双面PERC电池的制备方法与流程

文档序号:21260471发布日期:2020-06-26 22:24阅读:1489来源:国知局
双面PERC电池的制备方法与流程

本发明涉及光伏生产技术领域,特别涉及一种双面perc电池的制备方法。



背景技术:

太阳能是一种清洁、潜力巨大的可持续能源,近些年,国内外投建与运营的光伏电站逐年增多,而随着光伏技术的快速发展,市场对于太阳能电池及组件的性能及转换效率也提出了更高的要求。其中,perc(passivatedemitterandrearcell)电池通过设置背表面钝化膜,大大降低背表面复合速度,是现下广为业内关注的一种高效电池。

一般地,perc电池背面的钝化膜可采用氧化铝或氧化硅薄膜,该钝化膜表面还需制备一层背表面膜(如sinx薄膜)。就单面perc电池而言,背面的sinx薄膜仅起着保护钝化膜的作用,其厚度通常设置为130~150nm,以保证在烧结过程中,背面电极所用浆料不会烧穿sinx薄膜,进而破坏钝化膜。但,双面perc电池为尽可能提高背表面的吸光效率,背面sinx薄膜的厚度需要减小,抗侵蚀效果减弱。

传统晶体硅太阳能电池烧结步骤包括三个阶段:第一阶段主要用于烘干电池所用浆料中的挥发性有机组分;第二阶段主要用于形成铝背场和硅铝合金接触;第三阶段主要用于电池正面电极浆料烧穿正面减反射膜,并与硅片形成银硅欧姆接触。前述perc电池与传统晶体硅太阳能电池两者相较而言,前者背面电极浆料与硅片的反应界面远远小于传统电池的全铝背场。因此,前述perc电池在烧结过程中,往往会设置一个较长时间的“烧铝平台”,以形成较好的bsf层,并使得背面电极浆料中的导电相与硅片形成良好的欧姆接触。但,双面perc电池由于sinx薄膜的厚度减小,上述“烧铝平台”会使得部分浆料烧穿sinx薄膜,破坏钝化膜,进而影响电池开压及转换效率。经现场测试,双面perc电池相较于单面perc电池,开压voc会出现2mv左右的下降,正面转换效率也会出现0.1%左右的下降。

鉴于此,有必要提供一种新的双面perc电池的制备方法。



技术实现要素:

本发明目的在于提供一种双面perc电池的制备方法,既能形成良好的铝背场bsf,又能减小电池背极浆料对背表面膜层的侵蚀,保证钝化性能,有利于提高双面perc电池的开路电压及转换效率。

为实现上述发明目的,本发明提供一种双面perc电池的制备方法,包括依次进行的镀膜、开槽、印刷以及烧结步骤,所述烧结步骤包括烘干阶段、第一升温阶段、第二升温阶段与第三升温阶段;所述第二升温阶段的起始温度为480~520℃,所述第二升温阶段的终止温度为550~580℃,且该第二升温阶段的升温速率设置为7~25℃/s。

作为本发明的进一步改进,所述第二升温阶段的升温时间设置为3~6s。

作为本发明的进一步改进,所述烧结步骤的极值温度为770~790℃,所述第三升温阶段的升温时间设置为3~4s。

作为本发明的进一步改进,所述烧结步骤还包括降温阶段,所述降温阶段的降温速率设置为20~45℃/s。

作为本发明的进一步改进,所述烧结步骤采用链式烧结炉,所述链式烧结炉具有依次设置的若干温区,且邻近出口端的温区的设置温度低于该温区前端相邻温区的设置温度。

作为本发明的进一步改进,所述镀膜步骤包括在硅片背表面依次制备钝化膜与背面减反射膜,所述背面减反射膜的厚度设置为80~100nm;所述开槽步骤包括在钝化膜与背面减反射膜上开设电极开口;所述印刷步骤包括在电极开口对应位置印制背极栅线,并使得所述电极开口不超出所述背极栅线的覆盖区域。

作为本发明的进一步改进,所述钝化膜设置为氧化铝或氧化硅膜层;所述背面减反射膜设置为sinx膜层或sioxny膜层。

本发明的有益效果是:采用本发明双面perc电池的制备方法,通过设置适于铝背场生成反应的升温区间,又合理缩减“烧铝”反应时间,既利于铝背场bsf的形成,又能减小电池背极浆料对背表面膜层的侵蚀,保证钝化性能,能有效提高双面perc电池的开路电压及转换效率。

附图说明

图1为本发明制备方法中烧结步骤的流程示意图;

图2为现有双面perc电池背极栅线覆盖区域的背面减反射膜的形貌图;

图3为本发明制备方法得到的双面perc电池背极栅线覆盖区域的背面减反射膜的形貌图。

具体实施方式

以下将结合附图所示的实施方式对本发明进行详细描述。但该实施方式并不限制本发明,本领域的普通技术人员根据该实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。

本发明提供的双面perc电池的制备方法,主要包括制绒、扩散、边缘刻蚀与背表面抛光、镀膜、开槽、印刷以及烧结步骤。其中,镀膜步骤包括在硅片背表面依次制备钝化膜与背面减反射膜、在硅片正表面制备正面减反射膜;所述开槽步骤包括在钝化膜与背面减反射膜上开设电极开口;所述印刷步骤包括在电极开口对应位置印制背极栅线,并使得所述电极开口不超出所述背极栅线的覆盖区域。其中,用以印制背极栅线的背极浆料中的导向相主要是铝。

参图1所示,所述烧结步骤包括烘干阶段、第一升温阶段、第二升温阶段、第三升温阶段及降温阶段;所述第二升温阶段的起始温度为480~520℃,所述第二升温阶段的终止温度为550~580℃,所述第二升温阶段的升温速率设置为7~25℃/s,且所述第二升温阶段的升温时间优选设置为3~6s。

除此,所述烘干阶段的温度设置为300℃左右,以使得背极浆料中的有机组分能够顺利挥发;所述烧结步骤的极值温度为770~790℃,所述第三升温阶段的升温时间设置为3~4s,即使得前述双面perc电池自第二升温阶段结束后快速升高至最高温度,继而进入降温阶段。

所述烧结步骤采用链式烧结炉,所述链式烧结炉包括烘干炉膛与烧结炉膛,所述烘干炉膛多配设有抽风系统,以利于上述背极浆料中有机组分的挥发。前述烘干炉膛与烧结炉膛多相互独立设置,以避免抽风系统对烧结炉膛产生气流扰动,影响烧结炉膛的温度稳定性。所述烧结炉膛具有依次设置的若干温区,通过对若干前述温区的温度进行设置,配合该链式烧结炉的带速调整,即可使得双面perc电池依次经历第一升温阶段、第二升温阶段及第三升温阶段,完成烧结。

上述各温区中邻近出口端的温区的设置温度低于该温区前端相邻温区的设置温度,通过对上述邻近出口端的温区的温度进行调节即可实现降温阶段的降温速率控制。所述降温阶段的降温速率设置为20~45℃/s。

优选地,前述钝化膜设置为氧化铝或氧化硅膜层;所述背面减反射膜设置为sinx膜层或sioxny膜层,且所述背面减反射膜的厚度设置为80~100nm。上述开槽步骤多采用激光开槽工艺,且前述电极开口的宽度多设置为20~40μm。

参下表所示为前述部分温区的温度设置:

上表中温区1至温区4可理解作为烧铝区域,温区5与温区6主要实现正面电极的烧结,本发明主要通过对上述各温区的温度调节,结合链式烧结炉的带速设计,使前述perc电池烧结温度曲线满足既定的设计需求。此处,上述对比例、实施例一及实施例二的链式烧结炉带速均设置为600cm/min;实施例三的带速设置为720cm/min。根据现场比对,所述带速优选设置为不超过760cm/min。上述实施例的电性测试如下:

明显地,本发明制备方法制得的双面perc电池在开路电压voc、转换效率eff方面具有显著改善,相较于现有技术,其开路电压平均上升约为2mv,转换效率提升约为0.1%,有效提高前述perc电池的性能。除此,另参图2与图3所示,本发明制备方法制得的双面perc电池在背极栅线对应区域下的背面减反射膜受侵蚀程度明显优于现有制备工艺。

综上所述,本发明双面perc电池的制备方法通过设置适于铝背场生成反应的升温区间,合理缩减“烧铝”反应时间,既利于铝背场bsf的形成,又能减小背极浆料对背面减反射膜及钝化膜的侵蚀,保证钝化性能,能有效提高双面perc电池的开路电压及转换效率。

应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1