一种多掺杂的石榴石型固体电解质材料及其制备方法与流程

文档序号:17917323发布日期:2019-06-14 23:52阅读:400来源:国知局
一种多掺杂的石榴石型固体电解质材料及其制备方法与流程

本发明属于固体电解质材料领域,具体涉及一种多掺杂的石榴石型固体电解质材料及其制备方法。



背景技术:

随着电子产品的更新换代,电子设备集成化、简约化,还有电动汽车、智能电网等领域对电池的要求日益提高,锂离子电池、锂空电池、锂硫电池以及燃料电池等等,引起了国内外的研究热潮。目前应用最广泛的是锂离子电池,锂离子电池具有能量密度和功率密度较高的优点,但传统的锂离子电池使用的是有机液态电解质,容易引发漏液、燃烧、爆炸等安全问题。另外,金属锂在反复充放电的过程中,易出现粉化、锂枝晶生长等问题,导致其循环性能差,寿命短,而且锂枝晶生长还可能会穿破sei膜造成电池短路甚至引发火灾,这些安全问题制约了其在电动汽车、航空航天和武器装备等领域的大规模应用。因此,全固态锂二次电池应运而生,固态电池企业在国内外纷纷涌现,它成为了最具潜力的替代现有高能量密度锂离子电池的候选技术。

全固态锂二次电池的核心在于用固态电解质替代液体电解质和隔膜,这样不仅可以简化锂离子电池结构设计,更能有效避免电解液泄露及其暴露在空气中易燃的隐患。

固态电解质主要分为有机聚合物电解质和无机陶瓷电解质。聚合物电解质易于加工,可用于柔性电池设计,经过多年的发展,凝胶聚合物电解质已经成功应用于商业锂离子电池中。而无机陶瓷电解质在近十年成为研究的热点,陶瓷电解质外形尺寸稳定、可以阻止锂枝晶的形成,在高温等特殊环境下具有更优的安全稳定性。陶瓷化合物固体电解质中离子的传输主要通过离子点缺陷的移动来实现,具有很高的离子电导率。但目前此类固态电解质的制备条件比较苛刻,通常需要在1200℃以上的高温条件下进行烧结。



技术实现要素:

为了克服现有技术的缺点和不足,本发明的目的在于提供一种多掺杂的石榴石型固体电解质材料及其制备方法。

本发明的目的通过以下技术方案实现:

一种多掺杂的石榴石型固体电解质材料,其组成为a-li7-bxla3zr2-xmxo12,其中m为te、ta、ti、nb、ge、ga、gd、bi中的一种以上,0.1≤x≤1.5,b的数值随m的价态变化,a为氧化铝(al2o3)、含结晶水或不含结晶水的硝酸铝(al(no3)3、al(no3)3·9h2o)、碳酸铝(al2(co3)3)、zno、mgo中的一种或几种。

m价态记为y,则组成中b,x满足以下条件:(7-bx)+3*3+4*(2-x)+y*x+(-2)*12=0即(y-b-4)*x=0。

a中每一组分的含量为li7-bxla3zr2-xmxo12摩尔用量的1~1.3%:a为外掺杂元素。a为多组分时,优选地,组成中a的用量为li7-bxla3zr2-xmxo12摩尔用量的1~2.5%即(1~2.5)mol%。

所述多掺杂的石榴石型固体电解质材料在室温下的离子电导率大于1×10-4scm-1

所述多掺杂的石榴石型固体电解质材料的制备方法,包括以下步骤:将锂源、锆源、镧源、m源化合物进行球磨,制得混合浆料;然后烘干,预烧,冷却后加入a,继续进行球磨,烘干,成型,焙烧,获得多掺杂的石榴石型固体电解质材料。

所述锂源为含结晶水或不含结晶水的氢氧化锂、乙酸锂、碳酸锂、硝酸锂中的至少一种;所述镧源为氧化镧、含结晶水或不含结晶水的乙酸镧、含结晶水或不含结晶水的硝酸镧、氢氧化镧中的至少一种;所述锆源为氧化锆、乙酸锆、氢氧化锆、乙酰丙酮锆中的至少一种;m源化合物为二氧化碲、五氧化二钽、二氧化钛、五氧化二铌、二氧化锗、三氧化二镓、三氧化二钆、五氧化二铋中的一种或几种;a为氧化铝、含结晶水或不含结晶水的硝酸铝、碳酸铝、氧化锌、氧化镁中的一种或几种。

所述球磨的转速为400~600r/min;所述继续球磨的转速为400~600r/min。

球磨与继续球磨的时间各自独立为6~24h。

球磨时加入分散剂,分散剂为低沸点醇,即异丙醇、乙醇、丙三醇中的至少一种。球磨过程中各部分质量比为,物料:锆球:分散剂=1:(3-6):(1-3)。

所述预烧的温度为600-950℃。所述预烧的时间为2~8h。

所述焙烧的温度为700-1000℃。焙烧的时间为10~36h。比传统没有进行元素掺杂的石榴石型固体电解质材料烧结温度(1230℃)降低了230-530℃,降低了生产条件,且减少能耗。

在成型时,是将烘干的粉末研磨,压片;压片时,压力为150-320mpa,时间为5-20min。

本发明的石榴石型固体电解质材料采用a为外掺杂元素,增加锂空位,不仅能稳定立方相的形成,降低烧结温度,而且加快离子传导速率,如al3+取代li+,增加了两个锂空位。m取代部分zr,高价态取代低价态,同样增加锂离子空位。

与现有技术相比,本发明具有如下优点及有益效果:

传统未掺杂的石榴石型固体电解质材料需要在较高的温度进行烧结(1230℃以上),反应条件要求较高。而本发明采用多掺杂的方式,降低了烧结温度,减少了能耗,所获得的石榴石型固体电解质材料具有较好的电化学性能(电化学循环能够达到600圈以上,比已有的100-200圈循环时间长,且离子电导率有所提高)。

附图说明

图1为实施例1,6和10制备的固体电解质片的xrd图;图中从下往上依次是标准li7la3zr2o12卡片(llzo),al2o3-li7la3zr2o12(llzo-al,实施例1)、al2o3-li6.5la3zr1.75te0.25o12(llzo-te-al,实施例6)、al2o3-li6.65la3zr1.65ta0.35o12(llzo-ta-al,实施例10)

图2为实施例4制备的al2o3-li6.8la3zr1.9te0.1o12的sem图;

图3为实施例1制备的al2o3-li7la3zr2o12的锂对称电池充放电循环曲线;

图4为实施例6制备的al2o3-li6.5la3zr1.75te0.25o12的锂对称电池充放电循环曲线。

具体实施方式

下面结合具体实施例对于本发明做进一步详细的描述,但本发明的实施方式不限于此。

实施例1(对比例)

制备al2o3-li7la3zr2o12固体电解质材料:

按照li、la、zr的摩尔比7:3:2称取2.33glioh·h2o、2.91gla2o3、1.46gzro2,加入异丙醇作为分散剂球磨,物料:锆球:分散剂=1:3:1(质量比),以500r/min的速度球磨6h,然后置于鼓风干燥箱在60℃下干燥,获得混合粉末。将混合粉末放在马弗炉中,以3℃/min的速度升温到800℃,在800℃下保温6h,样品随炉冷却至室温后取出,加入0.005gal2o3二次球磨6h,使固体粉末粒径减小到微米级别,再次干燥后,获得母粉;取5g母粉,以250mpa的压力将母粉压片,保压20min,得到厚度为1mm的llzo片,然后置于马弗炉中,在850℃下烧结保温12h,冷却至室温后即制得al2o3-li7la3zr2o12固体电解质片。

本实施例中制备的固体电解质片的xrd图如图1所示,见图1中llzo-al对应的曲线。将所得的电解质片组装成锂对称电池,如图3所示。图3为实施例1制备的al2o3-li7la3zr2o12的锂对称电池充放电循环曲线。充放电循环180h后电压有变大的趋势,离子电导率为8.84×10-5s/cm,无锂枝晶生长。

实施例2

制备al2o3-li6.8la3zr1.9te0.1o12(本实施例中te为+6价)固体电解质材料:

选用lioh·h2o、la2o3、zro2、teo2、al2o3作为原料,根据化学计量比称取2.24glioh·h2o、2.88gla2o3、1.38gzro2、0.09gteo2,加入异丙醇作为分散剂球磨,物料:锆球:分散剂=1:3:1,以400r/min的速度球磨6h,然后置于鼓风干燥箱在60℃下干燥,获得混合粉末。将混合粉末在600℃的马弗炉中预烧2h,加入0.007gal2o3二次球磨6h,使固体粉末粒径减小到纳米级别,再次干燥后制得母粉5g,以250mpa的压力将母粉压片,厚度为1mm,然后放在马弗炉中,以3℃/min的速度升温到700℃,在700℃下保温煅烧12h,样品随炉冷却至室温后取出,即制得li6.8la3zr1.9te0.1o12固体电解质片。

实施例3

制备al2o3-li6.8la3zr1.9te0.1o12的固体电解质材料:

按化学计量比称取4.48glioh·h2o、5.76gla2o3、2.76gzro2、0.18gteo2,加入异丙醇作为分散剂球磨,物料:锆球:分散剂=1:6:1,以500r/min的速度球磨12h后置于鼓风干燥箱在60℃下干燥,获得混合粉末。将混合粉末置于马弗炉中,在600℃下预烧2h,加入0.014gal2o3二次球磨12h,使固体粉末粒径减小到微米级别,再次干燥后制得母粉10g,然后将母粉压片,压力为200mpa,厚度为1mm,在700℃的马弗炉中烧结12h,制得al2o3-li6.8la3zr1.9te0.1o12立方石榴石型固体电解质片。

实施例4

制备al2o3-li6.8la3zr1.9te0.1o12的固体电解质材料:

按化学计量比称取4.48glioh·h2o、5.76gla2o3、2.76gzro2、0.18gteo2,加入异丙醇作为分散剂球磨,物料:锆球:分散剂=1:3:1,以500r/min的速度球磨6h,置于鼓风干燥箱中60℃下干燥,获得混合粉末。将混合粉末在800℃的马弗炉中预烧6h,加入0.014gal2o3二次球磨6h,使固体粉末粒径减小至纳米级别,再次干燥后制得母粉10g,然后将母粉压片,压力为200mpa,厚度为1mm,在850℃的马弗炉中烧结24h,制得al2o3-li6.8la3zr1.9te0.1o12立方石榴石型固体电解质片。本实施例制备的al2o3-li6.8la3zr1.9te0.1o12的sem图如图2所示。

实施例5

制备al2o3-li6.8la3zr1.9te0.1o12的固体电解质材料:

按化学计量比称取4.48glioh·h2o、5.76gla2o3、2.76gzro2、0.18gteo2,加入异丙醇作为分散剂球磨,物料:锆球:分散剂=1:3:1,以600r/min的速度球磨6h后置于鼓风干燥箱在60℃下干燥,获得混合粉末。将混合粉末在950℃的马弗炉中预烧6h,加入0.014gal2o3二次球磨6h,使固体粉末粒径减小到纳米级别,再次干燥后制得母粉10g,然后将母粉压片,压力为200mpa,厚度为1mm,在1000℃的马弗炉中烧结36h,制得立方石榴石型固体电解质片。对制得的固体电解质片进行交流阻抗测试,得其离子电导率约为2×10-4s/cm。

实施例6

制备al2o3-li6.5la3zr1.75te0.25o12固体电解质材料:

选用lich3coo·2h2o、la(ch3coo)3·1.5h2o、zr(ch3coo)4、teo2、al2o3作为原料,根据al2o3-li6.5la3zr1.75te0.25o12的化学计量比称取6.13glich3coo·2h2o、12.14gla(ch3coo)3·1.5h2o、6.76gzr(ch3coo)4、0.47gteo2,加入异丙醇作为分散剂球磨,物料:锆球:分散剂=1:3:1,以600r/min的速度球磨6h后置于鼓风干燥箱,在60℃下干燥,获得混合粉末。将混合粉末在800℃的马弗炉中预烧6h,加入0.015gal2o3二次球磨6h,使固体粉末粒径减小到微米级别,再次干燥后制得母粉10g,然后将母粉压片,压力为300mpa,厚度为1mm,在850℃的马弗炉中烧结12h,制得al2o3-li6.5la3zr1.75te0.25o12石榴石型固体电解质片。本实施例制备的固体电解质片的xrd图如图1所示,见图1中llzo-te-al对应的曲线。将所得的电解质片组装成锂对称电池,如图4所示。图4为实施例6制备的al2o3-li6.5la3zr1.75te0.25o12的锂对称电池充放电循环曲线。将电流密度从0.01macm-2升高到1macm-2再到2macm-2,依然能稳定地充放电循环,离子电导率为1.5×10-4scm-1,无锂枝晶生长。

实施例7

制备al2o3-li6.5la3zr1.75te0.25o12固体电解质材料:

按化学计量比称取6.13glich3coo·2h2o、12.14gla(ch3coo)3·1.5h2o、6.76gzr(ch3coo)4、0.47gteo2,加入异丙醇作为分散剂球磨,物料:锆球:分散剂=1:3:1,以600r/min的速度球磨6h后置于鼓风干燥箱在60℃下干燥,获得混合粉末。将混合粉末在900℃的马弗炉中预烧6h,加入0.015gal2o3二次球磨6h,使固体粉末粒径减小至纳米级别,再次干燥后制得母粉10g,然后将母粉压片,压力为300mpa,厚度为1mm,在1000℃的马弗炉中烧结24h,制得al2o3-li6.5la3zr1.75te0.25o12立方石榴石型固体电解质片,对其进行x射线衍射测试,与实施例6中llzo-te-al相似。

实施例8

al2o3-li6.4la3zr1.7te0.3o12石榴石型固体电解质材料的制备:

选用lino3、la(no3)3·6h2o、c20h28zro8、teo2、al(no3)3·9h2o作为原料,根据化学计量比称取5.21glino3、10.65gla(no3)3·6h2o、9.61gc20h28zro8、0.56gteo2混合,加入异丙醇作为分散剂球磨,物料:锆球:分散剂=1:3:1,以600r/min的速度球磨6h后置于鼓风干燥箱在60℃下干燥,获得混合粉末。将混合粉末在800℃的马弗炉中预烧6h,加入0.055gal(no3)3·9h2o二次球磨6h,使固体粉末粒径减小到微米级别,再次干燥后制得母粉10g,然后将母粉压片,压力为300mpa,厚度为1mm,在850℃的马弗炉中烧结12h,制得al2o3-li6.4la3zr1.7te0.3o12石榴石型固体电解质片。

实施例9

al2o3-li6.4la3zr1.7te0.3o12石榴石型固体电解质材料的制备:

选用li2co3、la2(co3)3·8h2o、c2o5zr、teo2、al2(co3)3作为原料,根据化学计量比将3.35gli2co3、10.65gla2(co3)3·8h2o、3.92gc2o5zr、0.56gteo2混合,加入乙醇作为分散剂球磨,物料:锆球:分散剂=1:3:1,以600r/min的速度球磨6h后置于鼓风干燥箱,在80℃下干燥。将混合粉末在800℃的马弗炉中预烧6h,加入0.035gal(no3)3·9h2o二次球磨6h,使固体粉末粒径减小至纳米级别,再次干燥后制得母粉10g,然后将母粉压片,压力为300mpa,厚度为1mm,在850℃的马弗炉中烧结24h,制得al2o3-li6.4la3zr1.7te0.3o12石榴石型固体电解质片。

实施例10

制备al2o3-li6.65la3zr1.65ta0.35o12固体电解质材料:

选用lioh·h2o、la2o3、zro2、ta2o5、al2o3作为原料,根据化学计量比将2.16glioh·h2o、2.83gla2o3、1.18gzro2、0.45gta2o5混合,加入丙三醇作为分散剂球磨,物料:锆球:分散剂=1:3:1,以600r/min的速度球磨6h后置于鼓风干燥箱,在60℃下干燥。将混合粉末在600℃的马弗炉中预烧2h,加入0.007gal2o3二次球磨6h,使固体粉末粒径减小至纳米级别,再次干燥后制得母粉,然后将母粉压片,压力为320mpa,厚度为1mm,在700℃的马弗炉中烧结12h,制得al2o3-li6.65la3zr1.65ta0.35o12立方石榴石型固体电解质片。本实施例制备的固体电解质片的xrd图如图1所示,见图1中llzo-ta-al对应的曲线。

实施例11

zno-li6.65la3zr1.65ta0.35o12(ta为+5价)固体电解质材料的制备:

根据zno-li6.65la3zr1.65ta0.35o12的化学计量比将2.16glioh·h2o、2.83gla2o3、1.18gzro2、0.45gta2o5混合,加入异丙醇作为分散剂球磨,物料:锆球:分散剂=1:3:1,以600r/min的速度球磨6h后置于鼓风干燥箱,在80℃下干燥,获得混合粉末。将混合粉末在800℃的马弗炉中预烧4h,加入0.006gzno二次球磨6h,使固体粉末粒径减小至纳米级别,再次干燥后制得母粉5g,然后将母粉压片,压力为320mpa,厚度为1mm,在1000℃的马弗炉中烧结12h,制得zno-li6.3la3zr1.65ta0.35o12立方石榴石型固体电解质片。

实施例12

制备zno-li6.2la3zr1.4te0.2ta0.4o12(te为+6价,ta为+5价)固体电解质材料:选用lioh·h2o、la2o3、zro2、teo2、ta2o5、zno作为原料,按照化学计量比将1.98glioh·h2o、2.78gla2o3、0.98gzro2、0.18gteo2、0.50gta2o5混合,加入异丙醇作为分散剂球磨,物料:锆球:分散剂=1:3:1,以600r/min的速度球磨6h后置于鼓风干燥箱在80℃下干燥,获得混合粉末。将混合粉末在800℃的马弗炉中预烧4h,加入0.006gzno二次球磨6h,使固体粉末粒径减小到微米至纳米级别,再次干燥后制得母粉5g,然后将母粉压片,压力为320mpa,厚度为1mm,在980℃的马弗炉中烧结24h,制得多掺杂的石榴石型固体电解质片。

实施例13

制备al2o3-mgo-li5.9la3zr1.2te0.3nb0.5o12(te为+6价,nb为+5价)固体电解质材料:

选用lioh·h2o、la2o3、zro2、teo2、nb2o5、al2o3、mgo作为原料,按照其化学计量比将1.95glioh·h2o、2.88gla2o3、0.87gzro2、0.28gteo2、0.39gnb2o5混合,加入异丙醇作为分散剂球磨,物料:锆球:分散剂=1:3:1,以600r/min的速度球磨6h后置于鼓风干燥箱在80℃下干燥。将混合粉末在800℃的马弗炉中预烧4h,加入0.007gal2o3和0.003gmgo二次球磨6h,使固体粉末粒径减小纳米级别,再次干燥后制得母粉5g,然后将母粉压片,压力为320mpa,厚度为1mm,在980℃的马弗炉中烧结24h,制得多掺杂的石榴石型固体电解质片。

实施例14

制备mgo-li5.8la3zr1.1te0.3nb0.6o12固体电解质材料:

选用lioh·h2o、la2o3、zro2、teo2、nb2o5、mgo作为原材料,按照其化学计量比将1.91glioh·h2o、2.88gla2o3、0.80gzro2、0.28gteo2、0.47gnb2o5混合,加入异丙醇作为分散剂球磨,物料:锆球:分散剂=1:3:1,以600r/min的速度球磨6h后置于鼓风干燥箱在80℃下干燥。将混合粉末在800℃的马弗炉中预烧4h,加入0.003gmgo二次球磨6h,使固体粉末粒径减小到微米至纳米级别,再次干燥后制得母粉5g,然后将母粉压片,压力为320mpa,厚度为1mm,在980℃的马弗炉中烧结24h,制得多掺杂的石榴石型固体电解质片。

实施例15

制备mgo-li6.4la3zr0.9ge0.5nb0.6o12固体电解质材料:

选用lioh·h2o、la2o3、zro2、geo2、nb2o5、mgo作为原材料,按照其化学计量比将2.51glioh·h2o、2.93gla2o3、0.67gzro2、0.31ggeo2、0.96gnb2o5混合,加入异丙醇作为分散剂球磨,物料:锆球:分散剂=1:3:1,以600r/min的速度球磨6h后置于鼓风干燥箱在80℃下干燥。将混合粉末在800℃的马弗炉中预烧4h,加入0.003gmgo二次球磨6h,使固体粉末粒径减小到微米至纳米级别,再次干燥后制得母粉5g,然后将母粉压片,压力为320mpa,厚度为1mm,在980℃的马弗炉中烧结24h,制得多掺杂的石榴石型固体电解质片。

实施例中考察了不同范围内x(0.1-0.15、0.1-0.2、0.2-0.25、0.2-0.3、0.3-0.45、0.3-0.4、0.4-0.5、0.5-1、1-1.5等)掺杂量对电解质的影响。

多掺杂的石榴石型固体电解质材料,其组成为a-li7-bxla3zr2-xmxo12,a中每一组分的含量为li7-bxla3zr2-xmxo12摩尔用量的1~1.3%:a为外掺杂元素。当a为多种组分时,优选地,组成中a的用量为li7-bxla3zr2-xmxo12摩尔用量的1~2.5%即(1~2.5)mol%。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1