一种全固态光子增强热电子发射器件的制作方法

文档序号:16849728发布日期:2019-02-12 22:38阅读:225来源:国知局
一种全固态光子增强热电子发射器件的制作方法

本发明涉及一种新型光热电复合器件,属于太阳能利用领域。



背景技术:

目前,常规光伏电池器件中由于吸收层材料能带结构与太阳光谱不匹配所造成的能量损耗约占整体光谱能量的50%,这部分损耗能量最终多以热的形式耗散。分光谱光伏电池、多结太阳能电池等技术通过提高吸收层能带结构与太阳光谱的匹配度来降低这种损耗。但分光谱光伏电池多节电池成本极高且器件设计与工艺困难,难以大面积推广。近几年提出来的热载流子电池通过快速收集热载流子,抑制晶格热损耗,理论上可以达到接近多结电池的高效率。其优点是两端器件结构简单,也无需光谱选择,但难点是对非平衡态的热载流子进行收集。热载流子与晶格热平衡的速率极高,因此对材料的要求非常高,实现难度太大。

20世纪60年代热电子能量转换器(thermionicenergyconverters(tecs),即真空热电子发射器件)被提出并被nasa和前苏联用到深空飞行器的自主电源中,其效率达到10%-15%。受这一思路的启发,斯坦福大学的研究者[schwede,j.w.,i.bargatin,d.c.riley,b.e.hardin,s.j.rosenthal,y.sun,f.schmitt,p.pianetta,r.t.howe,z.-x.shenandn.a.melosh,nat.mater.,9,762(2010)]于2010年提出了光子增强的热电子发射(photonenhancedthermionicemission,pete)的概念。pete器件基于真空热电子发射原理,采用半导体材料作为发射极,一方面通过能带跃迁吸收光子的能量,另一方面通过热电子发射将热能转化为电能。相比传统的真空热电子发射器件,pete吸收层因为吸收了光子能量,光生电子具有较高的费米能级,因此提高了热电子发射几率,有效降低了热电子发射的温度,提高了发射电流。能带吸收和热电子发射的结合充分利用了器件对光子的量子吸收和热能,因此可以达到综合的、比较高的光电转化效率。模拟计算发现,在1000suns的聚光条件下其效率可达60%以上,远远超过目前太阳能电池的转化效率。从有效吸收和转化光子能量的角度来看,pete器件与热载流子电池[a.l.bris,j.-f.guillemoles,appl.phys.lett.,97,113506(2010)]的思路类似。但两者之间也有重要差别,热载流子电池针对的是非平衡态载流子,要求极高的载流子收集和导出的速率,在材料和技术上难以实现;而pete针对的是与晶格达至热平衡态的“热”载流子,因此技术难度大大降低。

综合太阳能电池与热电子发射器件中提高能量转化效率的策略,可以从降低阴极功函数、抑制表面载流子复合率、提高导电性和热稳定性、抑制热损失等方面进一步提高光热电复合器件的能量转化效率。pete器件为了维持阴阳极之间较大的温差而保留了一个微米厚度的真空间隙层,这给该器件的实用性带来了一些重要的负面效应。首先,该真空间隙层也给器件的制备工艺增加了较大的难度,目前需要借助于微机电(mems)技术来实现。其次,真空间隙层在高发射电流情况下会带来空间电荷效应,阻止阴极发射的电子到达阳极,减少热电子的有效发射。已有模拟计算[t.itoandm.a.cappelli,appl.phys.letts.101,213901(2012)]表明,这种空间电荷效应即使在较大的真空间隙(100μm)下也会严重降低器件的工作性能。另外,这种pete器件过度依赖于阴极、阳极的功函数,其物理本质决定了这种器件是一种低电压高电流器件,会具有较大的欧姆损失。要使得阴、阳极之间有较大的净发射电流,必须减少阴极的功函数,通过阴极表面涂覆降低功函数是提高电子热发射的有效手段之一。但目前已经发现的低功函数表面涂层(常见的如碱金属、基于碱金属的化合物)的温度稳定性普遍不高,如常用的cs2co3表面涂层在120℃左右就变得不稳定。因此,基于真空间隙层的pete器件由于过度依赖阴、阳极的功函数,受制于阴极低功函数涂层较低的温度稳定性,雉以真正实现高温下的热电子发射的优势。



技术实现要素:

针对上述问题或不足,本发明提出了一种全固态光子增强热电子发射器件,该器件从上至下依次包括:透明导电氧化物(transparentandconductiveoxides,tco)层,用于减少载流子复合的背表面场(backsurfacefield,bsf)钝化层,用于吸收太阳光的阴极吸收层,高导电高绝热半导体材料层和用于收集阴极发射电子的阳极;

所述背表面场钝化层与阴极吸收层包括由不同掺杂浓度构成的高低结结构;

所述高导电高绝热半导体材料层为“声子玻璃/电子晶体”(phononglass/electroncrystal,pgec),该类材料晶体结构中具有三种不同的结晶学位置,其中两种位置的原子组成基本的晶体结构,且主导能带结构,而第三种原子则位于前两种原子构成的笼状空隙位置,且与周围原子弱结合,对声子产生较强散射,从而降低热导率。

所述阴极吸收层与高导电高绝热层和高导电高绝热层与阳极之间的导带带阶与对应的价带带阶使电子向阳极传输而阻挡空穴向阳极输运。

所述tco层为p型或n型透明导电氧化物薄膜。

所述全固态光子增强热电子发射器件还包括一个设置于tco层上方的聚光装置,用于增大入射到吸收层的入射辐射的强度。

本发明通过在阴、阳极之间插入高导电高绝热半导体材料“声子玻璃/电子晶体”pgec热电材料,来同时实现阴、阳极的高温差及电荷的传输,避免了上述基于真空间隙层的pete器件的弊端,消除了空间电荷效应,降低了器件工艺难度及对材料功函数的依赖性,增大了器件效率提升空间。

附图说明

图1示出了光子增强热电子发射技术同时利用光电及热电转换的基本物理思想;

图2是基于真空间隙层的光子增强热电子发射器件原理及能带结构示意图;

图3是基于真空间隙层的光子增强热电子发射器件中的空间电荷效应示意图;

图4是带有背表面场(bsf)钝化层和低功函数涂层的阴极结构示意图;

图5是全固态光子增强热电子发射器件的结构示意图;

图6是全固态光子增强热电子发射器件的一种能级结构图;

附图标记:201-阴极吸收层,202-阳极,203-光子,电子(205)-空穴(204)对,401-重掺杂的bsf层,501-透明导电氧化物tco层,502-高导电高绝热的半导体层,601-阴极吸收层与高导电高绝热层导带带阶,602-阴极吸收层与高导电高绝热层价带带阶,603-高导电高绝热层与阳极导带带阶,604-高导电高绝热层与阳极价带带阶。

具体实施方式

本发明是基于光子增强热电子发射(pete)原理,同时又克服了基于真空间隙层的pete技术的缺点,属于全固态光子增强热电子发射器件,是一种新型的光热电复合器件。

图5示出了本发明全固态光子增强热电子发射器件的结构示意图。光子(203)从上方入射,该器件从上至下依次包括:透明导电氧化物tco层(501),重掺杂的bsf层(401),阴极吸收层(201),高导电高绝热的半导体层(502)和阳极(202)。其中的tco层是p型或者n型透明导电氧化物。背表面场钝化层与阴极吸收层的高低结结构由p+-gaas/p-gaas构成。高导电高绝热半导体材料层既能实现电荷传输又能保持阴、阳极之间较大的温差。高导电高绝热层选用稀土元素填充的基质方钴矿(skutterudite)材料,方钴矿为coas3、cosb3或irsb3,稀土元素为la或ce,其中基质材料结晶学位置的原子组成基本的晶体结构,且主导能带结构,而填充的稀土原子la或ce则位于前两种原子构成的笼状空隙位置中,且与周围原子弱结合,对声子产生散射,从而降低热导率。该结构没有真空间隙层,减小了基于真空间隙层pete器件的制造工艺难度,消除了空间电荷效应对器件性能的负面影响。

图6是全固态光子增强热电子发射器件的一种能带结构图。光子(203)进入阴极吸收层(201),经光子能量吸收,在阴极半导体材料内产生电子(205)-空穴(204)对。高导电高绝热层(502)插入阴极吸收层(201)和阳极(202)之间,由于该层热导率很低,可以保持阴极、阳极之间较大的温差。阴极、高导电高绝热层和阳极均是半导体材料,可以通过掺杂调节各自的能带结构和它们之间能级匹配,如图中所示,阴极吸收层(201)与高导电高绝热层(502)导带带阶(601)小于对应的价带带阶(602)以实现对电子的选择性传输。通过掺杂使得高导电高绝热层与阳极之间的导带带阶(603)与对应的价带带阶(604)使电子向阳极传输而阻挡空穴向阳极传输。

图4示出了背表面场钝化层(bsf)和低功函数涂层的阴极结构。综合太阳能电池与热电子发射器件中提高能量转化效率的策略,阴极bsf和低功函数涂层的结合可以同时降低光生载流子的表面复合损失和阴极发射势垒层高度。入射光子(203)通过重掺的p+层(401)进入吸收层(201),其中p+层起到背表面场钝化作用,通过场钝化减少载流子在背表面的复合损失,阴极吸收层的表面涂层(402)用以降低阴极材料功函数,从而增强阴极热电子发射几率。

图1示出了pete同时实现光电及热电转换的基本物理思想。常规的太阳能电池有两大热损失途径,光子能量hν大于太阳能电池带隙eg的部分hν-eg会通过弛豫过程传递给声子而耗散掉;而能量小于eg的光子也将因为不被吸收而以热量的形式耗散掉。在晶体硅电池中,这两种约占太阳光入射总能量的50%。而基于热电子发射原理的热电子能量转化装置(thermionicenergyconverters,tecs)能充分利用太阳能电池中这部分损失掉的热能。理查德-杜什曼公式[g.n.hatsopoulosande.p.gyftopoulos,thermionicenergyconversionvol.1(mitpress,1973)]描述了热发射电流密度j与温度tc及阴极材料功函数φc之间的关系,其中ac是阴极材料的理查德系数。pete器件正是结合了常规太阳能电池中的量子吸收与tecs器件的热电子发射过程,所以具有较高的能量转化效率。

图2给出了基于真空间隙层的pete器件的原理及能带结构示意图。器件阴极吸收层201与阳极202通过真空隔离,阴极吸收层201与阳极202分别具有相对于真空能级φ真的功函数φc及φa。阴极材料带隙宽度为eg,光照前费米能级位置在ef,电子占据数如曲线206所示;光照后准费米能级位置在ef,n,电子占据数如曲线207所示。入射光子(203)入射到阴极时,电子吸收光子能量,从价带跃迁到导带,产生电子(205)-空穴(204)对。被激发的电子在阴极导带快速热化,达到新的热平衡状态。电子扩散到达阴极表面,克服表面亲和势χ发生热发射穿过真空区域(208)到达阳极,形成热发射电子流(209)相比没有光照的情况,电子热发射的势垒降低了ef,n-ef,势垒的降低正好对应与光照准费米能级与无光照的费米能级的差值。也就是说,光照作用大幅度降低了半导体内部热电子发射的阈值温度。通常热电子发射温度在1100k以上,而pete可以通过光子吸收把热电子发生的阈值温度降到500k左右。

图3是基于真空间隙层的光子增强热电子发射中的空间电荷效应示意图。入射光子(203)在阴极吸收层(201)内产生电子(205)空穴(204)对,由于发射电子从阴极发射到达阳极(202)需要一定的时间,引起电子在真空层的积累而形成301的真空间隙电势分布,电子从阴极表面(302)发射,必须要克服302到303之间的势垒才能到达阳极表面(304),303是真空层电势最高点。故真空层的电荷积累效应会大大降低热电子发射的效率。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1