一种自模板、自掺杂制备超级电容器富磷介孔炭的方法与流程

文档序号:19340882发布日期:2019-12-06 18:31阅读:268来源:国知局
一种自模板、自掺杂制备超级电容器富磷介孔炭的方法与流程

本发明涉及一种自模板、自掺杂制备超级电容器富磷介孔炭。



背景技术:

超级电容器,又叫双电层电容器,具有高的充放电效率、长的循环寿命以及快速的充放电能力等优点,被当作潜在的高功率电源应用于数字通讯、航空航天、电动汽车等领域。由于超级电容器自身的性能(如低的能量密度)而限制了其进一步发展,因此提高能量密度是当前迫切需要解决的问题。

炭材料资源丰富,在自然界中存在形式多种多样,且结构可控、高导电性和离子吸附性,不仅可以直接作为电解的活性物质,还能用作导电剂、柔性基体和包覆层等。因此,在电化学领域发挥极其重要的作用,是超级电容器应用最广泛的电极材料。炭材料的种类十分丰富,包括活性炭、炭凝胶、碳纳米管、模板炭。介孔炭的孔径尺寸大(2-50nm),并且孔道结构比较规整、孔容容量大,便于电解液离子的快速迁移,是高功率超级电容器的理想电极材料。介孔炭材料通常采用模板法来制备,常用的模板有沸石、介孔硅分子筛和硅胶珠等介孔材料,或者纳米碳酸钙、纳米氧化镁等纳米颗粒,其制备过程包括:(1)将有机碳源填充进多孔模板的孔道中,或者将有机碳源与纳米粒子模板均匀分散;(2)高温碳化使有机碳源热解;(3)洗去模板,纳米碳酸钙、纳米氧化镁可以用盐酸洗涤,而沸石、介孔硅分子筛和硅胶珠等含硅的模板需用强腐蚀性的氢氟酸刻蚀除去。可见,模板法虽然可制备介孔发达的炭材料,但存在着模板成本较高、模板不易均匀填充/分散于碳源、制备工序复杂等不足。因此,探究一种工艺简便、成本低廉和环境友好的介孔炭材料的制备方法具有重要的现实意义。

除了孔隙分布以外,表面化学性质也是影响多孔碳材料电容性能的重要因素。对炭材料进行表面掺杂引入氧、氮、磷等杂原子官能团不仅能改善多孔碳材料在电解液中的浸润性,而且能与电解液之间发生法拉第效应而产生赝电容,进而提高材料的能量密度。掺杂碳材料的工作主要集中在氧、氮原子,而关于磷元素掺杂的研究相对较少。最常用方式为以磷酸为磷源和活化剂与碳源在高温下碳化、活化处理,得到磷掺杂多孔炭,这类材料大多孔径<2nm,属于微孔材料。另一类先用模板法或活化法由碳源制备多孔炭,然后再以三苯基膦、四苯基溴化膦、磷酸三乙酯为磷源,在高温下与多孔炭共热进行掺杂,这类方法制备的材料磷含量少,一般为4~6%左右。



技术实现要素:

有鉴于此,本发明提供一种自模板、自掺杂制备超级电容器富磷介孔炭,通过工艺简单、成本低廉的制备方法,得到一系列高磷含量的具有稳定的三维蜂窝状介孔结构的多孔炭材料。将这种具有丰富介孔的相互贯通的孔通道应用于超级电容器电极中,可以制备出高比容量、高大电流倍率性能、宽电位窗口的电极材料。这种方法既提高了超级电容器的比容量,又改善了能量密度。

本发明提供一种自模板、自掺杂制备超级电容器富磷介孔炭的方法,所述方法包括步骤:

第一步:在惰性气氛保护下,将植酸盐以3-15℃/min升温到碳化温度,并在碳化温度保温0.5~3h,其中碳化温度为500-1100℃;

第二步:分别用酸和水分两步洗涤;

第三步:干燥得到富磷介孔炭。

本发明还提供一种自模板、自掺杂制备超级电容器富磷介孔炭材料,所述材料具有特殊的蜂窝状互穿网络型结构,其比表面积为400-1500m2/g,富含3-20nm的介孔,孔容在0.6-1.7cm3/g之间,含磷量为2.3%-16%。

其中第一步所述植酸盐为植酸钠、植酸钙、植酸镁、植酸锌、植酸钾、植酸钙镁中的一种或几种。

所述第一步中的惰性气体为氮气、氩气、氦气、氖气中的任意一种或几种的混合;升温速率为5-10℃/min;碳化温度为600-900℃。

所述第二步中洗涤除去纳米模板剂分两步,先酸煮2~4h,再水煮2~4h;所用酸为盐酸、硫酸、磷酸、硝酸和草酸中的一种或几种;浓度为1~3mol/l。

所述第三步中干燥处理的方法为100℃~120℃下真空干燥或鼓风干燥8~12h。

本发明还提供上述富磷介孔炭电极材料在超电容器中的应用,所述超级电容器的水体系电解质体系包含但不局限于6mol/lkoh或3mol/lh2so4。

本发明还提供上述富磷介孔炭电极材料在3mol/lh2so4水体系超级电容器中,电位窗口可以扩宽为0-1.8v。

本发明提供的一种以植酸盐为前驱体在高温下自模板、自掺杂直接碳化制备的富磷介孔炭的方法,植酸盐在碳化过程中其一部分磷酸酯基会生成纳米焦磷酸盐颗粒、一部分肌醇会生成炭,焦磷酸盐颗粒热稳定性好并在后续碳化过程中保持稳定,从而为生成的炭提供模板剂制造出介孔。植酸盐在碳化过程中也有一小部分磷酸酯基会与炭反应使得磷原子进入碳的缺陷位置形成自掺杂。

有机盐直接热解制备高比表面积的微孔炭材料已有报道,与他们不同的是,本发明提供一类特殊的原料(植酸盐),能在热解过程中产生2-50nm大小的焦磷酸盐颗粒,这种颗粒在炭化过程中起介孔模板剂的作用,将其洗涤去除后制备出具有丰富介孔的炭材料。植酸盐本身含大量的磷元素,碳化过程中磷原子会进入碳的缺陷位置形成磷掺杂,即高温热解形成自掺杂机理;植酸盐本身的金属离子是键合在磷酸酯基端,高温热解时自发形成2-50nm大小的焦磷酸盐颗粒均匀分散在炭基体中从而充当了介孔模板的功能,即高温热解形成自模板机理。因此,本发明提供的材料和方法形成高温下自模板、自掺杂机理,模板和掺杂均是碳源自发原位形成,植酸盐种类、升温速度和碳化温度是影响孔隙分布、孔容和比表面积的因素,易于调控。

与最接近的现有技术比,本发明提供的技术方案具有以下有益效果:

1.本发明提供的植酸盐在整个制备磷掺杂型介孔炭电极材料中不仅起到了碳源、磷源的双重作用,还在高温下自身分子重新组合,生成纳米焦磷酸盐模板剂,解决了现有方法制备富磷多孔炭电极材料工艺复杂繁琐,掺杂和造孔需要分步进行的问题;

2.本发明首次利用自模板、自掺杂一步碳化的方案,在高温下植酸盐类分子重新组合交联,生成多孔炭包裹纳米焦磷酸盐颗粒的复合物,洗去模板,制备出具有稳定三维蜂窝状介孔结构的炭材料。该材料可以直接用于超级电容器电极材料,能很好的改善电极材料在高电流密度下的倍率性能。在koh或h2so4电解质水体系中都表现出优异的电化学性能,也能在有机体系或离子液体电解质体系应用;

3.本发明首次通过植酸盐高温下自模板、自掺杂一步碳化的方案,制备出磷掺杂型介孔炭电极材料。磷元素的引入能提高碳基体材料的导电性和浸润性,还能够与电解质溶液中的离子发生快速的法拉第反应,产生赝电容效应,同时磷处于多孔炭材料骨架中的缺电子体位,在宽的电位窗口下能稳定三维碳基体材料的网状结构,减少体积收缩,因此与传统的多孔炭材料相比,该富磷介孔炭电极能承受更宽的电位窗口(0-1.8v),使得炭电极兼有高比容量和能量密度的电化学性能;

4.本发明提供一种自模板、自掺杂一步碳化的方案,不需要其他活化剂、模板剂、造孔剂以及磷源等添加剂,直接制备出兼有高磷含量和丰富介孔结构的炭材料,相对于传统方法先通过模板法或活化法制备出介孔炭材料,再用h3po4、三苯基膦等磷源对多孔材料进行磷化处理得到的富磷介孔炭,该方案具有制备工艺简单,成本低廉的优势,且具有更高的磷含量。该材料应用于超级电容器中,表现出更高的能量密度、功率密度以及更好的循环寿命和倍率性能。

附图说明:

图1为本发明实施例1制备的富磷介孔炭电极材料未洗之前的tem图;

图2为本发明实施例2制备的富磷介孔炭电极材料的sem图和tem图;

图3为本发明实施例4制备的富磷介孔炭电极材料的氮吸附/脱附曲线图和孔径分布图;

图4为本发明实施例3制备的富磷介孔炭电极材料p2p的xps图谱;

图5为发明实施例1制备的富磷介孔炭电极材料在6mol/lkoh电解液二电极测试中比容量随电流密度变化的曲线;

图6为发明实施例2制备的富磷介孔炭电极材料在6mol/lkoh电解液三电极体系中的循环伏安曲线;

图7为发明实施例3制备的富磷介孔炭电极材料在3mol/lh2so4电解液中5a/g电流密度下不同电压窗口充放电测得的比电容值;

图8为发明实施例5制备的富磷介孔炭电极材料在3mol/lh2so4电解液二电极体系中,1a/g电流密度下不同电压窗口的充放电曲线。

具体实施方式:

下面通过具体实施例的方式对本发明提供的技术方案做进一步清楚完整的说明,但它们并不构成对本发明的限制。

实施例1

(1)称取30g植酸钙镁于干净的镍舟中,置于管式炉中央,通入高纯氮气吹扫30min,逼出管内的空气;

(2)在高纯氮气的保护下,以15℃/min的升温速度将管式炉升温至1100℃,恒温2h,自然冷却至室温(如图1所示未经过洗涤之前碳化产物的tem图,黑色小分子盐类杂质均匀的分布在炭基体材料之中);

(3)取出镍舟,将碳化产物放入装有1mol/l硫酸的三口烧瓶中,加热煮沸3h,过滤洗涤至中性,加入去离子水煮沸3h;

(4)抽滤,90℃鼓风烘箱中干燥11h即得富磷介孔炭电极材料;

(5)对该材料各种表征测试,其结果显示,磷原子含量为8.9%,比表面积为1500m2/g,总孔容为1.5cm3/g;

(6)电化学性能测试:将上述的多孔材料分别和乙炔黑、60%ptfe乳液按质量比为85:10:5的比例混合制备成电极极片,在6mol/lkoh电解液中进行二电极恒流充放电测试,如图5所示,所制备多孔材料在0.1a/g的低电流密度下比容量为292f/g,将电流密度扩大2000倍至200a/g,其比容量229f/g,说明在大电流密度下具有很好的倍率性能。

实施例2

(1)称取25g植酸钙镁于干净的镍舟中,置于管式炉中央,通入高纯氮气吹扫30min,逼出管内的空气;

(2)在高纯氮气的保护下,以5℃/min的升温速度将管式炉升温至500℃,恒温3h,自然冷却至室温;

(3)取出镍舟,将碳化产物放入装有3mol/l磷酸的三口烧瓶中,加热煮沸2.5h,过滤洗涤至中性,加入去离子水煮沸2.5h;

(4)抽滤,在100℃鼓风烘箱中干燥12h即得富磷介孔炭电极材料;

(5)图2为多孔炭材料的sem和tem图,从sem图中可以看出,直接通过高温热解植酸钙得到类似蜂窝状多孔结构的炭材料,孔隙率非常发达,tem图进一步证明了材料的多孔性;表征测试结果显示,介孔材料磷原子含量为2.3%,比表面积为400m2/g,总孔容为0.6cm3/g;

(6)电化学性能测试:将上述的多孔材料分别和乙炔黑、60%ptfe乳液按质量比为85:10:5的比例混合制备成电极极片,在6mol/lkoh电解液中进行三电极体系测试,以制备的多孔材料为工作电极,pt电极为对电极,hg/hgo电极为参比电极,电压范围-1~0v。所制备多孔材料在0.1a/g的低电流密度下比容量为213f/g,如图6所示,循环伏安曲线呈类矩形状,在低电压下还存在一个大的氧化还原峰,表明该材料对电荷的存储除了双电层电容外还存在一定的赝电容,增大扫速至500mv/s时,仍保持很好的矩形,说明在该材料具有很好的倍率性能。

实施例3

(1)称取27g植酸锌于干净的镍舟中,置于管式炉中央,通入高纯氮气吹扫30min,逼出管内的空气;

(2)在高纯氮气的保护下,以15℃/min的升温速度将管式炉升温至900℃,恒温3h,自然冷却至室温;

(3)取出镍舟,将碳化产物放入装有4mol/l草酸的三口烧瓶中,加热煮沸3h,过滤洗涤至中性,加入去离子水煮沸3h;

(4)抽滤,在110℃鼓风烘箱中干燥10h即得富磷介孔炭电极材料;

(5)对该材料进行xps测试分析,结果如图4所示,p2p分峰图谱显示p主要以[po3]-形式存在为主,还有[p2o7]4-和p4o10两种形式存在。各种表征测试结果显示,介孔材料中磷原子含量为16%,比表面积为1110m2/g,总孔容为0.17cm3/g;

(6)电化学性能测试:将上述的多孔材料分别和乙炔黑、60%ptfe乳液按质量比为85:10:5的比例混合制备成电极极片,在3mol/lh2so4电解液中进行二电极体系测试,电位窗口为0-0.9v。从7图可以看出,所制备多孔材料在5a/g的电流密度下恒流充放电,其比容量随着电位窗口从0-0.9v扩大至0-1.8v时,其比容量保持为125f/g左右,说明磷掺杂分级孔炭扩大电位窗口,材料的比容量没变化,扩大后的电位窗口适合该材料组成的超级电容器。

实例4

(1)称取20g植酸钠于干净的镍舟中,置于管式炉中央,通入高纯氮气吹扫30min,逼出管内的空气;

(2)在高纯氮气的保护下,以3℃/min的升温速度将管式炉升温至700℃,恒温2h,自然冷却至室温;

(3)取出镍舟,将碳化产物放入装有1mol/lhcl的三口烧瓶中,加热煮沸2h,过滤洗涤至中性,加入去离子水煮沸2h;

(4)抽滤,在120℃鼓风烘箱中干燥8h即得富磷介孔炭电极材料;

(5)如图3中的多孔炭材料的氮吸附/脱附曲线,从图中可以看出,在相对压力较低时存在一定吸附量的陡增,而在相对压力为0.4-1.0的高压力下出现了明显的滞后环,表明所制备的多孔材料具有丰富的介孔结构。其比表面积为874m2/g,总孔容为1.16cm3/g,图3中孔径分布曲线可以看出孔径主要分布在3-20nm。通过xps测试表征,多孔材料中磷原子含量为9.5%;

(6)电化学性能测试:将上述的多孔材料分别和乙炔黑、60%ptfe乳液按质量比为85:10:5的比例混合制备成电极极片,在3mol/lh2so4电解液中进行三电极体系测试,以制备的多孔材料为工作电极,pt电极为对电极,ag/agcl电极为参比电极,电压范围-0.2~0.7v。所制备多孔材料在0.1a/g的低电流密度下比容量为295f/g。

实例5

(1)称取23g植酸镁于干净的镍舟中,置于管式炉中央,通入高纯氮气吹扫30min,逼出管内的空气;

(2)在高纯氮气的保护下,以10℃/min的升温速度将管式炉升温至1000℃,恒温2h,自然冷却至室温;

(3)取出镍舟,将碳化产物放入装有2mol/lhcl的三口烧瓶中,加热煮沸2h,过滤洗涤至中性,加入去离子水煮沸2h;

(4)抽滤,100℃鼓风烘箱中干燥11h即得富磷介孔炭电极材料;

(5)对该材料各种表征测试,其结果显示,多孔材料中磷原子含量为13.1%,比表面积为1380m2/g,总孔容为1.3cm3/g;

(6)电化学性能测试:将上述的多孔材料分别和乙炔黑、60%ptfe乳液按质量比为85:10:5的比例混合制备成电极极片,在3mol/lh2so4电解液中进行二电极体系测试。当电压窗口范围为0~0.9v,所制备多孔材料在0.1a/g的低电流密度下比容量为287f/g。图8所示,电压窗口扩大至0-1.8v时,在电流密度为1a/g下恒流充放电曲线具有明显的三角形对称分布,表明电极反应可逆性很好。通过计算,能量密度由电压窗口为0~0.9v下的3.9wh/kg增加至电压窗口为0~1.8v下的18.2wh/kg,说明磷掺杂介孔炭材料,能大大改善电极材料的能量密度。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1