一种碳化硅基紫外探测器及其制备方法与流程

文档序号:16849709发布日期:2019-02-12 22:37阅读:293来源:国知局
一种碳化硅基紫外探测器及其制备方法与流程

本发明涉及一种碳化硅基紫外探测器及其制备方法,属于光电探测器件制备技术领域。



背景技术:

紫外探测器是一种能够将紫外光信号转换成电信号的器件,它在天气监测、火灾报警、细胞癌变检测以及紫外天文观测方面有广泛用途。

现有的紫外探测器一般为紫外增强型si基探测器,存在以下不足:si基紫外探测器可靠性低、灵敏度和导热性不能兼容。



技术实现要素:

本发明所要解决的技术问题是:克服现有技术的不足,提出一种碳化硅基紫外探测器及其制备方法,该紫外探测器可靠性高、导热性能好、灵敏度高,从而解决了现有si基紫外探测器可靠性低、灵敏度和导热性不能兼容的难题,且该探测器的制备方法加工工艺简单,可靠性高,能够实现批量生产。

本发明的技术解决方案是:

一种碳化硅基紫外探测器,该探测器包括衬底、第一外延层、第二外延层、钝化保护层、减反射膜层、p型碳化硅欧姆接触、引线和n型碳化硅欧姆接触;

所述的衬底上方为第一外延层,第一外延层的上方为第二外延层,第二外延层的上方为钝化保护层,钝化保护层的中心镂空,减反射膜层嵌入到钝化保护层中心镂空位置,且减反射膜层与钝化保护层中心镂空位置相匹配;减反射膜层上带有环形凹槽,环形凹槽的深度与减反射膜层的厚度相同,p型碳化硅欧姆接触嵌入到减反射膜层的环形凹槽中,且p型碳化硅欧姆接触与减反射膜层的环形凹槽相匹配,引线与p型碳化硅欧姆接触连接;衬底下方为n型碳化硅欧姆接触,n型碳化硅欧姆接触用于与外部器件相连;

所述的衬底的材料为n+型碳化硅;

所述的第一外延层的材料为n-型碳化硅;

所述的第二外延层的材料为p型碳化硅;

所述的钝化保护层的材料为氮化硅薄膜;

所述的减反射膜层的材料为二氧化硅薄膜;

所述的p型碳化硅欧姆接触采用引线键合方式引出电极线,n型碳化硅欧姆接触直接焊接在封装管壳上。

一种碳化硅基紫外探测器的制备方法,该方法的步骤包括:

(1)在衬底上进行同质外延生长制备第一外延层和第二外延层;

(2)在步骤(1)制备的第二外延层上制备钝化保护层;

(3)将步骤(2)制备的钝化保护层的中心进行镂空,在钝化保护层中心镂空位置制备减反射膜层;

(4)在步骤(3)制备的减反射膜层上开环形凹槽,在减反射膜层的环形凹槽中制备p型碳化硅欧姆接触,通过引线键合的方式引出金线引线;

(5)在步骤(4)得到的衬底的底部制作n型碳化硅欧姆接触,用于与外部器件相连。

所述步骤(1)中,pin三层碳化硅材料是在重掺杂的n型碳化硅衬底正面生长低掺杂的n型外延层,形成耗尽区i层;在n型外延层上生长p型外延层,形成电极区p层;

所述步骤(2)中,钝化保护层采用lpcvd淀积氮化硅薄膜;

所述步骤(3)中,减反射膜层采用lpcvd淀积二氧化硅薄膜;

所述步骤(4)中,制备p型碳化硅欧姆接触时采用磁控溅射的方式淀积金属铝;

所述的步骤(5)中,制作n型碳化硅欧姆接触时采用磁控溅射的方式淀积金属镍/钛/金,即首先淀积金属镍,然后在金属镍上淀积金属钛,最后再在金属钛上淀积金属金。

本发明与现有技术相比的有益效果是:

(1)本发明的紫外探测器,采用具有抗击穿、宽禁带、高量子转换效率的材料作为衬底,可选用材料为碳化硅。由于衬底本身具有宽禁带特点,所以不需要考虑附加的制冷设施,简化了制造工艺,降低了制造成本,能够实现批量生产;由于碳化硅衬底具有高量子转换效率,保证了探测器的高灵敏度性能。

(2)本发明的紫外探测器,采用二氧化硅薄膜作为钝化保护层,防止了外界杂质的污染和腐蚀,提高了探测器器可靠性和寿命,所选材料的表面粘度低、导热性能好,保证了测量的准确性和灵敏度。

(3)一种碳化硅基紫外探测器及其制造方法,它包括:一个衬底,衬底为pin三层结构。底层为n型的碳化硅衬底,中间的i层为n型的碳化硅外延层,顶层为p型的碳化硅外延层。在p型层的上方表面分别有钝化保护层、减反射膜、欧姆接触以及引出线。n型衬底下方表面有欧姆接触,直接与电极焊盘相连。本发明选用了抗击穿、宽禁带、高量子转换效率的材料作为衬底,简化了加工工艺,成功制备了钝化层、欧姆接触,有效提高了探测器的灵敏度。

(4)碳化硅材料紫外探测器具有以下优点:(1)噪声低、灵敏度高。碳化硅材料本身由于禁带宽度大,只对紫外光比较敏感,对可见光不响应,所以受环境影响小,能够实现高响应、低噪声;(2)体积小、结构简单。对于碳化硅材料来说,可以做出平面结构的紫外探测器,这种探测器体积小,结构简单,对于制备大面积的二维探测器阵列有很大优势;(3)性能稳定,器件不易损坏。传统的si基光电探测器工作需要制冷,且会严重影响器件的使用寿命,而碳化硅材料的紫外探测器在室温即可工作,并且碳化硅材料本身的性质较为稳定,故不容易损坏。综上,现有的紫外探测器多用硅基作衬底,工艺复杂,可靠性较低,且灵敏度和导热率不能兼容,故本发明提供一种碳化硅基紫外探测器的制备方法。

(5)本探测器存在p型和n型两种欧姆接触,分别在器件的上下两个表面,p型欧姆接触分布于探测器的上侧,n型欧姆接触分布于探测器的下侧。实现了在一个器件上加工两种不同的碳化硅欧姆接触。

(6)一种碳化硅基紫外探测器,其特征包括:一个衬底,衬底为pin三层结构。底层为n型的碳化硅衬底,中间的i层为n型的碳化硅外延层,顶层为p型的碳化硅外延层。在p型层的上方表面分别有钝化保护层、减反射膜、欧姆接触以及引出线。n型衬底下方表面有欧姆接触,直接与电极焊盘相连。

器件的正反两面同时具有两种类型的欧姆接触,p型欧姆接触分布于p型层的上侧,n型欧姆接触分布于器衬底层下侧。

附图说明

图1a为本发明的探测器的结构俯视示意图;

图1b为本发明的探测器的结构剖面图;

图2a为本发明的方法中步骤(2)得到的结构俯视示意图;

图2b为本发明的方法中步骤(2)得到的结构剖面图;

图3a为本发明的方法中步骤(3)得到的结构俯视示意图;

图3b为本发明的方法中步骤(3)得到的结构剖面图;

图4a为本发明的方法中步骤(4)得到的结构俯视示意图;

图4b为本发明的方法中步骤(4)得到的结构剖面图;

图5为本发明的探测器的结构示意图。

具体实施方式

一种碳化硅基紫外探测器,该探测器包括衬底1、第一外延层2、第二外延层3、钝化保护层4、减反射膜层5、p型碳化硅欧姆接触6、引线7和n型碳化硅欧姆接触8;

所述的衬底1上方为第一外延层2,第一外延层2的上方为第二外延层3,第二外延层3的上方为钝化保护层4,钝化保护层4的中心镂空,减反射膜层5嵌入到钝化保护层4中心镂空位置,且减反射膜层5与钝化保护层4中心镂空位置相匹配;减反射膜层5上带有环形凹槽,环形凹槽的深度与减反射膜层5的厚度相同,p型碳化硅欧姆接触6嵌入到减反射膜层5的环形凹槽中,且p型碳化硅欧姆接触6与减反射膜层5的环形凹槽相匹配,引线7与p型碳化硅欧姆接触6连接;衬底1下方为n型碳化硅欧姆接触8,n型碳化硅欧姆接触8用于与外部器件相连;

所述的衬底1的材料为n+型碳化硅;

所述的第一外延层2的材料为n-型碳化硅;

所述的第二外延层3的材料为p型碳化硅;

所述的钝化保护层4的材料为氮化硅薄膜;

所述的减反射膜层5的材料为二氧化硅薄膜;

所述的p型碳化硅欧姆接触6采用引线键合方式引出电极线,n型碳化硅欧姆接触8直接焊接在封装管壳上。

一种碳化硅基紫外探测器的制备方法,该方法的步骤包括:

(1)在衬底1上进行同质外延生长制备第一外延层2和第二外延层3;

(2)在步骤(1)制备的第二外延层3上制备钝化保护层4;

(3)将步骤(2)制备的钝化保护层4的中心进行镂空,在钝化保护层4中心镂空位置制备减反射膜层5;

(4)在步骤(3)制备的减反射膜层5上开环形凹槽,在减反射膜层5的环形凹槽中制备p型碳化硅欧姆接触6,通过引线键合的方式引出金线引线7;

(5)在步骤(4)得到的衬底1的底部制作n型碳化硅欧姆接触8,用于与外部器件相连。

所述步骤(1)中,pin三层碳化硅材料是在重掺杂的n型碳化硅衬底正面生长低掺杂的n型外延层,形成耗尽区i层;在n型外延层上生长p型外延层,形成电极区p层;

所述步骤(2)中,钝化保护层4采用lpcvd淀积氮化硅薄膜;

所述步骤(3)中,减反射膜层5采用lpcvd淀积二氧化硅薄膜;

所述步骤(4)中,制备p型碳化硅欧姆接触6时采用磁控溅射的方式淀积金属铝;

所述的步骤(5)中,制作n型碳化硅欧姆接触8时采用磁控溅射的方式淀积金属镍/钛/金,即首先淀积金属镍,然后在金属镍上淀积金属钛,最后再在金属钛上淀积金属金。

一种碳化硅基紫外探测器的制造方法,包括以下步骤:

(1)pin三层结构,完成器件衬底的制备

在重掺杂的n型碳化硅衬底正面生长低掺杂的n型外延层,形成耗尽区i层;在n型外延层上生长p型外延层,形成电极区p层;

(2)形成钝化保护层

在p型外延层的表面制作钝化保护层;

(3)形成减反射膜层

去除钝化层局部,形成减反射膜层;

(4)形成电极引出线

去除减反射膜层的局部形成欧姆接触,制作电极引出线;

(5)形成背面电极焊盘部

在衬底层背面制作欧姆接触,形成电极焊盘部。

所述的衬底为具有抗击穿、宽禁带、高量子转换效率的材料,可为碳化硅。

所述步骤(1)的pin三层衬底结构采用气相淀积的方式在衬底层上进行外延生长。

所述步骤(2)的钝化保护层可以采用lpcvd淀积二氧化硅薄膜。

所述步骤(3)的减反射膜层可以采用lpcvd淀积氮化硅薄膜。

所述步骤(4)的欧姆接触制作可以采用溅射、蒸发金属铝,电极引出线采用引线键合金线。

所述步骤(5)的背面电极焊盘部制作可以采用溅射、蒸发金属镍、钛、金。

下面结合附图和实施例对本发明作进一步说明。

如图1a和图1b所示,碳化硅紫外探测器的结构包括一个衬底1,衬底1材料为n+型碳化硅;衬底1上方有外延层2、外延层3,分别为n-型碳化硅、p型碳化硅;外延层3上形成钝化保护层4;去除钝化保护层4局部,在钝化保护层4上形成减反射膜层5;去除减反射膜层5局部,在减反射膜层4上形成p型碳化硅欧姆接触6,并引出引线7;衬底1下方形成n型碳化硅欧姆接触,完成底层焊盘制备。

衬底1由具有抗击穿、宽禁带、高量子转换效率的材料形成,本发明选择采用碳化硅。

第一外延层2、第二外延层3均为采用气相沉积法生长的碳化硅材料。

钝化保护层4为采用lpcvd淀积的氮化硅薄膜。

减反射膜层5为采用lpcvd淀积的二氧化硅薄膜。

顶层欧姆接触6由能够与p型碳化硅形成欧姆接触的金属铝形成,实现良好的导通电阻不影响器件的性能。

金属引出线7由稳定性好、易焊接的金材料,提高器件的稳定性。

钝化保护层4由具有隔离保护作用的二氧化硅薄膜形成,可以防止外界杂质对紫外探测器p型外延层的污染和腐蚀。

减反射膜层5由具有透光性能的氮化硅材料形成,可以有效消除入射紫外光的反射,提高器件的测试精度。

底部电极焊盘部8由能够与n型碳化硅形成欧姆接触的金属镍形成,且稳定性高、易于焊接。

作为本发明的实施例的碳化硅紫外探测器,如下所述的那样进行工作。

有紫外光入射时,紫外光会在器件表面发生透射与反射,减反射层会有效消除反射光;如果透射进器件的光子能量大于或等于禁带宽度,那么光子会提供价带内的电子能量,使其能够从外延层3跃迁至外延层2,形成电子空穴对。位于外延层2内的电子空穴对可以被外延层2的内建电场分离,向欧姆接触6、欧姆接触8的方向漂移。衬底1内产生的光生空穴和外延层3内产生的光生电子作为少数载流子,通过扩散到达外延层2,与外延层2中产生的光生电子空穴对一起在电场的作用下被拉向两侧电极并被收集,产生光电流,由此测量紫外光。

如图2a和图2b所示,衬底1选择n+型碳化硅材料,在衬底1的表面通过气相沉积的方法形成n-型碳化硅外延层,然后在n-外延层表面采用气相沉积的方法形成n+外延层,获得用于制备器件的衬底。在外延层3上通过lpcvd的方法生长0.2μm的氮化硅,作为钝化保护层4。

如图3a和图3b所示,以规定的形状去除钝化保护层4的局部后,通过lpcvd的方法生长1200a的二氧化硅,形成减反射膜层5。

如图4a和图4b所示,以规定的形状去除减反射膜层5的局部后,电镀金属铝,形成顶层欧姆接触6;通过引线键合的方式引出金属线7。

如图5所示,在衬底1的背面,通过磁控溅射的方法以生长一层1μm厚的镍/钛/金,由此形成器件的底部焊盘。

实施例

如图1a和图1b所示,一种碳化硅基紫外探测器,该探测器包括衬底1、第一外延层2、第二外延层3、钝化保护层4、减反射膜层5、p型碳化硅欧姆接触6、引线7和n型碳化硅欧姆接触8;

所述的衬底1的材料为n+型碳化硅;

所述的第一外延层2的材料为n-型碳化硅;

所述的第二外延层3的材料为p型碳化硅;

所述的钝化保护层4为氮化硅薄膜,厚度为0.2μm;

所述的减反射膜层5为二氧化硅薄膜,厚度为1200a;

一种碳化硅基紫外探测器的制备方法,该方法的步骤包括:

(1)在衬底1上进行同质外延生长制备第一外延层2和第二外延层3;

(2)在步骤(1)制备的第二外延层3上采用lpcvd方式淀积0.2μm厚的氮化硅薄膜作为钝化保护层4,如图2a和图2b所示;

(3)将步骤(2)制备的钝化保护层4的中心进行镂空,在钝化保护层4中心镂空位置采用lpcvd方式淀积1200a厚的二氧化硅薄膜,作为减反射膜层5,如图3a和图3b所示;

(4)在步骤(3)制备的减反射膜层5上开环形凹槽,在减反射膜层5的环形凹槽中采用磁控溅射的方式淀积1.5um厚的金属铝作为p型碳化硅欧姆接触6,通过引线键合的方式引出金线引线7,如图4a和图4b所示;

(5)在步骤(4)得到的衬底1的底部采用磁控溅射的方式淀积金属镍/钛/金,即首先淀积5000a厚的金属镍,然后在金属镍上淀积3000a厚的金属钛,最后再在金属钛上淀积2000a厚的金属金,作为n型碳化硅欧姆接触8,如图5所示。

将制备的探测器的n型碳化硅欧姆接触8与电源正极连接,金属引线7与电源负极连接,将器件放置于全避光的暗室中,进行暗电流测试,测试的方法参照gjb128a中的方法4016,测试结果显示达到pa级。

采取紫外光源照射所制备的器件,进行光电流测试,测试的方法参照gjb128a中的方法4016,测试所得的电流值除以对应的入射光功率,就可以得到探测器的响应度,结果显示相应度可达到0.1a/w。

结果表明所制备的碳化硅紫外探测器电流性能已超过传统硅基紫外探测器,且无须制冷设备。

上面详细叙述了微机械加工的一种碳化硅紫外探测器的特征结构及制造方法,本领域内的技术人员可以在此基础上进行局部调整和修改,不难重复出本发明的结果,但这并不会超出本发明权利要求的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1