和场阑层405之后,如图4e所示,在第一半导体层407的背面,沉积一个第一金属层409(例如5000å的铝层)。通过激光切割第一金属层409和第一半导体层407的一个或多个部分,选择性地形成分立的植入区407’,如图4f所示,以便使场阑层405的一个或多个部分裸露出来。

利用带图案的第一金属层409作为掩膜,将第一导电类型的掺杂物无掩膜植入到场阑层405的裸露部分,以便在分立的植入区407’之间的场阑层405的裸露部分中,形成第二植入区411,如图4g所示。利用第一金属层409,避免了分立的植入区407’暴露给无掩膜植入。掺杂第二半导体区411,使其电荷载流子的浓度高于闭锁层403和场阑层405。作为示例,但不作为局限,如果闭锁层为n-掺杂,场阑层为n型掺杂,那么第二植入区411就可以掺杂n+型。再次作为示例,但不作为局限,无掩膜植入可以在40kev的能级下,用掺杂浓度为1×1016cm-3的磷植入。如图4h所示,在第一和第二半导体区407’和411上方,沉积一个第二金属层413。作为示例,但不作为局限,第二金属层413可以是钛-镍-银(ti-ni-ag)合金。在沉积第二金属层413之前,可以在第二金属层409上进行溅射刻蚀,除去由于暴露在外部环境中而形成在第一金属层409上方的氧化物。第二金属层413和第一金属层409一起构成igbt器件的集电极。最终的结构为阳极-短路的场阑igbt,交替的植入区407’和n植入区405构成阳极短路电路。

金属层409和413可以是特地挑选的不同类型的金属,以便能够与不同掺杂的植入区407’、411形成良好接触。例如,第一植入区407’可以掺杂p+型,第二植入区411可以掺杂n型或n+型。铝可以与p型区形成良好的接触,钛可以与n型或n+型区形成良好的接触。在这种情况下,第一金属层409可以是铝,第二金属层413可以是钛。最终的结构可以与植入区407’、411都形成良好的接触。此外,在制图过程中,切分铝层,可以降低由于铝和下方的衬底金属(例如硅)之间的热膨胀(cte)系数之间的差异,而引起的应力。

图5a-5j表示依据本发明的另一个可选实施例,用于一种阳极-短路的场阑绝缘栅双极晶体管(igbt)的制备方法的剖面示意图。如图5a所示,制备方法从衬底501开始。作为示例,但不作为局限,衬底501的厚度约为700µm。如图5b所示,第一外延层503形成在衬底501的顶面上,第一外延层503的导电类型与衬底相同。第一外延层503的半导体材料的导电类型与衬底501相同,但电荷载流子的浓度低于衬底。作为示例,但不作为局限,如果衬底501掺杂n+型,那么第一外延层503就可以是n-型掺杂。再次作为示例,但不作为局限,第一外延层的厚度约为10µm。

形成第一外延层503之后,如图5c所示,场阑层505可以形成在第一外延层503上方。场阑层505的导电类型与衬底和第一外延层相同。场阑层的电荷载流子浓度比第一外延层503的电荷载流子浓度高,但比衬底501的电荷载流子浓度低。作为示例,但不作为局限,如果衬底501为n+型掺杂,第一外延层505为n-型掺杂,那么场阑层505就可以是n型掺杂。再次作为示例,但不作为局限,场阑层505的厚度约为5µm。如图5d所示,第二外延层507生长在场阑层505上方,第二外延层507的导电类型与衬底501、第一外延层503以及场阑层505相同。第二外延层507有时也称为电压闭锁层507。第二外延层507的电荷载流子浓度低于衬底501和场阑层505。再次作为示例,但不作为局限,如果衬底501为n+型掺杂,第一外延层503为n-型掺杂,场阑层505为n型掺杂,那么电压闭锁层507就可以是n-型掺杂。再次作为示例,但不作为局限,对于1200v的igbt器件来说,电压闭锁层约为100µm,对于600v的器件来说,电压闭锁层约为50µm。

如图5e所示,在电压闭锁层507的顶面中形成一个或多个igbt器件元509。如上所述,名词“igbt器件元”是指一个单元中含有一个本体区、一个或多个发射区、一个栅极电极、一个或多个相应的发射极电极以及具有任意适宜的/功能性结构的绝缘层。根据igbt器件元509的制备过程,通过从衬底的背面除去材料,将衬底501减薄至所需厚度,如图5f所示。例如,通过从背面研磨,将衬底501减薄。对于特殊的应用,衬底501减薄后的厚度约为5µm。

如图5g所示,在衬底501的背面进行带掩膜的金属沉积,从而在衬底501的背面形成金属图案511。与上述类似,可以利用阴影掩膜,进行带掩膜的沉积。然后,利用金属图案511作为掩膜,在衬底501上进行各向异性的刻蚀(例如一次湿刻蚀),使第一外延层503的一个或多个部分裸露出来,同时保留衬底501在金属图案下面的部分,如图5h所示。对于特定的应用,所需的刻蚀深度约为10µm,取决于减薄后剩余的衬底厚度。

然后,在衬底501上进行背部无掩膜植入,将导电类型与衬底501、场阑层505以及外延层503、507相反的掺杂物,植入到第一外延层503和衬底501的裸露部分中。如图5i所示,掺杂植入物构成植入区513。通过退火工艺,激活植入区513。作为示例,但不作为局限,如果衬底501、场阑层505以及外延层503、507分别掺杂n+、n和n-型,那么植入区就可以掺杂p+型。

最后,在植入区513的背面和金属图案511的背面上沉积金属层511’,从而构成igbt器件的集电极。最终的结构为阳极-短路的场阑igbt,通过植入区513和衬底501的剩余部分形成的导电类型相反的交替半导体区,构成阳极短路电路。

尽管以上是本发明的较佳实施例的完整说明,但是也有可能使用各种可选、修正和等效方案。因此,本发明的范围不应局限于以上说明,而应由所附的权利要求书及其全部等效内容决定。任何可选件(无论首选与否),都可与其他任何可选件(无论首选与否)组合。在以下权利要求中,不定冠词“一个”或“一个”都指下文内容中的一个或多个项目的数量。除非在特定的权利要求前使用“意思是”明确限定,否则所附的权利要求书不应认为是意思加功能的局限。任何没有用“意思是”明确指出限定功能的项目,不应认为是35usc§112,¶6中所述条款的“意思”或“步骤”。

尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1