一种全固态电池的制备方法与流程

文档序号:18733980发布日期:2019-09-21 00:55阅读:345来源:国知局

本发明属于电池技术领域,尤其涉及一种全固态电池的制备方法。



背景技术:

随着我国科技水平的提高,电池行业的发展越来越迅速,例如锂电池行业。

相对于传统的液态锂离子电池,全固态锂电池由于可以通过有效抑制锂支晶的产生来提高了电池的安全性能被广泛受到应用。然而,固态电解质和电极之间的固-固界面对实现电化学性能至关重要。

目前,固态电解质主要为钙钛矿氧化物型电解质(钛酸镧锂,Li0.5La0.5TiO3),其具有很高的室温电导率,但是,它与活性物质之间具有很高的界面电阻,这成为阻碍其在固体电池中应用的主要因素之一。现有的解决方案有两种,一种是通过提高烧结温度来降低固态电解质的晶界电阻,在一定程度上可以降低电解质和电极之间的界面电阻,但是一味地提高烧结温度,会导致锂元素的损失,并引起活性物质与电解质之间的相互扩散,在界面处生成杂质相,进而增大界面阻抗,由此可见,该方案并不能有效解决界面问题。另一种方案是将电解质做成薄膜状,该方案在一定程度的降低了界面阻抗,但是电池的容量特别低,无法满足对电量的需求。



技术实现要素:

本发明提供一种全固态电池的制备方法,旨在解决现有提高烧结温度,会导致锂元素的损失,并引起活性物质与电解质之间的相互扩散,在界面处生成杂质相,进而增大界面阻抗的问题以及将电解质做成薄膜状,无法满足对电量的需求的问题。

本发明提供的一种全固态电池的制备方法,包括:

将固态电解质粉末压制成电解质片;

将钴酸锂、聚偏二氟乙烯、碳纳米管和N-甲基-2-吡咯烷酮按质量比40~55:9~12:8~9:6~8混合,配置成混合液;

将混合液按照0.1~0.5mg/cm2的用量滴于电解质片的表面,干燥,并在电解质片表面喷金,在700~800℃下烧结0.5~2h,得到目标电解质片;

利用目标电解质片组装电池。

本发明提供的一种全固态电池的制备方法,通过在电解质表面喷金,使得阴极材料金膜很好的覆盖于电解质表面,再通过热处理,一方面可以使组装后的电池中的活性物质与电解质之间的接触缝隙大大减少,另一方面高温烧结的电解质空隙多,利用电池中有机物排出,从而减少了界面内阻,避免了电池中粉末材料和粘接剂的无效面积增多造成的脱落问题,进而获得了良好的循环性,提高了全固态电池的能量密度和循环稳定性。

具体实施方式

为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而非全部实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

本发明实施例提供的全固态电池的制备方法,该方法包括:

步骤一、将固态电解质粉末压制成电解质片;

步骤二、将钴酸锂、聚偏二氟乙烯、碳纳米管和N-甲基-2-吡咯烷酮按质量比40~55:9~12:8~9:6~8混合,配置成混合液;

步骤三、将混合液按照0.1~0.5mg/cm2的用量滴于电解质片的表面,干燥,并在电解质片表面喷金,在700~800℃下烧结0.5~2h,得到目标电解质片;

步骤四、利用目标电解质片组装电池。

本发明提供的一种全固态电池的制备方法,通过在电解质表面喷金,使得阴极材料金膜很好的覆盖于电解质表面,再通过热处理,一方面可以使组装后的电池中的活性物质与电解质之间的接触缝隙大大减少,另一方面高温烧结的电解质空隙多,利用电池中有机物排出,从而减少了界面内阻,避免了电池中粉末材料和粘接剂的无效面积增多造成的脱落问题,进而获得了良好的循环性,提高了全固态电池的能量密度和循环稳定性。

具体地,步骤一中,固态电解质粉末为钛酸镧锂、LLZO或LATP中的任意一种。电解质片的质量为0.6~1g,厚度为0.2~1mm,直径为1.2~2mm。

进一步地,当固态电解质粉末为钛酸镧锂粉末时,钛酸镧锂的制备方法包括:

将锂化合物、氧化镧和二氧化钛按质量比0.2~0.3:0.2~0.3:0.8~1.2混合研磨1h,加入乙醇;

将乙醇混合物在100~120℃干燥1~2h,置于在马弗炉中,以升温速率2~5℃/min升至900~1200℃预烧1~3h,得到钛酸镧锂粉末。

具体地,锂化合物为碳酸锂、磷酸铁锂或硼酸锂中的任意一种。优选地,锂化合物为碳酸锂,其中,碳酸锂,氧化镧和二氧化钛的质量比为0.275:0.25:1。

优选地,步骤二中,钴酸锂、聚偏二氟乙烯、碳纳米管和N-甲基-2-吡咯烷酮的质量比为45:10:9:6、55:12:8:8或40:9:9:6。更优选地,钴酸锂、聚偏二氟乙烯、碳纳米管和N-甲基-2-吡咯烷酮的质量比为45:10:9:6。

具体地,步骤三中,设置磁控溅射仪的工作参数电流为40~60mA,时间为120~180s,对电解质片表面进行喷金。

具体地,利用马弗炉对喷金后的电解质片进行烧结,其中,马弗炉的升温速率为5~10℃/min。

优选地,混合液的用量为0.2~0.3mg/cm2。更优选地,混合液的用量为0.2mg/cm2

需要说明的是,步骤四中,除本发明实施例提供的目标电解质外,电池的组装方法、电池所采用的其它物质均不作限制。

实施例1

将碳酸锂,氧化镧,二氧化钛按质量比0.275:0.25:1混合研磨1h,加入乙醇,超声,在120℃干燥2h,置于在马弗炉中,以升温速率2℃/min升至800℃预烧2h。

取出混合物研磨1h,取1g在18MPa的压力下压制成电解质片,在1100℃温度下焙烧,形成钛酸镧锂电解质片,并进行抛光打磨,制成厚度为0.2mm,直径为1.5cm的电解质片。

将商业钴酸锂、聚偏二氟乙烯(PVDF)、碳纳米管(CNT)、N-甲基-2-吡咯烷酮(NMP)按质量比45:10:9:6混合,搅拌、超声各2h,并用移液器按0.2mg/cm2吸取溶液,滴至电解质片上。在120℃温度下干燥,并设置磁控溅射仪的电流为50mA,时间为120s,在固态电解质片表面喷金。置于马弗炉中以5℃/min的升温速率升至700℃烧结1h。

将锂片作为负极和上述制备的固态电解质在氩气手套箱中组装成扣式电池。

实施例2

将磷酸铁锂,氧化镧,二氧化钛按质量比0.2:0.3:0.8混合研磨1h,加入乙醇,超声,在100℃干燥2h,置于在马弗炉中,以升温速率5℃/min升至900℃预烧3h。

取出混合物研磨1h,取0.6g在18MPa的压力下压制成电解质片,在1150℃温度下焙烧,形成钛酸镧锂电解质片,并进行抛光打磨,制成厚度为0.2mm,直径为1.5cm的电解质片。

将商业钴酸锂、聚偏二氟乙烯(PVDF)、碳纳米管(CNT)、N-甲基-2-吡咯烷酮(NMP)按质量比55:12:8:8混合,搅拌、超声各2h,并用移液器按0.5mg/cm2吸取溶液,滴至电解质片上。在100℃温度下干燥,并设置磁控溅射仪的电流为50mA,时间为130s,在固态电解质片表面喷金。置于马弗炉中以8℃/min的升温速率升至800℃烧结2h。

将锂片作为负极和上述制备的固态电解质在氩气手套箱中组装成扣式电池。

实施例3

将硼酸锂,氧化镧,二氧化钛按质量比0.3:0.2:1混合研磨1h,加入乙醇,超声,在120℃干燥2h,置于在马弗炉中,以升温速率2℃/min升至800℃预烧2h。

取出混合物研磨1h,取1g在18MPa的压力下压制成电解质片,在1150℃温度下焙烧,形成钛酸镧锂电解质片,并进行抛光打磨,制成厚度为0.2mm,直径为1.2cm的电解质片。

将商业钴酸锂、聚偏二氟乙烯(PVDF)、碳纳米管(CNT)、N-甲基-2-吡咯烷酮(NMP)按质量比40:9:9:6混合,搅拌2h,超声4h,并用移液器按0.3mg/cm2吸取溶液,滴至电解质片上。在120℃温度下干燥,并设置磁控溅射仪的电流为50mA,时间为130s,在固态电解质片表面喷金。置于马弗炉中以8℃/min的升温速率升至750℃烧结1h。

将锂片作为负极和上述制备的固态电解质在氩气手套箱中组装成扣式电池。

实施例4

将碳酸锂,氧化镧,二氧化钛按质量比0.275:0.25:1混合研磨1h,加入乙醇,超声,在120℃干燥2h,置于在马弗炉中,以升温速率2℃/min升至800℃预烧2h。

取出混合物研磨1h,取0.8g在18MPa的压力下压制成电解质片,在1200℃温度下焙烧,形成钛酸镧锂电解质片,并进行抛光打磨,制成厚度为0.2mm,直径为2cm的电解质片。

将商业钴酸锂、聚偏二氟乙烯(PVDF)、碳纳米管(CNT)、N-甲基-2-吡咯烷酮(NMP)按质量比40:9:9:6混合,搅拌2h,超声4h,并用移液器按0.3mg/cm2吸取溶液,滴至电解质片上。在120℃温度下干燥,并设置磁控溅射仪的电流为50mA,时间为180s,在固态电解质片表面喷金。置于马弗炉中以10℃/min的升温速率升至750℃烧结1h。

将锂片作为负极和上述制备的固态电解质在氩气手套箱中组装成扣式电池。

实施例5

将碳酸锂,氧化镧,二氧化钛按质量比0.275:0.25:1混合研磨1h,加入乙醇,超声,在120℃干燥2h,置于在马弗炉中,以升温速率2℃/min升至800℃预烧2h。

取出混合物研磨1h,取0.6g在18MPa的压力下压制成电解质片,在1150℃温度下焙烧,形成钛酸镧锂电解质片,并进行抛光打磨,制成厚度为0.2mm,直径为1.5cm的电解质片。

将商业钴酸锂、聚偏二氟乙烯(PVDF)、碳纳米管(CNT)、N-甲基-2-吡咯烷酮(NMP)按质量比55:12:8:8混合,搅拌4h,超声2h,并用移液器按0.4mg/cm2吸取溶液,滴至电解质片上。在120℃温度下干燥,并设置磁控溅射仪的电流为50mA,时间为160s,在固态电解质片表面喷金。置于马弗炉中以8℃/min的升温速率升至800℃烧结2h。

将锂片作为负极和上述制备的固态电解质在氩气手套箱中组装成扣式电池。

实施例6

将碳酸锂,氧化镧,二氧化钛按质量比0.275:0.25:1混合研磨1h,加入乙醇,超声,在120℃干燥2h,置于在马弗炉中,以升温速率2℃/min升至800℃预烧6h。

取出混合物研磨1h,取0.7g在18MPa的压力下压制成电解质片,在1250℃温度下焙烧,形成钛酸镧锂电解质片,并进行抛光打磨,制成厚度为1mm,直径为1.5cm的电解质片。

将商业钴酸锂、聚偏二氟乙烯(PVDF)、碳纳米管(CNT)、N-甲基-2-吡咯烷酮(NMP)按质量比40:9:9:6混合,搅拌4h,超声2h,并用移液器按0.4mg/cm2吸取溶液,滴至电解质片上。在120℃温度下干燥,并设置磁控溅射仪的电流为50mA,时间为180s,在固态电解质片表面喷金。置于马弗炉中以10℃/min的升温速率升至800℃烧结2h。

将锂片作为负极和上述制备的固态电解质在氩气手套箱中组装成扣式电池。

实施例7

将LLZO粉末研磨1h,取0.7g在18MPa的压力下压制成电解质片,在1250℃温度下焙烧,形成钛酸镧锂电解质片,并进行抛光打磨,制成厚度为1mm,直径为1.5cm的电解质片。

将商业钴酸锂、聚偏二氟乙烯(PVDF)、碳纳米管(CNT)、N-甲基-2-吡咯烷酮(NMP)按质量比40:9:9:6混合,搅拌4h,超声2h,并用移液器按0.4mg/cm2吸取溶液,滴至电解质片上。在120℃温度下干燥,并设置磁控溅射仪的电流为50mA,时间为170s,在固态电解质片表面喷金。置于马弗炉中以10℃/min的升温速率升至800℃烧结2h。

将锂片作为负极和上述制备的固态电解质在氩气手套箱中组装成扣式电池。

实施例8

将LATP粉末研磨1h,取0.7g在18MPa的压力下压制成电解质片,在1200℃温度下焙烧,形成钛酸镧锂电解质片,并进行抛光打磨,制成厚度为0.7mm,直径为1.5cm的电解质片。

将商业钴酸锂、聚偏二氟乙烯(PVDF)、碳纳米管(CNT)、N-甲基-2-吡咯烷酮(NMP)按质量比55:12:8:8混合,搅拌4h,超声2h,并用移液器按0.3mg/cm2吸取溶液,滴至电解质片上。在120℃温度下干燥,并设置磁控溅射仪的电流为50mA,时间为180s,在固态电解质片表面喷金。置于马弗炉中以7℃/min的升温速率升至800℃温度1.5h。

将锂片作为负极和上述制备的固态电解质在氩气手套箱中组装成扣式电池。

实施例9

将碳酸锂,氧化镧,二氧化钛按质量比0.275:0.25:1混合研磨1h,加入乙醇,超声,在120℃干燥2h,置于在马弗炉中,以升温速率2℃/min升至800℃预烧6h。

取出混合物研磨1h,取0.9g在18MPa的压力下压制成电解质片,在1100℃温度下焙烧,形成钛酸镧锂电解质片,并进行抛光打磨,制成厚度为1mm,直径为1.5cm的电解质片。

将商业钴酸锂、聚偏二氟乙烯(PVDF)、碳纳米管(CNT)、N-甲基-2-吡咯烷酮(NMP)按质量比45:10:9:6混合,搅拌4h,超声2h,并用移液器按0.3mg/cm2吸取溶液,滴至电解质片上。在120℃温度下干燥,并设置磁控溅射仪的电流为50mA,时间为180s,在固态电解质片表面喷金。置于马弗炉中以6℃/min的升温速率升至800℃烧结2h。

将锂片作为负极和上述制备的固态电解质在氩气手套箱中组装成扣式电池。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1