具有用于高频信号传输的电子部件的壳体的基座的制作方法

文档序号:30103010发布日期:2022-05-18 13:39阅读:73来源:国知局
具有用于高频信号传输的电子部件的壳体的基座的制作方法
具有用于高频信号传输的电子部件的壳体的基座
1.本专利申请要求申请号为10 2019 127 593.8的德国专利申请的优先权,其全部内容通过引用并入以下公开内容中。
技术领域
2.本发明主要涉及用于高频信号传输的电子部件,尤其是用于高频信号传输的光电部件。更具体地,本发明涉及一种基座的特殊配置,该基座包括一种用于冷却电子部件的装置,该电子部件用于传输高频信号,如激光二极管、光调制器、光电二极管及用于光数据通信的其他部件。


背景技术:

3.在通信网络中的数据传输要求高频。在100千兆比特以太网的情况下,当前常规的数据传输速率为25gbit/s。引入传输速率100gbit/s以上的兆兆比特以太网已经在工作。对此的一个特殊挑战是设计和制造合适的高速发射器与接收器。
4.用作发射器或接收器的光电部件,如激光二极管,通常根据晶体管外形(to=“transistor outline”)标准在壳体中使用。这种壳体以及根据其它标准的壳体包括基座,通过该基座信号及电源经由馈通件被引导到安装在基座上的各个部件。紧固在基座上的外壳将所使用的部件包围,并且通常提供气密密封。在信号被导入壳体或从壳体中导出时,在高频传输的情况下会出现问题。在此,阻抗跳跃导致信号反射。
5.一个重要的观点是对有源部件的有效冷却,这在高信号频率下也变得尤为重要。冷却的目的是实现温度恒定,以保持速度和激光辐射效率,并且稳定波长。此外,如果温度过低,还会发生模式跳变。反过来,有源冷却部件又应该尽可能少地影响组件的阻抗。冷却本身产生的废热必须消散。如果废热散发到基座,基座的加热可能导致热量回流到已冷却的电子部件,这将显著降低冷却效率。
6.用于电子部件的基座原则上是已知的。us 2003/0001081 a1公开了一种光学模块,在该模块中电馈线将半导体激光器与信号输入/输出单元连接。馈线包括介电质基板,该介电质基板其上具有传导膜,该传导膜的导热率低于氧化铝的导热率。这防止了半导体激光器由于热量流入激光器而出现波长偏移。
7.jp h10 223 988 a描述了一种具有光电元件及温度控制元件的光学模块。通过采用包括具有比铝低的导热系数的绝缘体的高频接线板,提高光电元件对环境温度波动的温度稳定性。
8.gb 0317531.2公开了一种光电装置,具有光电器件、壳体及热电冷却器。冷却器的一个表面与光电器件热耦合,另一个表面是壳体的区段的一部分。
9.de 10 2017 120 216 a1描述了一种用于dfb激光器的to壳体。这种壳体具有热电冷却器的平台部。平台部具有用于连接光电元件的至少两个馈通件。从平台部的上表面延伸出载架,在该载架上布置至少两个导体轨道,该导体轨道分别与用于连接光电部件的馈通件中相应的一个馈通件连接。


技术实现要素:

10.因此,本发明的目的是为用于高频信号传输的电子部件提供一种具有改善的冷却的基座。该目的通过独立权利要求的主题来实现。从属权利要求中对本发明的有利实施例作出了详细说明。因此,本发明提供了一种用于高频数据传输用的电子部件的基座,其中-该基座包括金属基体,该金属基体包括多个电馈通件,并且其中该基座包括热电冷却元件,该热电冷却元件具有一个支承在所述基体上的侧面和另一个用于安装电子部件的侧面,其中在用于安装电子部件的侧面上设有通到电子部件的高频线,该高频线具有与金属基体电连接的接地导体,并且其中与金属基体的电连接包括碲化物元件。
11.接地导体不必直接布置在冷却元件的表面上。相反,接地导体也可以部分或整体地设置在附接于冷却元件的子安装座或载架上。尤其,电子部件因此也可以安装在该载架上。
12.在优选实施例中,该接地导体包括电接触部,该电接触位于冷却器的用于安置电子部件的侧面上。因此,可以规定,该基座包括金属基体,该金属基体包括多个电馈通件,其中该基座包括热电冷却元件,该热电冷却元件具有支承在基体上的侧面以及用于安置电子部件的相对的侧面,其中在用于安置电子部件的侧面上设置有电接触部,该接触部与金属基体电连接,并且其中该连接形成了高频线到电子部件的接地导体连接,并且其中该电连接包括碲化物元件。
13.这种基座可以使用一种方法制造,在该方法中,提供具有多个电馈通件的金属基体,并将热电冷却元件在其一个侧面连接到金属基体,并且其中在热电冷却元件的相对侧面上安置电子部件,并且其中将该电子部件与具有接地导体的高频线连接,并且其中接地导体通过碲化物元件与金属基体连接。尤其,冷却元件的用于安置电子部件的侧面可以具有电接触部,该电接触部与金属基体电连接,并且该连接形成高频线到电子部件的接地导体连接。与基体的电连接尤其构造为隔热的。在本公开的意义中,这意味着对于给定的温差,电连接能传递比连接到电连接的两个组件更少的热能。经由电连接能够减少从被热电冷却元件加热的基体返回到冷却元件的被冷却侧面并因此返回到电子部件的热回流。在特别优选的实施例中,电连接经由碲化物元件制成。
14.碲化物具有非常低的导热率。根据特别优选的实施例,碲化物元件包括碲化铋,尤其,碲化物元件可以是碲化铋元件。碲化铋具有足够的导电性。同时,导热性是低的。导电率通常为约1.1
·
105s
·
m/m2。而导热率是1.20w/(m
·
k),即非常小。由这种材料制成的电连接元件允许在非常小的空间内布置支承在基体上的热电冷却元件的散热表面和冷却板的电接触部,而不引起任何显著的从基体回到热电冷却器的被冷却侧的热回流。
15.一般地,该实施例不限于由高纯度材料制成的碲化物元件。相反,碲化物、特别是碲化铋,也可以包含例如掺杂物形式的掺合料。在本发明的意义内,碲化铋元件通常理解为主要包含碲化铋(bi2te3)的元件。根据一个实施例,碲化铋通常可以包含碲化锑与硒化铋作为掺合料。与纯碲化铋相比,包括这些掺合料的碲化铋固溶体可具有进一步改善的性能,尤其是进一步降低的导热率。根据一个实施例,该碲化物元件相应地包含碲化锑与硒化铋中的至少一种成分。碲化锑及碲化铅同样也可以替代碲化铋用作碲化物元件的主要成分。
16.进一步地,在此特别有利的是,对于电子部件而言,具有通过碲化物元件与基体连接的接地接触部。这种接地接通经由碲化物元件与基体连接。这实现了特别紧凑的布置,并
因此实现了高频信号的较低衰减,以及从电子部件到热电冷却器的板的特别有效的热传递。该基座尤其可以构造成用于to壳体。
附图说明
17.现在将结合附图对本发明作进一步地详细说明。附图中,相同的附图标号表示相同或等同的特征。
18.图1在侧视图中示出了具有电子部件的基座的侧视图;
19.图2在立体图中示出了基座;
20.图3在立体图中示出了电子部件的子安装座或载架;
21.图4和5示出了具有碲化铋接触部和金接触部的基座的散射参数s11和s21频率相关分布;
22.图6示出了一种包括根据图1或图2的基座的封装的电子部件;
23.图7至9示出了制造基座的工艺步骤;
24.图10示出了具有两个单独的碲化物元件的实施例;
25.图11示出了对于图10的示例中两个碲化物元件之间的间隙不同的宽度的、作为频率的函数的散射参数s11;
26.图12示出了具有用于电子部件的u形载架的基座。
27.图13是图12示例中的载架的立体图;
28.图14示出了一种具有用于电子部件的载架的基座,该载架接合在金属基体上;
29.图15在立体图中示出了具有两个用于电连接接地导体的平台的基座的金属基体;
30.图16在侧视图中示出了具有图15的基体的基座1。
具体实施方式
31.图1示出了用于电子部件3的基座1。例如,基座1在其尺寸上可以设计为用于to壳体。为了获得封闭的壳体,可以将罩与金属基体连接,该罩包围电子部件3。根据不限于所示示例的优选实施例,可以规定,电子部件3是光发射器29。这种光发射器29尤其可以是激光二极管30。在用于高频信号传输的激光二极管的情况下,温度稳定性对于保持传输特性(如波长和光功率)恒定是特别有利。
32.为了引导信号电压和电源电压经过基座1,金属基体5具有多个电馈通件7。在图1的视图中仅展示了单个馈通件7。馈通件7分别包括馈通导体70,该馈通导体通过绝缘体71以电绝缘的方式相对于基体5固定。绝缘体可以由塑料材料、陶瓷或优选地由玻璃制成。
33.为了冷却电子部件3或使其温度保持恒定,基座1还包括珀耳帖元件,或通常地热电冷却元件9。根据电流方向,冷却元件9包括热侧面和冷侧面。通常,热电冷却元件被布置成其一侧面(此处为侧面11)抵靠在金属基体5上并与基体5热连通,使得在电子元件的冷却过程中所产生的废热可消散至充当散热器的基体5。
34.热电冷却元件9的相对置的侧面13用于安装电子部件3,该相对置的侧面尤其通过珀耳帖效应进行冷却。该侧面13具有与金属基体5电连接的电接触部35。该接通尤其可以是高频线到电子部件的接地导体接通。接触部35与金属基体之间的电连接经由碲化物元件15制成。为了实现电子部件3的有效且良好可控的冷却,应当抑制从基体5到冷却元件9的被冷
却侧面的热回流。尤其,通过大面积的接触会导致热流中的短路。该短路在图1中由虚线箭头表示,该虚线箭头始于平台的支撑面33、终于与用于安装电子部件3的被冷却侧面13的接触。这种短路通过碲化物元件15被中断,因为该元件大大减少了从基体5返回到热电元件9的被冷却侧面13的热回流。
35.特别优选地,碲化物元件是碲化铋元件,其还可以必要时包含其它成分,例如碲化锑或硒化铋。
36.碲化物元件15通常可以具有棒状或条状形状,其中其尺寸在横向于电流流动方向上长于沿电流流动方向、即与热电冷却元件9和基体5接触的两个面之间的间隔。因此,电流在横向方向上穿过碲化物元件。这提供了具有低电阻的良好电连接,其中仍保持低热传导。
37.不限于所示示例,热电元件9具有两个板17、19,在这两个板之间布置有半导体元件91。两个板的外侧面分别形成了用于接触基座和用于安置电子部件3的侧面11、13。典型地,板17、19由陶瓷材料制成。
38.在一般优选的实施例中,其也在根据图1的基座1的特定示例性实施例中实施,基座1的基体5具有带有支撑面33的平台31,在该平台上安置热电冷却元件9。如图所示,这允许热电冷却元件9的侧面13被定向为使得电馈通件7之一的至少一个馈通导体70的轴向方向平行于热电冷却元件9的侧面13。这种布置在设备的功能性方面具有多个优点。一个优点是电子部件3与短的电连接的简单接触,这对高频传输性能是有利的。另一个优点是由于通过平台31的扩大的表面而改善的通过基座的基体5的散热。
39.可以想到,将电子部件3直接紧固在热电冷却元件9上。然而,根据特别优选的实施例,不限于所示示例,一般可以规定,将电子部件3安装在载架21上,其中该载架21抵靠在热电冷却元件9的用于安置电子部件3的侧面13上。这样的载架21通常也被称为子安装座。该实施例此外使得能够将多个电子部件一起安置在载架21上,然后将载架21安置在热电冷却元件9上。在本实施例中,电子部件3因此实际上作为与载架21连接的部件也安置在冷却元件9上(尽管是间接地)。尤其,如所示示例中的情况,馈通导体70可以经由焊料接触27直接与载架21连接,尤其是与载架21上的导体轨道连接,以保持导电长度是短的。
40.一般优选的是,在如图1所示的示例中,热电冷却元件9的用于安置电子部件3的侧面13位于热电冷却元件9的板19上,其中碲化物元件15布置在板19的边缘面190处。以这种方式可以在侧面13上提供平坦的面,该面有利于各个单独部件的安装,特别是子安装座或载架21的安置。根据本发明特别优选的实施例,提供了子安装座或载架21,其固定到基体5,使得在基体5(特别是基体5的内侧面51)与载架21的边缘201之间出现间隙8。在如图1所示的实施例中,通过将载架21定位在平台31的支撑面33上实现基体5的内侧面51与边缘201之间的间隙8。基体5的内侧面51是电子部件3位于其上并且界定了在进一步壳体之后的被壳体电子部件的内部的侧面。间隙8特别有利于高频信号的传输。另一个优点是,以这种方式,通过调节间隙的宽度,可以简单地实现阻抗匹配、或一般地高频传输特性的调节。根据一个实施例,间隙8的宽度可以在子安装座或载架21厚度的0.1到5倍的范围内。
41.为了接触向电子部件3传递高频信号的导体路径,已经证明有利的是使用au/sn焊料。根据一个实施例,可以因此规定馈通导体70经由焊料接触27直接与载架21连接,尤其是与载架21上的导体路径连接,且焊料连接27使用金锡焊料实施。该实施例尤其允许使用au/sn焊料将诸如尤其光发射器29、优选为激光二极管30的电子部件3安紧固在导体路径上,并
由此防止馈通导体70与导体路径36之间的连接再次熔化。
42.根据又一实施例,可以规定利用金锡焊料紧固电子部件3和热电冷却元件9。该焊料通常是含有80%的金和20%的锡的合金,其结合了高硬度和高导电性。此外,该焊料还表现出高导热率(85℃时为0.57w/cmk)。由此,在热电冷却元件9的热侧面11和基座1的基体5之间实现了非常好的热接触。在图1所示的示例中,提供有紧固层28,其将热电冷却元件9以侧面11与平台31的支撑面33连接。然而,可以理解的是,使用au/sn焊料来紧固热电冷却元件9和/或电子部件与基体5的形状无关。此外,使用au/sn焊料来紧固冷却元件9和/或安装电子部件3是有利的,因为冷却元件9在基体5上的紧固并且电子部件3的紧固可以利用加热器在一个步骤中执行。相反,在传统工艺中电子元件3、例如尤其激光二极管30被预安装在子安装座或载架21上。然后,使用低熔点焊料或导电环氧树脂执行载架21和热电冷却元件9的紧固,因为否则与电子部件3的连接可能熔化并且部件3会因此发生移位。在这种情况下,这种里用au/sn焊料的到信号承载引脚的焊料连接27也是有利的,因为在具有冷却元件9和子安装座的平台31被局部加热的情况下,该焊料连接不会熔化。
43.为了操作激光二极管30形式的电子部件3,根据本发明的一个实施例可以规定,基座1还包括温度传感器25和/或监测二极管23作为另外的电子部件。优选地,可以使用热敏电阻作为温度传感器25,但也可以使用具有温度依赖的特性的其它电子部件,例如陶瓷电容器。监测二极管可用于感知并监测例如激光二极管30或其他的发光半导体部件、例如发光二极管的功率。
44.子安装座或载架21在与热电冷却元件9接触的一侧上具有平坦的背侧接触部。这里提供的平坦的背侧接触部为了提供到电子部件3的电连接,建立用于高频信号的波导连接,或来自或特别是到电子部件3的高频线12,尤其是以带型波导(微带)或带接地的共面波导连接(cbcpw=导体背衬的共面波导)的形式。利用经由碲化物元件15的与平坦的背侧接触部的接触,在不接受高热传递的情况下建立与基体5的大面积、低阻抗的连接。特别是结合如本文所公开的经由碲化物元件15接触热电冷却元件9,经由馈通导体的直接电连接对于同时实现高数据传输速率和良好的冷却是特别有利的。根据一个实施例,不限于具体示出的示例,因此通常可以规定将电子部件3布置在与热电冷却元件9连接的载架21上,该载架21具有用于电连接电子部件3的导体路径,该导体路径通过焊料连接27直接与馈通件7之一的馈通导体70连接。
45.图2在立体图中示出了基座1。从该视图中可以看出,基座1具有多个馈通件7。载架21具有通向激光二极管30的导体路径36。如图1所示,用于接触激光二极管30的导体路径36均与馈通件7的馈通导体70直接连接,而未使用接合线40。这里仅提供了例如短接合线40,用于与激光二极管30在其上侧面进行接触。然而,同样可以想到的是,激光二极管30在其下侧面提供接触部,使得其可以在两侧通过适当的焊料直接与导体路径连接。对于其它电子部件,这里还是监测二极管23和温度传感器25,读取速率通常比较低,使得电连接的阻抗并不重要。在这种情况下,为了连接可以提供较长的接合线40,如图所示。到电子部件3的两个导体路径中的其中一个,结合在该视图中被遮挡的背侧接触部形成了到电子部件3的高频线12,优选以微带线的形式。
46.图3在立体图中示出了子安装座或载架2。从所示视图中可以看到的是,与其上安置电子部件3的安装侧面210相对的背侧面211。为了更好地理解,在本视图中被遮挡但在图
2中可见的安装侧面210上的导体路径36由虚线指示。至少一个导体路径36与背侧接触部一起形成了到电子部件3的高频线12,以便以很小的损耗将高频信号从电子部件3或向电子部件3传导。如上所述,该背侧接触部可以作为到电子部件的接地共面波导连接或接地带型波导的一部分。如果载架21以背侧面211放置在热电冷却元件9的侧面13上,则背侧接触部200可以与冷却元件9的电接触部35连接。因此,背侧接触部200然后将通过碲化物元件15与基体5连接,就像冷却元件9的电接触部35一样。特别优选在子安装座或载架21上具有背侧接触部200的配置,但用于带接地的共面波导或带型波导的其它实现方式也是可能的。因此,不是必须提供单独的载架21。一般地,基本思路是以接地的共面波导的形式实现到电子部件3的至少一个电连接,其中该波导具有经由碲化物元件15接地的电极,或一般地经由碲化物元件15与基体5电接触的电极。如前所述,该电极优选由载架21上的平坦的背侧接触部形成。通过如本文所述的基座1的配置实现的另一有益效果是将热电冷却元件9与高频信号屏蔽开。这种屏蔽通过在热电冷却元件9的侧面13上的优选平坦的接触部35和/或在载架21上的背侧接触部来实现。
47.如果像这里所规定的那样,使用碲化铋作为接地接触部的桥以产生高频波导,则实际上应该担心的是,系统的衰减可能由于电导率的降低而增加。然而,其高频特性与高导电金接触部的高频特性相比,发现并没有显著变化。关于这个问题,图4和图5示出了散射参数s11和s21的频率依赖性的模拟。
48.散射参数s11是指在阻抗匹配输出的情况下,输入端的反射因数。s21对应于阻抗匹配输出情况下的前向传输因子。
49.金的导电率为4.1
·
107s
·
m/m2。该值比bite的导电率大370倍。然而,图4所绘制的散射参数s11并没有示出在由金制成的桥与由碲化铋制成的桥之间存在可在图4的比例尺上表示的任何差异。
50.如图5所示的散射参数s21的走向也显示出在从0hz到60ghz的频率范围内没有显著差异。实线为bite桥的散射参数的走向,而虚线为金桥的对应走向。
51.除基座1之外,本公开还提供了一种包括基座1的封装的电子部件10。电子部件10可以是例如具有to壳体的激光模块。图6示出了一种具有根据本公开的基座1的封装的电子部件10。该示例中的基座1对应于图1的实施例。
52.为了提供封装的电子部件10,将基座上的电子部件3封闭在密封壳体4中。为此,将基座1与罩42连接。罩42可以有利地具有窗口44,由此光线可以离开外壳4或可以进入外壳。,窗口44可以例如利用玻璃焊料紧固在罩42上。为了经由碲化物元件15连接热电冷却元件9的接地接触,接地引脚46可以紧固在基体5上。由于所提供的与基体5的接触,接地引脚46不需要馈通件并且因此可直接焊接或熔接在基体5上。
53.用于制造基座1的方法基本上包括:将热电冷却元件9的侧面11与金属基体5连接,其中将电子部件3安置在热电冷却元件9的相对置的侧面13上,以及其中在侧面13上的电接触部35与金属基体5电连接,其中该电连接经由碲化物元件15制成。该电连接形成用于高频线的接地接通。根据一个实施例,如上所述,通过金锡焊料进行热电冷却元件9与基体5的连接以及电子部件3的安置。此外,这也实现了更简单的生产及电子部件3的精确对准。后者在诸如激光二极管等的光电部件的情况下尤为重要。现在将参照图7-9对该方法进行说明。
54.图7示出了为生产基座提供的具有多个馈通件的基体5。在侧视图中,从馈通件中
可以看到从基体5突出的馈通导体70。如前述示例中,基体具有带有支撑面33的平台31。热电冷却元件9布置并紧固在该支撑面33上。为此使用金锡焊料,其形成用于热电冷却元件9的紧固层28。在所示示例中,已经施加了焊料。
55.在下一步骤中,如图8所示,热电冷却元件9与载架21放置在一起,且载架21的用于高频传输的导体路径利用焊料连接27与所提供的馈通导体70连接。尤其,将金锡焊料用于焊料连接27。在制成该焊料连接的同时,还可以在热电冷却元件9的板19与基体5之间制成碲化物元件15的连接。该连接同样可以使用金锡焊料来进行。然而,在图7至9的侧视图中,碲化物元件15被其中一个馈通导体遮挡,因此并未示出。
56.根据一个可能的实施例,如图9所示,放置并定位电子部件3和必要时的其它部件,这里还是监测二极管23与温度传感器25,并使用加热元件50加热平台31,使得紧固层28的金锡焊料熔化。同样地,用于电子部件3的焊料连接同时熔化,并在冷却后将电子部件3固定。
57.根据该过程同时实现了部件的调节及冷却元件的紧固,该过程使得能够将金锡焊料不仅用于焊料连接27而且用于紧固层28,以及用于电子部件的固定。相比之下,如果这些步骤一个接一个地执行,则需要不同的焊料以避免先前形成的焊料结缝再次熔化以及与之相关的可能的错位。当在镀金表面上使用金锡焊料(80%金,20%锡)时,熔化的焊料熔融部件上的金层从而将其结合到合金中的事实允许使用相同的基础合金进行顺序焊接。将金从涂层结合到共晶合金中提高了共晶合金的熔点,使得该焊料结缝在被再次加热到共晶焊料的焊接温度时将不会重新熔化。
58.因此,不限于具体所示出的示例,根据用于生产用于高频数据传输的电子部件10的基座1的方法的优选实施例,通常可以规定,热电冷却器9与基体5的紧固及电子部件3的安置使用相同的焊料来进行,特别是金锡焊料,其中在加热步骤中用于安置电子部件3和热电冷却器9的焊料被熔化。
59.图10在俯视图中示出了基座1的另一实施例的子安装座或载架21。在该视图中,热电冷却元件9被载架21遮挡,且其板19以虚线示出,在其板19上支撑着载架21。可以看出,在该实施方式中,而不限于具体示出的示例,通常包括由间隙151隔开的两个碲化物元件。
60.在侧视图中,该实施例可以对应与图1的示例。因此,热电冷却元件9的冷侧面13具有电接触部35。该电接触部布置在板19上。碲化物元件15、16在电接触部35与基座1的基体5之间制成电连接。
61.电连接分割成两个碲化物元件致使更小的接触面积,从而可以进一步减少从基体回到电子部件的热流。碲化物、例如尤其碲化铋是脆性材料。通过分割成两个或两个以上的单独元件在此可以降低断裂的风险。否则,碲化物元件的断裂会以不可预见的方式对高频特性造成不利影响。
62.进一步表明,分割成两个碲化物元件对高频特性没有任何显著的不利影响。只要间隙151不变得过宽,这尤其正确。在这方面,图11示出了对于不同宽度的间隙151的作为频率的函数的散射参数s11。图11的曲线图示出了三条曲线,其中曲线(a)是针对0.1mm的间隙宽度计算的,曲线(b)是针对1.3mm的间隙151的宽度计算的,曲线(c)是针对2mm的间隙152的宽度计算的。计算表明,反射系数在0.1mm与1.3mm之间的宽范围内几乎没有增加,仅从约1.5mm处开始增加更明显。因此,曲线(a)和(b)彼此靠近,并且与曲线(c)间隔开。因此,根据
对本发明的该实施例的一个改进,可以规定提供两个碲化物元件15、16,其间距在0.1mm至1.5mm之间。
63.在目前所述的所有示例中,高频线12到电子部件3的接地导体接通是通过热绝缘碲化物元件实现的。即使不使用碲化物,也可以以其他方式实现对电子部件热回流的有效阻断。图12示出了不依赖于碲化物元件的实施例。像图10一样,图12在俯视图中示出了基座1的子安装座或载架21,该子安装座或载架21应用在热电冷却元件9的冷侧面上。载架21具有u形轮廓,在两个支腿212之间有切口213。在该实施例中,支腿212与金属基体5连接。
64.图13示出了载架21的立体图。在该图中,可以看到抵靠在热电冷却器上的侧面,即与安装侧面相对的背侧面211。高频线12的接地导体22以金属化215的形式安置在该侧面上。如图所示并且根据一个实施例,金属化215从该侧面延伸至端面214上。然后,通过支腿212与金属基体5的接触可以简单地制成接地导体22的电接触,如图12所示。接地导体22与金属基体5之间的接触一般可以使用焊料或导电树脂(优选环氧树脂)进行。
65.以类似于图10的实施例的方式,通过减小接触面积来实现从金属基体5到载架21的热流的减少。因此,根据本公开的一个方面,但不限于所示具体示例,为用于高频数据传输的电子部件10提供了一种基座1,其中-该基座包括金属基体5,该金属基体5具有多个电馈通件7,且其中-该基座1包括热电冷却元件9,该热电冷却原件具有抵靠在基体上的侧面11和用于安置电子部件3的相对侧面13,在用于安置电子部件3的侧面13上紧固载架21,该载架具有切口213,使得形成两个支腿212,在支腿212之间有开口213,并且其中在该支腿212上布置用于电连接电子部件3的高频线12的接地导体22且在支腿212上与金属基体5电连接。在该实施例的改进中并且作为对图13示例的概括,还可以规定,接地导体22位于载架21的至少一个侧面上且包括在支腿212的端面上的区段。尤其,接地导体可以围绕边缘从一个侧面延伸到端面214上。
66.不管图中所示示例如何,载架21的特别优选材料通常为氮化铝或含有氮化铝的陶瓷。氮化硅也表现出相对较高的导热性。因此,在参照附图描述的所有实施例中,载架21可以由氮化物陶瓷制成,优选包含氮化铝。氮化铝是良好的绝缘体,同时表现出高导热性。尽管具有良好的导热性,但根据图12、13的具有u形载架21的实施例也可以限制从金属基体5进入载架21的热流。
67.代替减小电接触面积或除了减小电接触面积之外,根据另一实施例的选择是使用具有比氮化铝陶瓷低的导热率的陶瓷载架21。尤其可以使用具有小于150w/m
·
k的导热率的陶瓷,最好不超过50w/m
·
k,即小于氮化铝(aln)的导热率的一半(通常为170w/m
·
k)。在这种情况下,如图14所示,载架21可以通过将接地导体22(在图14的俯视图中不可见)与金属基体5电连接,利用边缘201的边缘面216连接到金属基体5。如在图12、13的实施例中,载架21可以使用焊料或导电环氧树脂与金属基体5连接。如在图13所示的实施例中,接地导体22可以安置在载架21的面向热电冷却元件的侧面上,并且围绕边缘延伸。在此,载架21不需要具有切口213以形成两个支腿212。相反,载架21可以具有简单的平坦的长方体形状,即对应于图13的示例的形状但没有切口。因此,图14的示例中的载架21将具有矩形轮廓。非常适合这种实施例的陶瓷是al2o3陶瓷。也可以使用含有al2o3的混合氧化物陶瓷。图14的示例所基于的上述实施例可总结如下:
68.提供一种基座1,用于高频数据传输用的电子部件10,其中该基座1包括金属基体
5,该金属基体5具有多个电馈通件7,并且其中-该基座1包括热电冷却元件9,该热电冷却元件具有抵靠在基体上的侧面11和相对侧面13,其中在该相对侧面13上安置用于电子部件3的载架21,该载架具有带有接地导体22的高频导体12,其中载架21与金属基体5连接,使得接地导体22与金属基体5电连接,其中载架21尤其由热导率小于w/m
·
k的陶瓷制成。载架21优选由al2o3陶瓷制成。此外,载架21优选与其边缘面216上的金属基体5连接。从金属基体5到接地导体22的电接触可以通过提供接地导体来制成,使得其从载架的一个侧表面围绕边缘延伸到与基体5连接的边缘面216。
69.所用陶瓷的较低的导热率,意味着减少了经由抵靠在金属基体5上的边缘面216的热流。然而,由于载架21的较大侧表面支承在热电冷却元件9的冷侧面13上,因此在那里的热流更大。这仍然实现了电子部件3的有效冷却。除了载架21在热电冷却元件9上的支承面和与金属基体5的接触面尺寸不同外,载架的平坦的长方体形状也有利于产生不同的热流。如果载架21是平的,如图所示,则从电子部件跨越载架21的距离可以设计成短于从基体5周围的接触面(即边缘面216)到部件3的距离。通常,在此有利的是载架21的厚度为最高边缘面216的主要尺寸的三分之一。关于这些面,如果载架21在热电冷却元件9的冷侧面13上的支承面比抵靠在金属基体5上的边缘面216大至少四倍,则是有利的。
70.通过载架21与基体5接触的接通固定载架21的位置。然而,保持一定的调节间隙是有利的,如其中载架21的接地导体经由热电冷却元件9的冷侧面13上的电接触部35连通的实施例的情况。在这些实施例中,如在图1的示例中,在基体5的内侧面51和载架21之间存在间距。该间距对于与金属基体5的热绝缘也是有利的。
71.这些优点可以通过基座1的实施例保持,其中金属基体5在其内侧面51上具有至少一个、优选地两个突起52。这种基体5在图5的示例中示出。一个或更多个突起52设置在用于热电冷却元件9的平台31的支撑面33以上。图16类似于图1在侧视图中示出了具有这种基体5的基座1。从图16中可以看出,从突起52到载架21的背面211的接地导体的电接触可以通过焊料连接27进行。作为替代方案,这里也可以例如使用导电环氧树脂来制作接触部。还可以看出,在载架的边缘201与突起52之间保持间隙8。该间隙8减少了热流,并且另一方面允许对子安装座或载架21进行调节。
72.该实施例同样特别适合于使用较差导热率的陶瓷代替高导热的氮化铝陶瓷来用于载架21,尤其是小于150w/m
·
k的导热率,甚至不超过50w/m
·
k,特别优选al2o3陶瓷。由于载架21上的接地导体连接在背侧面211上,所以不需要边缘201或边缘面216上的金属化。更一般地,不限于图15、16的具体示例,该实施例可被描述如下:
73.提供了一种用于高频数据传输的电子部件10的基座1,其中-该基座1包括金属基体5,该金属基体5具有多个电馈通件7,并且其中,该基座1-包括热电冷却元件9,该热电冷却元件具有抵靠在基体上的侧面11和用于安置用于电子部件3的载架21的相对侧面13,其中-金属基体具有至少一个突起52,并且其中载架21在其支承在热电冷却元件9上的背侧面211上具有接地导体,并且其中该接地导体与至少一个突起52电连接。如上所述,在此优选地在载架21的边缘201与突起52之间保留间隙。
74.附图15、16的该实施例还可以与本文所述其他实施例相结合,例如,与上述低导热率的陶瓷相结合。因此,例如,这里也可以使用设有切口213的载架21。此外,代替或除了使
用焊料连接27外还使用碲化物元件来建立载架21上的背侧面的接地导体与至少一个突起52之间的接触。附图标记列表
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1