包括发光二极管的显示装置及其制造方法与流程

文档序号:17042937发布日期:2019-03-05 19:22阅读:186来源:国知局
包括发光二极管的显示装置及其制造方法与流程

本申请要求于2017年9月5日在韩国知识产权局提交的韩国专利申请no.10-2017-0113362的优先权的利益,该申请的公开以引用方式全文并入本文中。

本公开涉及一种包括发光二极管(led)的显示装置。



背景技术:

半导体发光二极管(led)不仅用作用于照明装置的光源,还用作用于各种电子产品的光源。例如,半导体led通常用作用于诸如tv、移动电话、pc、笔记本计算机和个人数字助理(pda)的各种装置和家电的显示面板的光源。

例如液晶显示器(lcd)的相关技术的显示装置包括lcd面板和背光。然而,近来研发的显示器不包括分离的背光,而是使用led装置作为单独像素。与相关技术的lcd显示器相比,这种显示装置可不仅紧凑而且实现具有更大的光效率的相对高亮度的显示装置。



技术实现要素:

示例实施例可提供一种在晶圆等级上实现并且包括适于每个子像素的波长转换装置的显示装置。

根据示例实施例,一种显示装置包括:多个像素,每个像素包括多个子像素;发光二极管(led)阵列,其包括多个led单元,所述多个led单元中的每一个设为所述多个子像素中的对应的一个子像素的一部分,所述多个led单元被构造为发射具有基本相同的波长的光,所述多个led单元中的每一个具有彼此相对的第一表面和第二表面;薄膜晶体管(tft)电路,其包括多个tft单元,所述多个tft单元中的每一个布置在所述多个led单元的对应的第一表面上,并且包括源极区和漏极区以及布置在源极区和漏极区之间的栅电极;波长转换图案,每个波长转换图案布置在所述多个led单元的对应的第二表面上,每个波长转换图案包括量子点的合成物和/或聚合物,量子点被构造为发射与从所述多个子像素的其它子像素发射的光的颜色不同颜色的光;以及光阻挡壁,其布置在所述多个led单元之间和波长转换图案之间,以将所述多个子像素分离。

根据示例实施例,一种显示装置包括:像素的阵列,每个像素包括第一子像素、第二子像素和第三子像素;多个led单元,所述多个led单元中的每一个形成第一子像素、第二子像素和第三子像素中的对应的一个的一部分,所述多个led单元被构造为发射具有第一波长的光,所述多个led单元中的每一个具有彼此相对的第一表面和第二表面;布置在所述多个led单元的第一表面上的多个tft单元,所述多个tft单元中的每一个包括源极区和漏极区以及布置在源极区和漏极区之间的栅电极;在行方向上电连接所述多个tft单元的源极区的多条数据线;在列方向上电连接所述多个tft单元的栅电极栅极线;多个第一波长转换图案,每个第一波长转换图案布置在形成对应的一个第一子像素的对应的led单元的第二表面上,每个第一波长转换图案包括第一量子点的合成物和/或聚合物,第一量子点被构造为将具有第一波长的光转换为具有第二波长的光;以及多个第二波长转换图案,每个第二波长转换图案布置在形成对应的一个第二子像素的对应的led单元的第二表面上,每个第二波长转换图案包括第二量子点的合成物和/或聚合物,第二量子点被构造为将具有第一波长的光转换为具有第三波长的光。

根据示例实施例,一种显示装置包括:像素的阵列,每个像素包括第一子像素、第二子像素和第三子像素;多个led单元,所述多个led单元中的每一个形成第一子像素、第二子像素和第三子像素中的对应的一个的一部分,所述多个led单元包括相同的外延层,所述多个led单元中的每一个具有彼此相对的第一表面和第二表面;绝缘膜,其布置在所述多个led单元的第一表面上;多个tft单元,其通过绝缘膜与所述多个led单元绝缘,所述多个tft单元中的每一个布置在所述多个led单元中的对应的一个的第一表面的一个区中;以及多个第一波长转换图案和多个第二波长转换图案,每个第一波长转换图案和每个第二波长转换图案布置在分别布置在对应的第一子像素和第二子像素中的所述多个led单元的对应的第二表面上,第一波长转换图案和第二波长转换图案中的每一个包括被构造为发射光的量子点的合成物和/或从光敏树脂合成物获得的聚合物,其中,第一波长转换图案被构造为发射具有第一波长的光,第二波长转换图案被构造为发射具有与第一波长不同的第二波长的光。

根据实施例,一种制造显示装置的方法,包括以下步骤:在第一衬底上形成第一导电半导体层;在第一导电半导体层上形成有源层;在有源层上形成第二导电半导体层;去除第二导电半导体层的一部分,以形成第二导电半导体图案;去除有源层的一部分,以形成有源图案;在第一导电半导体层的去除了第二导电半导体层和有源层的一部分上形成第一电极;在第二导电半导体图案上形成第二电极;在第一电极、第二电极、第一导电半导体层和第二导电半导体图案上形成第一绝缘层;在绝缘膜上形成薄膜晶体管(tft);在tft上形成第二绝缘层;形成将tft的源极/漏极与第二电极电连接的导体图案;用粘合剂层将第二衬底附着于tft上;从第一导电半导体层去除第一衬底;去除第一导电半导体层的一部分,以暴露出第一绝缘层,并形成第一导电半导体图案;在第一导电半导体图案上形成波长转换图案;以及在通过去除第一导电半导体层的一部分而暴露出的第一绝缘层上形成光阻挡图案,其中,第一导电半导体图案、有源图案和第二导电半导体图案形成发光二极管(led),并且其中,在平面图中,tft完全被第一导电半导体图案覆盖。

附图说明

通过下面结合附图的详细描述,将更清楚地理解本发明构思的以上和其它方面、特征和其它优点,其中:

图1是根据示例实施例的包括发光二极管(led)的显示装置的俯视图;

图2是沿着图1所示的显示装置的线i-i'截取的剖视图;

图3是在图1所示的显示装置中实现的驱动电路图;

图4是根据各个示例实施例的包括led的显示装置的剖视图;

图5是根据示例实施例的在包括led的显示装置中采用的像素的布局;以及

图6至图12是示出根据示例实施例的制造包括led的显示装置的方法的剖视图。

具体实施方式

下文中,将参照附图描述本发明构思的各个示例实施例。

图1是根据示例实施例的包括发光二极管(led)的显示装置的俯视图,图2是沿着图1所示的显示装置的线i-i'截取的剖视图。

参照图1和图2,显示装置100可包括像素p的阵列,像素p具有被构造为发射具有不同颜色的光的第一子像素s1、第二子像素s2和第三子像素s3。可根据向其施加的对应的驱动信号分别控制第一子像素s1、第二子像素s2和第三子像素s3中的每一个以发射选择强度的光。

虽然根据示例实施例的像素p的阵列示为9×8,但是可按照任何合适的数量来实现行和列(例如,1024×768)。例如,可提供根据期望分辨率的各种像素的阵列。通过第一子像素s1、第二子像素s2和第三子像素s3(例如,相邻的子像素s1、s2和s3)的组合形成每个像素p,以发出通过分离地驱动所述子像素s1、s2和s3得到的选择的颜色。

显示装置100可被构造为分别向第一子像素s1、第二子像素s2和第三子像素s3提供不同的颜色,以显示彩色图像。例如,第一子像素s1、第二子像素s2和第三子像素s3可分别为红色子像素、绿色子像素和蓝色子像素。

参照图2,根据示例实施例的显示装置100可包括具有布置在支承衬底160上的多个led单元c1、c2和c3的led阵列。

显示装置100可具有矩形形状或其它合适的形状,如图1所示。显示装置100可为平面的。在特定示例实施例中,显示装置100可采用柔性衬底作为用于显示装置100的支承衬底160,以具有弯曲轮廓。例如,支承衬底160可为柔性衬底,并且柔性衬底可由聚酰亚胺形成,但是衬底的材料不限于此。在其它示例实施例中,支承衬底160可为刚性的,并且实现为玻璃衬底或金属衬底。

led阵列可包括布置在多个led单元c1、c2和c3中的每一个中的薄膜晶体管(tft)单元130。其中布置有tft单元130的led阵列可通过粘合树脂层161(例如,粘合剂层)粘合至支承衬底160。粘合树脂层161的材料可为选自由聚丙烯酸酯、聚酰亚胺、聚酰胺和苯并环丁烯(bcb)构成的组中的至少一个。

图2所示的剖面结构表示对应于图1所示的显示装置100的单个像素p的一部分。可将图2所示的led单元中的每一个解释为关于第一子像素s1、第二子像素s2和第三子像素s3的第一led单元c1、第二led单元c2和第三led单元c3。

第一led单元c1、第二led单元c2和第三led单元c3中的每一个可包括半导体层110以及按照相反方向布置的第一表面110a和第二表面110b,半导体层110具有第一导电半导体层112和第二导电半导体层117以及介于它们之间的有源层115。例如,第一led单元c1、第二led单元c2和第三led单元c3可为led结构。例如,第一led单元c1、第二led单元c2和第三led单元c3中的每一个可为led结构,其包括两个导电半导体层112和117以及介于它们之间的有源层115。例如,第一表面110a可为led结构的一个表面,并且第二表面110b可为led结构的与第一表面110a相对的另一表面。例如,第一表面和第二表面中的每一个可包括一个半导体层的一个表面(例如,图2所示的110b)或者可包括导电半导体层和有源层中的一个或多个的组合表面(例如,图2所示的110a)。(图2的第一表面110a包括层112和117的下表面。)第一led单元c1、第二led单元c2和第三led单元c3可为微尺寸的led。例如,由于第一led单元c1、第二led单元c2和第三led单元c3可设置在形成像素的子像素中,因此,例如,在平面图中,第一led单元c1、第二led单元c2和第三led单元c3可具有其侧部的长度小于或等于10μm的结构。例如,在平面图中,第一led单元c1、第二led单元c2和第三led单元c3中的每一个可具有小于100μm2的面积。

在单个晶圆中可利用相同工艺形成各个led单元c1、c2和c3的半导体层110(见图6)。各个led单元c1、c2和c3的半导体层110可按照相同方式生长,并且可彼此分离(例如,通过去除半导体层110的一部分),以提供第一led单元c1、第二led单元c2和第三led单元c3。

第一led单元c1、第二led单元c2和第三led单元c3的有源层115可为被构造为发射基本相同波长的光。例如,有源层115可发射蓝光(例如,波长为440nm至460nm)、紫外光或近紫外光(例如,波长为380nm至440nm)。

如上所述,可分别在第一led单元c1、第二led单元c2和第三led单元c3的第一表面110a上布置多个tft单元130。在图2中,在多个tft单元130中,示出了分别对应于第一led单元c1、第二led单元c2和第三led单元c3的三个tft单元。

绝缘膜121可布置在led阵列与多个tft单元130之间。如图2所示,可在第一led单元c1、第二led单元c2和第三led单元c3的第一表面110a上布置绝缘膜121。

多个tft单元130可包括布置在绝缘膜121上的半导体层132。例如,形成所述多个tft单元130的半导体层132可包括基于硅的半导体(诸如多晶硅)、半导体氧化物(诸如铟镓锌氧化物(igzo)和氧化锌(zno))或化合物半导体(诸如硅锗(sige))。

多个tft单元130可包括提供沟道区的半导体层132、布置在半导体层132的第一区和第二区(即,源极区和漏极区)中的源电极135a和漏电极135b以及按次序布置在第一区与第二区之间的栅极绝缘膜134和栅电极136。例如,如本文所用,tft单元130可为包括对应的组件的薄膜晶体管。例如,如图2所示,tft单元130可包括栅电极136、源电极/漏电极135a和135b、栅极绝缘膜134和包括沟道区的半导体层132。

多个tft单元130可形成tft电路,以控制像素(例如,子像素)的驱动。例如,在第一子像素s1、第二子像素s2和第三子像素s3中的每一个中,tft单元130的漏电极135b可通过连接线152电连接至对应的led单元(例如,c1、c2或c3)的第二电极119b。例如,电连接至led单元的tft单元被构造为供应电功率以驱动led单元。led单元c1、c2和c3的第一电极119a可电连接至公共线158以接地。多个tft单元130的源电极135a可通过数据线154在第一方向(例如,行方向)上电连接。多个tft单元130的栅电极136可通过栅极线156在与第一方向交叉的第二方向(例如,列方向)上连接。随后将参照图3描述这种电路构造和操作。

按照与在以上示例实施例中采用的tft电路不同的方式,在另一示例实施例中,tft电路可被构造为还包括额外tft和/或薄膜电容器等。如上所述,半导体氧化物晶体管以及硅晶体管可用作tft。例如,tft可包括硅或氧化物半导体,作为fet(场效应晶体管)的半导体。例如,氧化物半导体可为金属氧化物半导体。半导体氧化物晶体管有助于减小漏电流,使其漏电流的水平低于硅晶体管的漏电流的水平。硅晶体管可比半导体氧化物晶体管更快速地转换。通过用栅极线和数据线构造像素电路以及通过合适地选择半导体氧化物晶体管和硅晶体管,可优化显示性能。例如,半导体氧化物晶体管可为包括氧化物半导体的氧化物晶体管。例如,氧化物半导体可为化合物氧化物半导体。例如,化合物氧化物半导体可为铟镓锌氧化物(igzo)。在某些实施例中,氧化物晶体管可为金属氧化物晶体管。例如,氧化物晶体管的氧化物半导体可为金属氧化物(例如,氧化铜(cuo、cu2o)、氧化锡(sno2)、氧化锌(zno)等)。

可分别在第一led单元c1、第二led单元c2和第三led单元c3的第二表面110b上布置第一波长转换图案170r、第二波长转换图案170g和第三波长转换图案170b。第一波长转换图案170r、第二波长转换图案170g和第三波长转换图案170b中的每一个可包括量子点的合成物和/或聚合物。与第一子像素s1、第二子像素s2和第三子像素s3相比,波长转换图案170r、170g和170b的量子点分别可被构造为发射不同颜色的光。例如,与其它子像素发射的光相比,第一子像素s1、第二子像素s2和第三子像素s3之一可发射不同颜色的光。聚合物可设为其中分散有量子点的主基体。例如,量子点可以作为聚合物结构的主基体中的客体物质而被隔离。

聚合物可为在光刻(曝光/显影)工艺之后通过光敏树脂合成物获得的产品。由于利用光刻工艺制造第一波长转换图案170r、第二波长转换图案170g和第三波长转换图案170b,因此第一波长转换图案170r、第二波长转换图案170g和第三波长转换图案170b可提供为具有精细和精确的图案。第一波长转换图案170r、第二波长转换图案170g和第三波长转换图案170b可实施为具有精细图案,其尺寸对应于子像素的尺寸(例如,边长为10μm或更小)。例如,各个子像素的最长的边在例如平面图中可为10μm或更小。

在示例实施例中,当合成胶体时,量子点的粒径可以相对自由地调整,并且可以均匀地调整。例如,在量子点具有10nm或更小的尺寸的情况下,由于量子点的尺寸减小,带隙增加的量子限制效应可较为显著的,从而增加能量密度。由于量子点的理论量子效率约为100%,并且可发射具有高色纯度的光,因此可以获得提高的发光效率和改进的颜色再现性。此外,由于量子点与光敏树脂合成物混合,从而图案化量子点,即波长转换材料,量子点可用作形成子像素的led单元的波长转换结构。

在示例实施例中,第一led单元c1、第二led单元c2和第三led单元c3可包括发射紫外光或近紫外光(例如,波长为380nm至440nm的光)的半导体层110(例如,有源层115)。在第一子像素s1、第二子像素s2和第三子像素s3中,第一led单元c1、第二led单元c2和第三led单元c3可分别与第一波长转换图案170r、第二波长转换图案170g和第三波长转换图案170b组合,从而发射红光、绿光和蓝光。

第一波长转换图案170r、第二波长转换图案170g和第三波长转换图案170b可分别包括红色量子点、绿色量子点和蓝色量子点。例如,上述量子点可包括ii-vi族化合物、iii-v族化合物、iv-vi族化合物、iv族化合物、i-iii-vi族化合物、i-ii-iv-vi族化合物或它们的组合。

在特定示例实施例中,第一波长转换图案170r、第二波长转换图案170g和第三波长转换图案170b可包括允许光均匀地散布的光漫射器。例如,光漫射器可包括金属氧化物颗粒、金属颗粒及其组合。

显示装置100还可包括将第一子像素s1、第二子像素s2和第三子像素s3中的每一个与其它子像素光学地隔离的光阻挡壁180。光阻挡壁180可介于多个led单元c1、c2和c3之间以及第一波长转换图案170r、第二波长转换图案170g与第三波长转换图案170b之间。光阻挡壁180可包括黑矩阵,但不限于此。例如,光阻挡壁180可为光阻挡图案。

被提供以将支承衬底160粘合至led阵列的粘合树脂层161可包括防止在朝着支承衬底160的方向上的光泄漏的光反射粉末。例如,光反射粉末可包括诸如二氧化钛(tio2)或氧化铝(al2o3)的氧化物或金属颗粒。

作为粘合树脂层161包含光反射粉末的替代,可采用分离的反射结构。例如,保护绝缘层141可实现为具有分布式布拉格反射器(dbr)结构,其中堆叠有具有不同折射率的多个绝缘膜。例如,保护绝缘层141可包括两种不同的绝缘膜交替地堆叠的多层膜。dbr结构可提供为具有不同折射率的多个绝缘膜反复堆叠两次至100次的结构。多个绝缘膜可选自由氧化物或氮化物构成的组,诸如sio2、sin、sioxny、tio2、si3n4、al2o3、zro2、tin、aln、tialn和/或tisin。

图1所示的显示装置100可不仅用于平板计算机、笔记本计算机、移动电话和媒体播放器,还可用于需要高分辨率的可佩戴装置的显示器、虚拟现实(vr)显示器或者增强现实(ar)显示器。

图3是在图1所示的显示装置中实施的驱动电路图。

参照图3,示出了排列着m×n个子像素的显示装置200的电路图。显示装置200可为与图1和图2所示相同的显示装置,包括有源区da和驱动电路210和220,驱动电路210和220布置在设置有源区da的相同的半导体衬底160上。在特定实施例中,显示装置200可包括图1和图2所示的显示装置100,并且可额外包括驱动电路210和220,即,驱动电路210和220可形成在与形成有源区da的衬底160不同的芯片/衬底中。

第一子像素s1、第二子像素s2和第三子像素s3中的每一个可通过在竖直方向(行方向)上提供的路径(例如,数据线(d1、d2、d3、……、dm-2、dm-1、dm))接收数据信号。第一子像素s1、第二子像素s2和第三子像素s3中的每一个可通过在水平方向(列方向)上延伸的路径(例如,栅极线(g1、g2、g3、……、gn-2、gn-1、gn))接收控制信号(例如,选通信号)。

第一子像素s1、第二子像素s2和第三子像素s3可按照矩形阵列或其它形式排列。多个包括了第一子像素s1、第二子像素s2和第三子像素s3中的每一个的像素p的阵列可形成用于显示的有源区da,并且可用于向用户显示图像。显示装置100的无源区na可沿着有源区da的一条或多条边形成。无源区na可形成显示装置100的边界(例如,周边),并且在显示装置100的周边中可不存在像素p。

可采用驱动电路210和220来控制像素p(例如,多个子像素s1、s2和s3)的操作。驱动电路210和220可形成为集成电路(例如,芯片)、薄膜晶体管面板电路或其它合适的电路,并且可布置在显示装置100的无源区(na)中。驱动电路210和220可包括微处理器、诸如贮存器的存储器、处理电路和/或通信电路。在显示器的操作中,系统控制电路可将信息in从将显示在显示装置100上的图像提供至驱动电路210和220。

为了在像素p上显示图像,第一驱动电路210可将图像数据提供至数据线(d1、d2、d3、……、dm-2、dm-1、dm),并且可将时钟信号和其它控制信号发送至第二驱动电路220(例如,‘栅极驱动电路’)。

可利用集成电路和/或薄膜晶体管电路实施第二驱动电路220。可发送选通信号以控制沿着显示装置100的栅极线(g1、g2、g3、……、gn-2、gn-1、gn)在列方向上排列的第一子像素s1、第二子像素s2和第三子像素s3。

第一子像素s1、第二子像素s2和第三子像素s3可包括分别串联至第一led单元c1、第二led单元c2和第三led单元c3的tft单元(130,例如,‘驱动晶体管’)。第一子像素s1、第二子像素s2和第三子像素s3中的每一个不限于上面示出的电路组成。例如,第一子像素s1、第二子像素s2和第三子像素s3中的每一个可通过还包括其它元件的各种电路实施。例如,第一子像素s1、第二子像素s2和第三子像素s3中的每一个还可包括用于存储在连续的图像帧之间加载的数据的电容器或者用于支持数据加载操作和/或另一操作的一个或多个开关晶体管。

图4是根据各个示例实施例的包括led的显示装置的剖视图。

除led单元的发射波长和第三子像素的组成之外,图4所示的显示装置100'可与图1所示的显示装置100相似。例如,除非特别提供相反的说明,否则可将对图1至图3所示的实施例的组件的描述应用于图4所示的实施例。

在示例实施例中,第一led单元c1、第二led单元c2和第三led单元c3可包括发射蓝光的半导体层(110',例如包括有源层115')。按照与图2所示的显示装置100相似的方式,第一子像素s1和第二子像素s2可与第一波长转换图案170r和第二波长转换图案170g结合,从而分别发射红光和绿光。然而,第三led单元c3可为被构造为发射蓝光,并且第三子像素s3可不包括分离的波长转换结构。第三led单元c3可具有包括透明树脂的透光图案170t,以匹配单元之间的水平,从而可容易地形成光阻挡壁180。例如,透光图案可具有与相邻子像素的波长转换结构的厚度基本相等的厚度。在特定示例实施例中,透光图案170可包括上述光漫射器。

在图1中,被构造为发射红光、绿光和蓝光(rgb)的第一子像素、第二子像素和第三子像素示为并排排列,以具有矩形形状。然而,第一子像素、第二子像素和第三子像素的排列不限于此,并且各种排列都是可能的。在特定实施例中,在单个像素中排列的一部分子像素可按照不同数量排列。例如,参照图5,可在单个像素中在对角线方向上布置分别对应于红色子像素和蓝色子像素的子像素sr和sb,并且对应于绿色子像素的两个子像素sg可排列在另一对角线方向上。

图6至图12是示出根据示例实施例的制造包括led的显示装置的方法的剖视图。

参照图6,可在生长衬底101上形成用于led的半导体层110。半导体层110可包括第一导电半导体层112、有源层115和第二导电半导体层117。

生长衬底101可为绝缘衬底、导电衬底或半导体衬底。例如,生长衬底101可包括蓝宝石、sic、si、mgal2o4、mgo、lialo2、ligao2和/或gan。半导体层110的每个层可为氮化物半导体。可利用诸如金属-有机化学气相沉积(mocvd)、分子束外延(mbe)和/或氢化物气相外延(hvpe)的工艺在生长衬底101上生长半导体层110。

第一导电半导体层112可为满足n型alxinyga1-x-yn(0≤x≤1,0≤y≤1,0≤x+y≤1)的氮化物半导体层,n型杂质可为硅(si)。例如,第一导电半导体层112可为n型gan层。第二导电半导体层117可为满足p型alxinyga1-x-yn的氮化物半导体层,p型杂质可为镁(mg)。例如,第二导电半导体层117可为p型algan/gan。有源层115可具有量子阱层和量子势垒层交替地堆叠的多量子阱(mqw)结构。例如,在使用氮化物半导体的情况下,有源层115可具有gan/ingan的mqw结构。半导体层110可具有分别由第二导电半导体层117和第一导电半导体层112提供的第一表面110a和第二表面110b。

参照图7,可部分地去除半导体层110的一个区,从而允许暴露出第一导电半导体层112的一个区,并且形成第一电极119a和第二电极119b。例如,可部分地去除第二导电半导体层117和有源层115,以分别形成第二导电半导体图案和有源图案。

示例实施例中的去除工艺可通过去除第二导电半导体层117和有源层115的一个区的干蚀刻工艺实施。例如,干蚀刻工艺可提供为反应离子蚀刻(rie)工艺。通过去除第二导电半导体层117和有源层115而暴露的第一导电半导体层112的区可提供为用于第一电极119a的一个区。

可形成分别连接至第一导电半导体层112的一个区和第二导电半导体层117的一个区的第一电极119a和第二电极119b。例如,第一电极119a和第二电极119b中的每一个可包括诸如银(ag)、镍(ni)、铝(al)、铑(rh)、钯(pd)、铱(ir)、钌(ru)、镁(mg)、锌(zn)、铂(pt)和/或金(au)的材料,并且可提供为具有单层或双层或更多层的(例如,三层或更多层)结构。可利用上述工艺形成led单元的结构。

参照图8,可在led单元的结构中(即,在半导体层110上)形成绝缘膜121,并且可在绝缘膜121上形成tft单元130。

绝缘膜121可形成在半导体层110上。绝缘膜121可包括sio2、si3n4、hfo2、sion、tio2、ta2o3或sno2。可在绝缘膜121上形成半导体层132,以提供沟道区。例如,可例如通过原子层沉积(ald)或化学气相沉积(cvd)在绝缘膜121的整个表面上形成半导体膜(未示出),然后可将半导体膜图案化以形成半导体层132,如图8所示。例如,可通过光刻工艺执行半导体膜的图案化。例如,半导体层132可包括基于硅的半导体(诸如多晶硅)、半导体氧化物(诸如铟镓锌氧化物(igzo)、氧化铜(cuo,cu2o)、氧化锌(zno)等)或化合物半导体(诸如硅-锗(sige)、砷化镓(gaas)等)。栅极绝缘膜134和栅电极136可按次序形成在半导体层132的沟道区上。例如,栅极绝缘层(未示出)和栅电极层(未示出)可形成在半导体层132和绝缘膜121的整个表面上,并且可随后将栅极绝缘层和栅电极层图案化以形成栅极绝缘膜134和栅电极136。例如,栅极绝缘层和栅电极层可通过ald工艺或cvd工艺形成。在某些实施例中,可通过溅射工艺形成栅电极层。例如,可通过各个光刻工艺将栅极绝缘层和栅电极层图案化。在某些实施例中,可通过相同的光刻工艺(例如,通过利用相同的光致抗蚀剂图案)将栅极绝缘层和栅电极层图案化。当通过利用相同的光致抗蚀剂图案将栅极绝缘层和栅电极层图案化时,随后图案化的栅极绝缘膜和栅电极的边缘线可基本相同。栅电极可包括导电半导体材料,例如,掺杂的多晶硅。在某些实施例中,栅电极可包括金属,例如,铜、铝、钨、金、银等。栅极绝缘膜可包括氧化物材料(例如,氧化硅)或氮化物材料(例如,氮化硅)。源电极135a和漏电极135b可分别形成在栅电极136的相对的区中。例如,源电极/漏电极135a和135b可为金属图案。在某些实施例中,源电极/漏电极135a和135b可为导电半导体图案,例如,形成在半导体层132上的掺杂的半导体图案或形成在半导体层132中的掺杂的半导体区。例如,当源电极/漏电极135a和135b为形成在半导体层132上的掺杂的半导体图案时,栅电极和源电极/漏电极135a和135b可包括相同的材料。当源电极/漏电极135a和135b是半导体层132的掺杂的半导体区时,可通过离子注入工艺形成源极区/漏极区。当源电极/漏电极135a和135b是金属图案时,可在半导体层132与源电极/漏电极135a和135b之间形成欧姆接触层。可通过上述相似或相同工艺提供tft单元130。

参照图9,可形成连接线152、数据线154、栅极线156和公共线158,以将led单元连接至像素阵列以外的电路(例如,驱动电路210、220)。

首先,可在形成有tft单元130的结构上形成保护绝缘层141,并且将被连接至形成tft电路的导线的区可部分地开口。例如,多个tft单元130的源电极135a、漏电极135b和栅电极136和led单元的第一电极119a和第二电极119b可通过开口区部分暴露出来。例如,保护绝缘层141可包括sio2、si3n4、hfo2、sion、tio2、ta2o3或sno2。如上所述,保护绝缘层141可为dbr多层膜,其中堆叠有具有不同折射率的电介质膜。例如,保护绝缘层141可包括两种不同层交替地堆叠的多层膜。

参照图3和图9,连接线152可将所述多个tft单元130的各自的漏电极135b电连接至led单元的第二电极119b。数据线154可在行方向上将多个tft单元130的源电极135a电连接。栅极线156可在列方向上将多个tft单元130的栅电极136电连接。公共线158可在行方向和/或列方向上将led单元的第一电极119a电连接,并且公共线158可接地。可利用上述相似或相同处理提供包括tft单元130的tft电路。例如,当有源区da和驱动电路210和220布置在相同衬底160上时,有源区da和驱动电路210和220可形成在相同半导体衬底(例如,生长衬底101)上,然后可一体地转移至支承衬底160。在某些实施例中,当有源区da和驱动电路210和220布置在相同衬底160上时,可通过不同的半导体衬底形成有源区da和驱动电路210和220,然后可分离地转移至支承衬底160。

参照图10,包括形成在其中的tft单元130的led阵列可粘合至支承衬底160,并且可将生长衬底101从led阵列去除。例如,包括形成在生长衬底101上的多个led的led阵列可一次粘合至支承衬底160。例如,包括多个led和分别电连接至多个led的多个tft的led阵列可一次粘合至支承衬底160,然后可将生长衬底101从led阵列去除。

可利用粘合树脂层161将包括形成在其中的tft单元130的led阵列粘合至支承衬底160。例如,粘合树脂层161可包括选自由聚丙烯酸酯、聚酰亚胺、聚酰胺和苯并环丁烯构成的组中的至少一种材料。在特定示例实施例中,粘合树脂层161可包括防止在朝着支承衬底160的方向上的光泄漏的光反射粉末。例如,光反射粉末可包括诸如二氧化钛(tio2)或氧化铝(al2o3)的氧化物或者金属颗粒。

在支承衬底160粘合至led阵列之后,可将生长衬底101从led阵列去除。可通过湿蚀刻工艺、干蚀刻工艺或激光剥离(llo)工艺执行生长衬底101的去除。在某些实施例中,可使用机械抛光来去除生长衬底101。

参照图11,可将第一导电半导体层112划分以形成led阵列的单独led单元。例如,可将第一导电半导体层112部分地去除,以形成第一导电半导体图案。

可利用隔离工艺将半导体层110隔离,从而形成第一led单元c1、第二led单元c2和第三led单元c3。在隔离工艺中,可使用诸如rie的干蚀刻工艺。第一led单元c1、第二led单元c2和第三led单元c3中的每一个可形成为一边的长度为10μm或更小的微led。例如,各个led单元的最长边例如在平面图中可为10μm或更小。例如,在隔离工艺中,可去除第一半导体层112的一部分,直至暴露出绝缘膜121为止,以形成隔离沟槽is,从而利用第一导电半导体层112形成第一导电半导体图案。

参照图12,可分别在第一led单元c1、第二led单元c2和第三led单元c3的第二表面100b上形成第一波长转换图案170r、第二波长转换图案170g和第三波长转换图案170b。例如,第一导电半导体图案112和形成在第一导电半导体图案112上的对应的波长转换图案170r、170g或170b的边缘例如在平面图中可基本相同。例如,第一导电半导体图案112的最长边例如在平面图中可为10μm或更小。

可利用混合有红色量子点、绿色量子点和蓝色量子点的光敏树脂合成物分别形成第一波长转换图案170r、第二波长转换图案170g和第三波长转换图案170b。例如,红色量子点、绿色量子点和蓝色量子点可分别布置在第一波长转换图案170r、第二波长转换图案170g和第三波长转换图案170b中的光敏树脂分子之间。可利用各个光刻工艺形成第一波长转换图案170r、第二波长转换图案170g和第三波长转换图案170b。由于利用光刻工艺制造第一波长转换图案170r、第二波长转换图案170g和第三波长转换图案170b,因此可将第一波长转换图案170r、第二波长转换图案170g和第三波长转换图案170b提供为具有精细和精确的图案。第一波长转换图案170r、第二波长转换图案170g和第三波长转换图案170b中的每一个可实施为具有尺寸对应于子像素(例如,边的长度为10μm或更小)的尺寸的精细图案。例如,各个波长转换图案的最长边例如在平面图中可为10μm或更小。

可将在光敏树脂合成物中混合的量子点提供为在其表面上具有有机配位体的量子点。光敏树脂合成物可包括光引发剂、有机粘结剂、光固化单体和溶剂。例如,光引发剂可包括选自肟化合物、膦氧化物化合物和氨基酮化合物中的至少一个。有机粘结剂可包括含羧基(-cooh)的聚合物。光固化单体可包括包含碳-碳双键的单体。

在光刻工艺之后获得的第一波长转换图案170r、第二波长转换图案170g和第三波长转换图案170b中的每一个可包括具有颜色的量子点和/或聚合物的复合物。例如,第一波长转换图案170r、第二波长转换图案170g和第三波长转换图案170b可包括分别具有红色、绿色和蓝色的量子点。聚合物可提供为在其中分散有量子点的主基体。在光刻(曝光/显影)工艺之后,可从光敏树脂合成物中获得聚合物。

参照图2,光阻挡壁180形成在波长转换图案170r、170g和170b之间以及第一导电半导体图案112之间。例如,可在波长转换图案170r、170g和170b上和在隔离沟槽is中形成光阻挡材料层(未示出)。可通过化学机械抛光(cmp)工艺或者蚀刻工艺去除形成在波长转换图案170r、170g和170b上的光阻挡材料层,从而形成光阻挡壁/图案180。例如,光阻挡图案180和波长转换图案170r、170g和170b的顶表面可具有基本相同的水平。例如,第二导电半导体图案117可分别比第一导电半导体图案112具有更小的面积。例如,在平面图中,第二导电半导体图案117和有源图案115可分别具有相同的面积。

如上所述,根据本发明构思的示例实施例,在不需要对单元进行单独的转移处理的前提下,可提供在晶圆级实施并且包括微led单元的高分辨率显示装置。设置在子像素中的波长转换图案可通过光刻工艺利用诸如光致抗蚀剂的光敏树脂合成物形成为具有精细尺寸(例如,10μm或更小)。

虽然上面已经示出并描述了示例实施例,但是本领域技术人员应该清楚,可在不脱离由权利要求限定的本发明构思的范围的情况下作出修改和改变。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1