抑制触敏覆盖层中牛顿环的颗粒隔层的制作方法

文档序号:98796阅读:240来源:国知局
专利名称:抑制触敏覆盖层中牛顿环的颗粒隔层的制作方法
本发明涉及触敏覆盖层中相邻透明层之间微细颗粒材料的涂敷,以抑制透明层之间牛顿环的形成。
触敏覆盖层(TSO)通常与键盘或触敏计算机监视器荧光屏一起使用。典型的TSO至少包括适当柔软的塑料制成的两个薄层,这两层非常靠近且彼此平行,它们的每一相邻表面都敷有导电材料构成相应图形,如真空沉积金形成的图形。当外部压力,例如操作人员的手指产生的压力作用于某一层时,两层之间的间隙就闭合,构成图形的材料进行电接触,从而给出能被解码的有用信号。当柔性导电敷层同时被压到一起时,在它们的背面通常有一硬实的透明表面加以支撑。这种用途的常用材料是丙烯酸塑料。不同导电敷层都有间隙,而且牢固地保持在外表面。导电部分与适当的电路电接,构成工作的TSO。
在多数应用中,例如通过常用的TSO观察计算机监视器的荧光屏时,应该注意的是,为获得信号,操作人员按于TSO的那点周围会形成牛顿环。由于牛顿环的形成取决于透明材料、敷层厚度和相邻表面之间的间隙,因此,即使没有施加局部力也可能观察到牛顿环。牛顿环是可见的彩色条纹,例如在TSO被按下点的周围,由通过透明材料间紧靠的某一点周围的狭窄区域光波之间的干涉产生的牛顿环。当牛顿环形成于某一局部区域,以致干扰或遮挡经由TSO进入视线或光学上可观察的信号时,会分散操作人员的注意力,有碍于对TSO进行长时间操作。因此,希望找到一种简单、方便且经济的解决办法,来减弱或消除TSO装置内牛顿环的形成。
在已有技术中,仔细认真地涂敷不导电材料于选择图形中,或者,在一个或两个表面,含有小的突起点或隆起处,所述表面有作为TSO装置一部分的导电层。然而,在此仔细考虑的是,在上述导电层最后那个表面的背面,即它和构成TSO装置一部分的透明垫板之间避免牛顿环的形成。本发明介绍一种解决办法,它包括微细颗粒尺寸在预定范围内的材料涂敷,以此大大抑制或避免上述不希望有的牛顿环的形成。
因此,本发明的一个目的是提供一种方法,防止紧邻的平行透明表面之间牛顿环的形成。
本发明的还一个目的是提供TSO面板,在面板中,操作人员使用TSO时所接触的那点周围牛顿环的形成显著减弱。
本发明的再一目的是提供一种便宜而且容易涂敷的材料,防止支撑面和两层触敏面板中的背面层之间牛顿环的形成。
本发明的另一目的是提供一种方法,便于在TSO面板背面容易又便宜地涂敷透明支撑面,以便在使用面板期间防止在那里形成牛顿环。
为实现本发明的上述种种目的,是在可能形成牛顿环的透明层之间涂敷微细颗粒,其不规则的尺寸是在预定的范围内,最好为3~100微米;而所沉积的这些颗粒中的最大者,在预定的密度范围内无规则分布,最好在300~3000个/英寸2(46~460个/厘米2)的范围内,并且是与相邻两个面是同时接触。
消除TSO装置中两平行层的紧邻表面间牛顿环形成的方法,包括把悬浮于液体载体的选用材料的微细颗粒沉积于这些紧邻的一个表面上,以获得颗粒无规则分布密度在1000-3000个/英寸2(154~460个/厘米2)范围内,这样,当两个透明层配置于TSO面板时,最大的那些颗粒同时与相邻的两个表面相接触。同样,悬浮于碱土金属氯化物溶液的小玻璃珠提供满意的隔离。在每次载体液体蒸发后,就剩下适当的无规则颗粒分布,这种颗粒分布不发生光学干涉,附着在喷涂过这些颗粒的表面上,便于其后相邻导电层之间的定位。虽然对微细颗粒令人满意地附着于喷涂过这些颗粒的表面上的确切原因并不十分了解,但据信,这种附着力是来自于小的分子键合力,或称之为范德瓦耳斯力,因此,颗粒并不随相邻表面中某一面对另一面的作用形成压力而变动,而是保持适宜的颗粒分布。可以确信,液体载体也起到避免或防止颗粒间范德瓦耳斯力的作用,从而使附着于被喷涂表面上的颗粒具有合适的无规则分布。
图1是采用现有技术的典型TSO面板的平面图,包括用导线连接到上面的导电透明层和底面导电透明层。
图2是沿垂直于图1的方向观察到的剖面图,示出构成典型TSO的组合层、间隙和典型的透明垫板。
图3是示意图,用来说明当操作人员的手指按在TSO面板正面时形成怎样的牛顿环。
图4是一幅示例图,用来说明含有悬浮液体载体的微细颗粒的喷雾怎样喷涂于两个表面中的一面,当这两个表面被同时按下时是会产生牛顿环的。
图5是一幅放大的平面图,用来说明根据本发明附着的颗粒,在被喷涂的表面上怎样无规则地分布。
图6是垂直于根据本发明制作的TSO装置的剖面图。
为了便于在另一幅图中查阅,在每幅图中用相同的编号标记相同的元件或部件。
图1示出典型的常用扁平型TSO面板11,和把它连接到解码器线路上的导线12和13。导线12与竖向导电溶敷层18(图2)连接,溶敷层18位于最上面的透明层15(图2)的下表面。同样,导线13接于导电材料23制成的相应的横向层,导电材料23溶敷于透明层15下面的透明层20的上表面(图2)。解码器线路14与计算机以电路连接或联系,为简化起见,未画出计算机。
熟悉本专业的人将会认识到,紧邻表面采用其他几何形状,如柱面或球面,也是可行的,并且有时甚至是所希望的。表面的几何形状,一般或是在特定应用中(例如在模拟面板中),都无损于本发明在显著减弱牛顿环形成方面的有效使用。
图2示出最上面的透明层15的上表面16。操作人员使用TSO时,将按于上表面16某一选择的点。操作人员按下的压力作用在图2中的表面16上,使导电层18的表面19和在它下面的导电层23的上表面24局部接触。通常,由于一致分布的不导电材料小突起处25交错分布于TSO的作用面,除了操作人员局部地按下时之外,上下导电面一般保持分开的状态。这些突起处的典型图案可参见表示TSO面板平面图的图1。
图2中的分层30,通常是透明丙烯酸塑料制作的TSO面板的垫板,有上表面31。其它透明材料,例如玻璃或聚碳酸酯也可用于作这种垫板。垫板30与下透明层20之间的层32,一般为抑制牛顿环的材料,它涂敷于表面31或21。层32的作用是避免在透明层20与垫板30之间形成牛顿环。附着于下透明层20与透明垫板30上面的上述层32,有助于减少透过TSO面板的光通量,但增加复杂性和TSO面板装配的成本。
图3是以平面图说明,操作人员的手指41按于TSO面板上面可能呈现怎样的牛顿环。牛顿环42可能呈现为很象彩虹的彩色条纹,这是由于透过相邻层的光之间产生干涉。
业已得知,当如图3示意表示TSO面板被使用时,对于选用材料及其预定范围内,颗粒尺寸最好是3~100微米,在下透明层20的下表面21与透明垫板30的上表面31之间,微细颗粒的分布可防止牛顿环的形成。特别适宜制作上述颗粒的材料是棕色铝氧粉(含近96%的氧化铝)。也已得知,上述尺寸范围的颗粒在涂敷表面上的合适密度为300~3000个英寸2(46~460个/厘米2)。
图4示出用于获得适用颗粒分布的一种常用技术,在此,以透明垫板30的上表面31来说明。任何常用的配有可调喷口52的喷雾装置51,提供含有颗粒53和液体载体54的喷雾34,用于涂敷表面31,得到适用的颗粒密度。重要的是,当颗粒被涂敷到满足它们的附着力的那个表面时,颗粒是湿的,例如由于悬浮于液体载体。就尺寸在预定范围内的不同尺寸颗粒的不规则分布来说,颗粒的一致分布在整个表面31上不应该有显著不同,这也是重要的。同样有效的可采用方法也可用于喷涂透明层20的表面21。业已发现,氟利昂(商品名)四甲基硅烷或去离子水适于作载体液体,棕色铝氧粉颗粒可悬浮于该载体液体而制成上述喷雾。业已发现,无论上述表面是否具有导电金属或其上是否涂有氧化物,棕色铝氧粉具有附着在通常适于作为上述应用的材料上的特性,例如玻璃、聚碳酸酯、丙烯酸塑料和聚酯薄膜。当然,棕色铝氧粉是不导电的。还可发现,这样喷涂的棕色铝氧粉在配置它的TSO面板里,实际是看不见的,不象那种会在用现有技术制作的TSO面板里产生模糊影象的薄膜。
当在这种方式中采用其它材料,例如玻璃珠时,其优点是可以采用碱土金属的氯化物,例如氯化钠、氯化钾等的水溶液。
在载体液体蒸发后,颗粒就以所选择的分布留在被喷涂的表面上,紧接层或相邻层位于该表面的上面。这可保证较大的那些颗粒与相邻的两个表面同时接触,这两个表面构成这些颗粒的封闭空间。显然,有许多较小的颗粒与较大的颗粒一起散布在被喷涂的表面上,不同时与相邻的两个透明层接触。图5是表示垫板30的表面31的一部份被放大的示意图,其上示出和较小颗粒一起无规则分布的最大颗粒53。
图6示出垂直于图5所示表面的截面,特别用来说明较大颗粒53如何与透明层20的表面21以及透明垫板30的表面31同时接触。可以确信,当操作人员施加压力作用于TSO时,正是由于涂敷于已涂敷表面上的颗粒的尺寸不均匀性,产生了显著减弱或消除牛顿环的效果。
希望熟悉本专业的人将研究涂敷颗粒的其它技术(可采用或不采用有液体载体的悬浮液)达到上述的结果,这样,以不同于这里所具体描述的技术,也可实践本发明。也可采用除铝氧粉之外的其它材料达到同样目的,毫无疑问,熟知本专业的人会对此进行研究。因此,可以对这里所述的实施例和方法作些改进,而又不脱离本发明的范围和预定包括在下面所附的权利要求
之内。
权利要求
1.一种基本上可避免在其上形成牛顿环的装置,在该装置中,可透射光束的两个相间隔的透明材料制成的一般平行层,彼此局部非常靠近,其特征在于第一透明材料构成的第一层,包括第一表面和平行的第二表面,所述的第一表面接收入射光,透射上述光的一部份,这部份光经上述第一层,由上述第二表面出射;第二透明材料构成的第二层包括第三表面和平行的第四表面,所述的第三表面相邻并平行于上述第一层的上述第二表面,同样接收透射光,上述第三表面接收的上述光的第二部份,经上述第二层传输,从上述第四表面出射;在预定尺寸范围内但尺寸不一的微细颗粒,分布在上述第二表面与第三表面之间的间隙里,使得较大的颗粒以预定密度无规则地分布,能同时与上述第二表面及上述第三表面接触。
2.根据权利要求
1的装置,其特征在于,上述第二层实质上比上述第一层坚硬。
3.根据权利要求
1的装置,其特征在于,在配置于紧相邻的上述第一层和第二层之前,上述微细颗粒先涂敷在上述第一层的第二表面上。
4.根据权利要求
1的装置,其特征在于,在配置上述紧相邻的上述第一层和第二层之前,上述微细颗粒先涂敷在上述第二层的第三表面上。
5.根据权利要求
1的装置,其特征在于,上述的预定尺寸范围是3~100微米。
6.根据权利要求
1的装置,其特征在于,上述的微细颗粒在化学上是惰性的。
7.根据权利要求
1的装置,其特征在于,上述微细颗粒是不导电的。
8.根据权利要求
1的装置,其特征在于,上述微细颗粒能附着于含有它们和液体载体的悬浮液喷涂的表面上。
9.根据权利要求
1的装置,其特征在于,上述微细颗粒以300~3000个/英吋2(46~460个/厘米2)的密度无规则分布。
10.根据权利要求
1的装置,其特征在于,上述微细颗粒是棕色铝氧粉。
11.根据权利要求
1的装置,其特征在于,上述微细颗粒是玻璃珠。
12.根据权利要求
1的装置,其特征在于,上述第一透明材料是聚酯薄膜。
13.根据权利要求
1的装置,其特征在于,上述第二透明材料是丙烯酸塑料。
14.一种用于防止一般平行且紧邻两薄层的相邻表面之间牛顿环形成的方法,其特征在于涂在相邻表面中第一表面的微细颗粒,其尺寸不规则是在预定的尺寸范围内,其无规则分布是在预定的面积密度内;上述那样的相邻层使涂在上述第一表面的上述颗粒能与上述第一表面和第二表面同时接触。
15.根据权利要求
14的方法,其特征在于,上述涂敷步骤包括,把悬浮于液体载体中上述微细颗粒的悬浮液喷涂在上述第一表面上。
16.根据权利要求
15的方法,其特征在于,上述喷涂步骤包括,把悬浮于液体载体中上述微细颗粒的悬浮液喷涂在上述第二表面上。
17.根据权利要求
14的方法,其特征在于,上述喷涂步骤包括,把悬浮于水中的棕色铝氧粉悬浮液喷涂在上述第一表面上。
18.根据权利要求
14的方法,其特征在于,上述喷涂步骤包括,把悬浮于碱土金属的氯化物水溶液中的玻璃珠悬浮液喷涂在上述第一表面上。
19.根据权利要求
14的方法,其特征在于,上述微细颗粒的尺寸范围在10~100微米之间。
20.根据权利要求
14的方法,其特征在于,上述微细颗粒无规则分布的面积密度在300~3000个/英吋2(46~460个/厘米2)范围内。
专利摘要
最好用棕色铝氧粉(含近96%的氧化铝)的微细颗粒涂敷在触敏覆盖层的两个透明层之间,以便消除该覆盖层被轻按时可能发生的牛顿环的形成。
文档编号G06F3/033GK86102584SQ86102584
公开日1987年3月25日 申请日期1986年4月14日
发明者戴维·劳伦斯·埃珀森 申请人:约翰·弗兰克制造公司导出引文BiBTeX, EndNote, RefMan
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1