用于解决具有改良的流动均匀性/气体传导性的可变的处理容积的对称腔室主体设计架构的制作方法

文档序号:9673148阅读:382来源:国知局
用于解决具有改良的流动均匀性/气体传导性的可变的处理容积的对称腔室主体设计架构的制作方法
【专利说明】
歷技术领域
[0001]本公开案的实施例涉及用于处理半导体基板的设备及方法。更具体地,本公开案的实施例涉及具有模块化设计的处理腔室,以提供可变的处理容积及改良的流动传导性及均匀性。
【背景技术】
[0002]电子设备(诸如平板显示器及集成电路)通常由一系列的处理制成,在该一系列的处理中在基板上沉积各个层且所沉积的材料被蚀刻成期望的图案。这些处理通常包括:物理气相沉积(PVD)、化学气相沉积(CVD)、等离子体增强CVD(PECVD)、及其他等离子体处理。具体地,等离子体处理包括将处理气体混合物供应至真空腔室,以及施加射频功率(RF功率)以将处理气体激发成等离子体状态。等离子体将气体混合物分解为将执行期望的沉积或蚀刻处理的离子种类。
[0003]在等离子体处理期间所遇到的一个问题是与在处理期间在基板表面之上建立均匀的等离子体密度相关联的困难,这导致基板的中心区域与边缘区域之间的非均匀处理。可通过由于物理处理腔室设计中的不对称导致的自然电流、气体流动、及热分布中的偏斜(skew)而贡献建立均匀等离子体密度方面的困难。这样的偏斜不仅导致非均匀的等离子体密度,而且使得使用其他处理变量或“旋钮(knob) ”来控制中心至边缘等离子体均匀性变得困难。
[0004]最佳处理参数(诸如处理容积、基板与气体分布喷头之间的距离)对于不同处理一般是不同的。例如,当蚀刻导体层、蚀刻介电层或剥离光刻胶层时,需要不同的处理容积。为了满足不同的处理,可需要多个处理腔室,这增加了拥有成本。
[0005]因此,需要致能(enable)可变的处理容积、改良的流动传导性、以及改良的处理均匀性的处理腔室。

【发明内容】

[0006]本公开案的实施例涉及具有模块化设计的处理腔室,以提供可变的处理容积(volume)、改良的流动传导性、及改良的处理均匀性。
[0007]—个实施例提供用于处理基板的装置。该装置包括:处理模块,该处理模块封围处理区域;以及流动模块,该流动模块附连至该处理模块。该流动模块限定排空(evacuat1n)通道及大气容积。这些排空通道连接处理模块的处理区域和附连至流动模块的排放系统。该装置进一步包括基板支撑组件,该基板支撑组件包括支撑板及轴。该支撑板被设置于该处理区域中,以在该处理区域中支撑基板,且该轴从该处理模块的处理区域延伸至该流动模块的大气容积。
[0008]另一实施例提供用于向处理腔室提供对称的流动路径的流动模块。该流动模块包括:外壁,该外壁被成形为连接该处理腔室的腔室主体;内壁;两对或更多对径向壁,所述两对或更多对径向壁被连接在该外壁和该内壁之间;以及底壁。在所述两对或更多对径向壁的内壁和外壁之间限定两个或多个排空通道。该底壁被耦接至该内壁以及所述两对或更多对径向壁。通过该内壁、该底壁、以及所述两对或更多对径向壁限定一大气容积。
[0009]另一实施例提供等离子体处理腔室。该等离子体处理腔室包括:处理模块,该处理模块包括:腔室主体,该腔室主体封围处理区域;基板支撑组件,该基板支撑组件沿着中心轴设置。该等离子体处理腔室进一步包括源模块,该源模块被设置在该处理区域上方的腔室主体之上。该源模块包括与该基板支撑组件相对的上电极。该等离子体处理腔室进一步包括设置在该处理模块下方的流动模块以及附连至该流动模块的排放模块。该流动模块限定排空通道和大气容积。这些排空通道连接至处理模块的处理区域。该大气容积接收基板支撑组件的轴。该排放模块与该流动模块的所述排空通道流体连通。
【附图说明】
[0010]为了可详细理解本公开的上述特征的方式,可通过参照实施例对简要概述于上的本公开进行更加详细的描述,该等实施例中的一些实施例图示于附图中。然而应注意的是,这些附图仅图示本公开的典型实施例且因此不被视为限制本公开的范畴,因为本公开可允许其他等效实施例。
[0011]图1A为根据本公开案的一个实施例的等离子体处理腔室的示意性截面图。
[0012]图1B为示出了处理腔室和流动腔室的图1A的等离子体处理腔室的示意性部分分解图。
[0013]图1C为移除了基板支撑组件的处理模块和流动模块的示意性俯视图。
[0014]图2A为根据本公开案的一个实施例的流动模块的示意性透视俯视图。
[0015]图2B为图2A的流动模块的示意性透视仰视图。
[0016]图3为根据本公开案的一个实施例的底盘的示意性透视图。
[0017]图4A-4C为根据本公开案的实施例的由各种模块组装的处理腔室的示意性截面图。
[0018]为了便于理解,已经在可能的地方使用相同的附图标记来指示诸图所共有的相同元件。可构想,在一个实施例中公开的元件可有利地用于其他实施例上而无需特定详述。
【具体实施方式】
[0019]本公开案一般涉及具有模块化设计的处理腔室,以提供可变的处理容积、改良的流动传导性、和/或处理均匀性。根据本公开案的模块化设计利用简化的腔室结构实现改良的处理均匀性及对称性。模块化设计进一步通过替换模块化处理腔室中的一个或多个模块来提供用于执行各种处理或处理各种尺寸的基板的灵活性。
[0020]图1A为根据本公开案的一个实施例的等离子体处理腔室100的示意性截面图。等离子体处理腔室100可为等离子体蚀刻腔室、等离子体增强化学气相沉积腔室、物理气相沉积腔室、等离子体加工腔室、离子布植腔室、或其他合适的真空处理腔室。
[0021]等离子体处理腔室100可由多个模块组装成。模块化设计使得等离子体处理腔室100能够满足多种处理要求。如图1A中所示,等离子体处理腔室100可包括源模块102、处理模块104、流动模块106、及排放模块108。源模块102、处理模块104及流动模块106共同封围处理区域112。在操作期间,基板116可被置于基板支撑组件118上并被暴露于处理环境,诸如处理区域112中产生的等离子体。可在等离子体处理腔室100中执行的示例性处理可包括蚀刻、化学气相沉积、物理气相沉积、布植、等离子体退火、等离子体加工、消除或其他等离子体处理。可通过从排放模块108通过排空通道114的抽吸(suct1n)而在处理区域112中维持真空,排空通道114由流动模块106限定。
[0022]处理区域112及排空通道114关于中心轴110是基本上对称的,以提供对称的电流、气体流动、及热流动以建立均匀的处理条件。
[0023]在一个实施例中,如图1A中所示,源模块102可为电容耦合等离子体源。源模块102可包括上电极120 (或阳极),上电极120通过隔离器122与处理模块104隔离并由处理模块104支撑。上电极120可包括附连至热传递板130的喷头板128。上电极120可通过气体入口管126连接至气体源132。喷头板128、热传递板130、及气体入口管126可全部由射频(RF)传导材料(诸如铝或不锈钢)制成。上电极120可经由传导性气体入口管126耦合至RF电源124。传导性气体入口管126可与等离子体处理腔室100的中心轴110同轴,使得对称地提供RF功率及处理气体两者。
[0024]虽然以上描述电容性等离子体源,但源模块102可根据处理要求为任何合适的气体/等离子体源。例如,源模块102可为电感耦合等离子体源、远距等离子体源、或微波等离子体源。
[0025]处理模块104被耦合至源模块102。处理模块104可包括封围处理区域112的腔室主体140。腔室主体140可
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1