一种直接涂布法制备膜电极的方法及其制备得到的膜电极与流程

文档序号:18627433发布日期:2019-09-06 23:12阅读:646来源:国知局
一种直接涂布法制备膜电极的方法及其制备得到的膜电极与流程
本发明属于燃料电池制备工艺领域,具体涉及一种直接涂布法制备膜电极的方法及其制备得到的膜电极。
背景技术
:燃料电池由于具有环境友好、能量密度高、室温下可快速启动和可靠性高等优点。与其他燃料电池相比质子交换膜燃料电池工作温度相对较低,适合用作电动车载、便携式电源。膜电极包括催化剂层、扩散层和质子交换膜,为质子交换膜燃料电池的电化学反应提供了质子、电子、反应气体和水连续通道。传统制备膜电极的方法有喷涂法和转印法。喷涂法效率低,制造成本高,自动化程度低,不能满足生产扩大化的要求。转印法首先将催化剂浆料涂覆在转印基质上,然后再转印到质子交换膜上,工艺流程复杂,转印基质价格昂贵,在转印过程中还存在不能完全转印,膜利用率低的问题。采用直接涂布方法制备膜电极,自动化程度高,效率高,制造成本低,可满足生产扩大化生产,但在直接涂布过程中存在膜溶胀问题,导致制备的膜电极表面不平整、均匀度差,还会影响膜电极性能。cn104969396b公开了一种阳极催化剂层的用途,所述阳极催化剂层包含一氧化碳耐受性催化剂材料,其中该催化剂材料包含:(1)ptx的二元合金,其中x是选自铑和锇的金属,和其中铂在该合金中的原子百分比是45~80原子%,和x在该合金中的原子百分比是20~55原子%;(2)ptx合金分散在其上的载体材料;其中该铂族金属(pgm)在该阳极催化剂层中的总负载量是0.01~0.2mg/cm2;和其中在该燃料电池运行期间,将包含至多5ppm的一氧化碳的不纯的氢气流供至该阳极。所述电极其并没有解决电极进行涂布过程中存在的膜溶胀问题。cn100395909c公开了一种燃料电池、其催化剂层及该催化剂层的制造方法。所述催化剂层包括一管状载体及形成在该管状载体表面上的催化剂。其中,该管状载体包括纳米管状的金属或导电性氧化物,催化剂沉积形成在该纳米管内壁表面及外壁表面。所述电池的制备工艺复杂,不能工业化生产。cn103765643b公开了燃料电池用电极催化剂层、燃料电池用电极、燃料电池用膜电极组件以及燃料电池。所述燃料电池用电极催化剂层具备电极催化剂和包覆电极催化剂的离聚物,所述电极催化剂具有导电性载体以及负载于导电性载体表面的含铂金属粒子。并且,该燃料电池用电极催化剂层离聚物的平均厚度为2.4nm以下。所述电极其并没有解决电极进行涂布过程中存在的膜溶胀问题。因此,本领域亟需一种新型膜电极的制备方法,使其能够解决直接涂布过程中存在的膜溶胀问题,并且制备过程简单,可工业化生产。技术实现要素:本发明的目的在于提供一种直接涂布法制备膜电极的方法及其制备得到的膜电极,所述方法能有效解决直接涂布过程中存在的膜溶胀问题,并且制备过程简单,可工业化生产,得到的膜电极表面平整、均匀度高且电化学性能优异。为达此目的,本发明采用以下技术方案:本发明的目的之一在于提供一种直接涂布法制备膜电极的方法,所述方法包括如下步骤:(1)在分布有第一活性物质催化剂层的质子交换膜的一侧粘结保护膜;(2)对步骤(1)中第一活性物质催化剂层和保护膜之间的夹层空隙进行抽真空;(3)在所述质子交换膜另一侧上制备第二活性物质催化剂层。本发明在制备第一活性物质催化剂层时,在分布有第一活性物质催化剂层的质子交换膜一侧粘结保护膜,通过抽真空,使得保护膜和质子交换膜存在作用力,进而可以有效防止膜溶胀现象。本发明相对于现有技术中,在质子交换膜的一侧涂布阴极或阳极催化剂层后在另一侧直接涂布阳极或阴极催化剂层的方式,本发明能够有效解决膜溶胀问题,得到的膜电极表面平整、均匀度高且电化学性能优异。优选地,所述第一活性物质催化剂层为阴极催化剂层,第二活性物质催化剂层为阳极催化剂层;或,所述第一活性物质催化剂层为阳极催化剂层,第二活性物质催化剂层为阴极催化剂层。本发明对所述阳极催化剂层和阴极催化剂层不做具体限定,示例性的阴极催化剂层可为pt/c催化剂层或者ptm/c催化剂层,所述m可为:铜、钴、镍、钯、钌、铱、锰、铈、铑或钛中的任意一种或少两种的组合;示例性的阳极催化剂层可为pt/c催化剂层。优选地,步骤(2)所述抽真空使体系的真空度为-0.1mpa~0mpa,例如-0.09mpa、-0.08mpa、-0.07mpa、-0.06mpa、-0.05mpa、-0.04mpa、-0.03mpa、-0.02mpa或-0.01mpa等。优选地,步骤(2)所述抽真空采用的设备为真空泵和/或压缩机。优选地,步骤(1)所述粘结的方式为在质子交换膜上涂胶。优选地,所述涂胶为距离质子交换膜边缘>1mm处涂胶,优选为距离质子交换膜边缘1mm~2mm处涂胶,例如1.1mm、1.2mm、1.3mm、1.5mm、1.6mm、1.8mm、1.9mm、2.0mm等。优选地,所述涂胶的位置为质子交换膜上的空白位置。本发明所述空白位置为无第一活性物质催化剂层的位置。优选地,所述质子交换膜上涂胶量为0.1ml/min~5.0ml/min,例如0.2ml/min、0.5ml/min、0.8ml/min、1ml/min、1.2ml/min、1.5ml/min、2ml/min、2.5ml/min、3ml/min、3.5ml/min、4ml/min或4.5ml/min等。本发明所述涂胶量小于时0.1ml/min,可能密封不好,存在漏气问题;本发明所述涂胶量大于5.0ml/min,胶太多会造成膜边缘被过量覆盖,膜利用率低;胶也有可能会渗到有效区域影响膜电极性能。优选地,步骤(1)所述胶为uv胶、丙烯酸胶、有机硅胶、环氧胶和聚氨酯胶中的任意一种或至少两种的组合。优选地,步骤(1)所述质子交换膜为全氟磺酸膜或pbi膜。优选地,步骤(1)所述保护膜为pet膜、pvc膜、pp膜和pe膜中的任意一种或至少两种的组合。本发明所述pbi膜为磷酸掺杂聚苯并咪唑膜;所述pet膜为聚对苯二甲酸类聚对苯二甲酸乙二醇酯膜;所述pvc膜为聚氯乙烯膜;所述pp膜为聚丙烯膜;所述pe膜为聚乙烯膜。优选地,所述保护膜与质子交换膜的尺寸相同。优选地,步骤(1)之后还包括固化的过程。优选地,所述胶为uv胶,所述固化的方式为uv紫外线固化。优选地,所述胶为有机硅胶、环氧胶和聚氨酯胶中的任意一种或至少两种的组合,所述固化的方式为常温固化和/或热固化。优选地,步骤(1)所述质子交换膜为一侧具有保护膜的质子交换膜。优选地,步骤(1)所述分布有第一活性物质催化剂层的质子交换膜的制备过程包括:在质子交换膜没有保护膜的一侧上涂布第一活性物质催化剂浆料,干燥。本发明在制备第一活性物质催化剂层时,质子交换膜的另一侧覆有保护膜,对质子交换膜存在作用力,所以涂布时没有明显膜溶胀现象。优选地,所述涂布方式为凹版涂布和/或条缝涂布。本发明对于第一活性物质催化剂浆料涂布的厚度不做具体限定,本领域人员可根据实际需要进行特定的厚度选择,在本发明中示例性的厚度可以选择0.5μm~15μm,例如0.6μm、1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm、11μm、12μm、13μm或14μm等。优选地,所述第一活性物质催化剂浆料的粘度为1mpa.s~500mpa.s,例如10mpa.s、50mpa.s、100mpa.s、150mpa.s、200mpa.s、300mpa.s或400mpa.s等。优选地,所述第一活性物质催化剂浆料的固含量为1%~50%,例如2%、5%、10%、15%、20%、25%、30%、40%或45%等。本发明对于第一活性物质催化剂浆料的组成不做具体限定,本领域技术人员可根据实际需要进行具体选择,示例性的制备过程包括:pt/c和/或ptm/c催化剂、醇、水和膜溶液混合,通过超声、乳化和均质方法分散制备得到,所述m为铜、钴、镍、钯、钌、铱、锰、铈、铑和钛中的任意一种或至少两种的组合。优选地,所述第一活性物质催化剂浆料为阴极催化剂浆料或阳极催化剂浆料。本发明对于第一活性物质催化剂层中pt的担载量不做具体限定,示例性的为0.025~0.83mg/cm2,例如0.2mg/cm2、0.3mg/cm2、0.4mg/cm2、0.5mg/cm2等。优选地,所述干燥的方式为真空干燥、热风干燥和红外干燥中的任意一种或至少两种的组合。优选地,步骤(3)所述第二活性物质催化剂层的制备过程包括:去掉质子交换膜另一侧上的保护膜,涂布第二活性物质催化剂浆料,干燥。优选地,所述涂布方式为凹版涂布和/或条缝涂布。本发明对于第二活性物质催化剂浆料涂布的厚度不做具体限定,本领域人员可根据实际需要进行特定的厚度选择,在本发明中示例性的厚度可以选择0.5μm~15μm,例如0.6μm、1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm、11μm、12μm、13μm或14μm等。优选地,所述第二活性物质催化剂浆料的粘度为1mpa.s~500mpa.s,例如10mpa.s、50mpa.s、100mpa.s、150mpa.s、200mpa.s、300mpa.s或400mpa.s等。优选地,所述第二活性物质催化剂浆料的固含量为1%~50%,例如2%、5%、10%、15%、20%、25%、30%、40%或45%等。优选地,所述第二活性物质催化剂浆料为阴极催化剂浆料或阳极催化剂浆料。本发明对于第二活性物质催化剂浆料的组成不做具体限定,本领域技术人员可根据实际需要进行具体选择,示例性的制备过程包括:pt/c和/或ptm/c催化剂、醇、水和膜溶液通过超声、乳化和均质方法分散制备得到,所述m为铜、钴、镍、钯、钌、铱、锰、铈、铑和钛中的任意一种或至少两种的组合。优选地,所述第二活性物质催化剂浆料与第一活性物质催化剂浆料的组成相同或不同。本发明对于第二活性物质催化剂层中pt的担载量不做具体限定,示例性的为0.025~0.83mg/cm2,例如0.2mg/cm2、0.3mg/cm2、0.4mg/cm2、0.5mg/cm2等。优选地,所述干燥的方式为真空干燥、热风干燥和红外干燥中的任意一种或至少两种的组合。作为优选技术方案,本发明所述一种膜电极的制备方法包括如下步骤:(1)在质子交换膜没有保护膜的一侧上凹版或条缝涂布第一活性物质催化剂浆料,真空干燥得到阴极面或阳极面;(2)在步骤(1)得到的已涂第一活性物质催化剂面距离边缘1mm~2mm处涂uv胶,所述质子交换膜上涂胶量为0.1ml/min~5.0ml/min,然后在已涂第一活性物质催化剂面上贴与质子交换膜尺寸相同的保护膜,uv紫外线固化;(3)对步骤(2)中已涂第一活性物质催化剂面和保护膜之间的夹层空隙采用真空泵进行抽真空,使体系的真空度为-0.1mpa~0mpa;(4)去掉保护膜,涂布第二活性物质催化剂浆料,得到阳极面或阴极面,真空干燥得到膜电极;所述步骤(1)得到的面为阴极面,所述步骤(4)得到的面为阳极面;所述步骤(1)得到的面为阳极面,所述步骤(4)得到的面为阴极面。本发明的目的之二在于提供一种如目的之一所述制备方法得到的膜电极,所述膜电极包括质子交换膜和分布于质子交换膜两侧的第一活性物质催化剂层和第二活性物质催化剂层。本发明的目的之三在于提供一种如目的之二所述膜电极的用途,所述膜电极应用于燃料电池领域,优选为应用于质子交换膜燃料电池领域。本发明的目的之四在于提供一种燃料电池,所述燃料电池包括目的之二所述的膜电极。与现有技术相比,本发明具有如下有益效果:(1)本发明在制备第一活性物质催化剂层时,质子交换膜的另一侧覆有保护膜,对质子交换膜存在作用力,所以涂布时没有明显膜溶胀现象;本发明在制备第二活性物质催化剂层时,在分布有第一活性物质催化剂层的质子交换膜一侧粘结保护膜,通过抽真空,使得保护膜和质子交换膜存在作用力,进而可以有效防止膜溶胀现象。(2)本发明相对于现有技术中,在质子交换膜的一次涂布阴极催化剂层后在另一侧直接涂布阳极催化剂层的方式,本发明能够有效解决膜溶胀问题,得到的膜电极表面平整、均匀度高且电化学性能优异。附图说明图1是本发明具体实施例1涂胶过程示意图。具体实施方式为便于理解本发明,本发明列举实施例如下。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。实施例1一种膜电极的制备方法包括如下步骤:(1)取一卷宽为34cm、长1.5米的全氟磺酸质子交换膜,在没有保护膜的一侧上条缝涂布阴极催化剂浆料,所述阴极催化剂浆料的粘度为200mpa.s,固含量为35%,涂布干厚为9μm,涂布尺寸宽为33cm、长为1.45米,真空干燥得到pt担载量为0.40mg/cm2的阴极面(第一活性物质催化剂层);(2)自动涂胶机装入uv胶,在距离阴极面边缘1.2mm处涂胶,涂胶量为0.2ml/min,然后在阴极面上贴与质子交换膜尺寸相同的保护膜,uv紫外线照射固化,所述涂胶的位置如图1所示,由图中可以看出,胶涂在无阴极催化剂层的空白位置处;(3)对步骤(2)中阴极面和保护膜之间的夹层空隙采用真空泵进行抽真空,使体系的真空度为-0.07mpa;(4)去掉非阴极面上的保护膜,涂布阳极催化剂浆料(与阴极催化剂浆料相同),得到阳极面,所述涂布的干厚为2μm,真空干燥得到阳极面pt担载量为0.1mg/cm2的膜电极。实施例2一种膜电极的制备方法包括如下步骤:(1)取一卷宽为34cm、长1.5米的全氟磺酸质子交换膜,在没有保护膜的一侧上凹版涂布ptm/c阴极催化剂浆料,所述阴极催化剂浆料的粘度为50mpa.s,固含量为20%,涂布干厚为8μm,涂布尺寸宽为30cm、长为1.45米,真空干燥得到pt担载量为0.20mg/cm2的阴极面;(2)自动涂胶机装入uv胶,在距离阴极面边缘2.0mm处点胶,涂胶量1.0ml/min,然后在阴极面上贴与质子交换膜尺寸相同的保护膜,uv紫外线固化;(3)对步骤(2)中阴极面和保护膜之间的夹层空隙采用真空泵进行抽真空,使体系的真空度为-0.09mpa;(4)去掉非阴极面上的保护膜,涂布阳极催化剂浆料(与阴极催化剂浆料相同),得到阳极面,所述涂布的干厚为1μm,真空干燥得到阳极面pt担载量为0.05mg/cm2的膜电极。实施例3与实施例1的区别在于,步骤(2)所述涂胶量为0.05ml/min。实施例4与实施例1的区别在于,步骤(2)所述涂胶量为6ml/min。对比例1与实施例1的区别在于,不进行步骤(2)和(3)。性能测试:(1)均匀性测试:采用xrf对膜电极中阳极催化剂层中pt载量均匀性测试,长度方向每隔20cm取一个点(共7个点),宽度方向均匀取12个点,计算平均值、方差和方差/平均值(方差与平均值的比值);(2)电化学性能测试:取长宽相等的50cm2实施例制备的膜电极,在75℃,阴极压力70kpa,阳极压力80kpa条件下,分别测试电流密度为1a/cm2和1.5a/cm2条件下的电压v1和v2。表1实施例1膜电极均匀性测试结果表2实施例2膜电极均匀性测试结果表3实施例3-4和对比例1膜电极均匀性测试结果方差平均值方差/平均值实施例33.012.300.24实施例40.2013.150.02对比例15.312.900.44表4电化学性能测试结果通过表1-4可以看出,实施例3相对于实施例1得到的膜电极均匀性较差,且电化学性能较差,原因是实施例3的涂胶量为0.05ml/min,相对于实施例1较小,进而在阳极催化剂浆料涂布时可能存在胶量不足造成漏气,使部分区域的保护膜和质子交换膜作用力减弱或者消失,涂布时存在膜溶胀现象,涂布不均匀,所以实施例3相对于实施例1得到的膜电极均匀性较差,且电化学性能较差。通过表1-4可以看出,实施例4相对于实施例1得到的膜电极电化学性能有大概10mv降低,可能是因为涂胶量过多,有少量胶覆膜电极有效面积。通过表1-4可以看出,对比例1相对于实施例1得到的膜电极均匀性较差,且电化学性能较差,原因是对比例1不粘结保护膜直接涂布,膜溶胀严重,涂布均匀性极差,所以对比例1相对于实施例1得到的膜电极均匀性较差,且电化学性能较差。申请人声明,本发明通过上述实施例来说明本发明的详细工艺设备和工艺流程,但本发明并不局限于上述详细工艺设备和工艺流程,即不意味着本发明必须依赖上述详细工艺设备和工艺流程才能实施。所属
技术领域
的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1