锂硫电池的制作方法

文档序号:10476072阅读:396来源:国知局
锂硫电池的制作方法
【专利摘要】一种锂硫电池,包括:阳极,所述阳极包括锂金属或锂金属合金;阴极,所述阴极包括电活性硫材料和固体导电材料的混合物;电解质,所述电解质包括四氟硼酸盐和有机溶剂;其中,所述四氟硼酸盐在所述电解质中以0.05M~0.5M的浓度存在,并且所述四氟硼酸盐以四氟硼酸根阴离子BF4与所述电活性材料中硫S的摩尔比为0.009~0.09:1的量存在。
【专利说明】
锂硫电池
技术领域
[0001]本发明涉及一种锂硫电池。本发明还涉及四氟硼酸盐作为用于提高锂硫电池循环寿命的添加剂的用途。此外,本发明涉及一种用于锂硫电池的电解质。
【背景技术】
[0002]典型的锂-硫电池包括由锂金属或锂金属合金形成的阳极(负极),和由单质硫或其他电活性硫材料形成的阴极(正极)。硫或其他含硫电活性材料可与导电材料例如碳混合,以提高其导电性。通常,将碳和硫磨碎,然后与溶剂和粘合剂混合以形成浆料。将该浆料施用于集流体,然后干燥以除去溶剂。将所得到的结构压延以形成复合结构,将该复合结构切成所需形状以形成阴极。将隔膜(separator)设置在阴极上并且将锂阳极设置在该隔膜上。将电解质引入到电池中以润湿阴极和隔膜。
[0003]锂硫电池是二次电池,并且可以通过对电池施加外部电流进行再充电。这类可再充电电池具有广泛的潜在应用。开发锂-硫二次电池时一个重要的考虑因素是使电池的有用循环寿命最大化。
[0004]当锂-硫电池放电时,阴极中的硫在两阶段中还原。在第一阶段,硫(例如单质硫)被还原成多硫化物物质Sn2—(η > 2)。在放电的第二阶段,上述多硫化物物质被还原成硫化锂Li2S,其通常沉积在阳极的表面上。当电池充电时,两阶段机制通常以相反方向发生,硫化锂被氧化成锂多硫化物,之后被氧化成锂和硫。多硫化物物质需要溶于电解质,因为这增加了放电过程中电活性材料的利用率。在多硫化物没有溶解的情况下,电活性硫的还原可能局限于碳-硫界面处,从而导致电池容量较低。
[0005]锂硫电池的电解质通常包含电解质盐和有机溶剂。合适的电解质盐包括锂盐。实例包括六氟磷酸锂(LiPF6)、六氟砷酸锂(LiAsF6)、高氯酸锂(LiClO4)、三氟甲磺酰亚胺锂(LiN(CF3SO2)2)和三氟甲磺酸锂(CF3SO3Li)15这样的锂盐在电解质中提供携带电荷的物质,使得氧化还原反应在电极上发生。
[0006]四氟硼酸锂(LiBF4)是在锂离子电池中已作为电解质盐使用的锂盐。然而,根据Journal of Power Sources 231(2013)153-162,四氟硼酸锂不适合用作电解质盐,因为它与锂多硫化物发生如下反应:
[0007]LiBF4+Li2Sn^LiBS2F2+2LiF
[0008]这使得四氟硼酸锂与多硫化物物质不相容(请见3.2.2节)。

【发明内容】

[0009]在描述本发明的具体实施例之前,应当理解,本公开并不限于本文公开的具体的电池、方法或材料。也应当理解,本文中使用的术语仅用于描述具体实施例,而不用于限制,因为保护范围将由权利要求书及其等同物来限定。
[0010]在描述和要求保护本发明的电池和方法时,将使用下列术语:除非上下文另有明确说明,单数形式“一种”、“一个”和“该”包括复数形式。因此,例如,“阳极”包括一个或多个这样的元件。
[0011]根据本发明的一个方面,提供一种锂硫电池,所述锂硫电池包括:
[0012]阳极,所述阳极包括锂金属或锂金属合金;
[0013]阴极,所述阴极包括电活性硫材料和固体导电材料的混合物;
[0014]电解质,所述电解质包括四氟硼酸盐和有机溶剂;
[0015]其中,所述四氟硼酸盐在所述电解质中以0.05M?0.5M的浓度存在,并且
[0016]其中,所述四氟硼酸盐以四氟硼酸根阴离子BF4—与所述电活性材料中硫S的摩尔比为0.009?0.09:1的量存在。
[0017]根据另一方面,本发明还提供四氟硼酸盐作为用于提高锂硫电池循环寿命的添加剂的用途。
[0018]有利地,已经发现四氟硼酸盐可被用作用于提高锂硫电池循环寿命的添加剂。不希望受到任何理论的束缚,认为四氟硼酸根阴离子使在放电时形成的多硫化物成溶剂化物,从而提高它们在电解质中的溶解度。这增加了放电过程中电活性材料的利用率。在多硫化物没有溶解的情况下,电活性硫的还原可能仅发生在碳-硫界面处,从而导致电池容量较低。
[0019]由于硫是不导电的,硫的还原通常仅限于与导电材料或集流体接触的硫颗粒的表面上。因此需要较小的硫颗粒,因为在颗粒中间的硫可能不容易发生还原。出人意料的是,认为四氟硼酸根阴离子阻碍了硫的团聚。通过向电池中添加四氟硼酸盐,可以减少硫的团聚,从而降低了电池的电阻和容量衰减的趋势。结果,电池的循环寿命可以得以增加。
[0020]可以使用任何合适的四氟硼酸盐。合适的盐包括金属盐和/或铵盐。合适的金属盐包括碱金属盐,该碱金属盐包括钾盐、钠盐和锂盐。优选使用四氟硼酸锂。合适的铵盐包括四烷基铵盐。实例包括四乙基铵盐和四甲基铵盐。
[0021 ] 上述四氟硼酸盐可以在电解质中以0.05M?0.5M的浓度存在。四氟硼酸盐的浓度应优选足以提供循环寿命的明显改善。然而,四氟硼酸盐的浓度应优选不要太高而产生不希望的副反应。不希望受到任何理论的束缚,认为浓度显著高于0.5M时,四氟硼酸盐可能与多硫化物物质以不希望的副反应进行反应。这样的不希望的副反应的实例如下:
[0022]LiBF4+Li2Sn^LiBS2F2+2LiF
[0023]优选地,四氟硼酸盐在电解质中以0.1M?0.4M,更优选0.2M?0.3M,例如,约0.3M
的浓度存在。
[0024]当在锂硫电池中使用时,四氟硼酸盐以四氟硼酸根阴离子BF4—与电活性材料中硫S的摩尔比为0.009?0.09:1,优选0.01?0.09:1,更优选0.02?0.09:1的量存在。优选地,四氟硼酸根阴离子BF4—与电活性材料中硫S的摩尔比为0.03?0.08:1,更优选0.04?0.07:1,例如0.05?0.07:1。在一个实施方式中,四氟硼酸盐以四氟硼酸根阴离子BF4—与电活性材料中硫S的摩尔比为0.06:1。为避免疑义,摩尔比基于电解质中四氟硼酸根阴离子BF4—的摩尔数和电活性材料中硫(S)的摩尔数进行计算。因此,当电活性材料不仅仅是由硫组成时,该电活性材料中硫(S)的摩尔数将小于电活性材料的摩尔数。
[0025]电解质可包括另外的电解质盐(S卩,提供的除四氟硼酸盐之外的电解质盐)。另外的电解质盐优选为锂盐(即,不是四氟硼酸锂的锂盐)。合适的锂盐包括六氟磷酸锂、六氟砷酸锂、高氯酸锂、三氟甲磺酰亚胺锂和三氟甲磺酸锂。优选锂盐是三氟甲磺酸锂。可以使用盐的组合。另外的电解质盐可以在电解质中以0.1M?5M,优选0.5M?3M,例如IM的浓度存在。在一个实施方式中,另外的电解质盐是锂盐,其在电解质中以该锂盐在电解质或电解质溶剂中的饱和浓度的50 %?100 %的浓度存在。锂盐可以以饱和浓度的70 %?100 %,更优选饱和浓度的80 %?100 %,例如,饱和浓度的90 %?100 %的浓度存在。通过使用另外的电解质盐等于或接近其饱和极限的如此高浓缩的溶液,可以提高电池的循环效率和降低容量衰减的速率。
[0026]四氟硼酸盐的摩尔浓度可小于另外的电解质盐的摩尔浓度的90%,优选小于80 %,更优选小于70 %,还更优选小于60 %,例如,小于50 %。在一个实施方式中,四氟硼酸盐的摩尔浓度可小于另外的电解质盐的摩尔浓度的40%,例如,小于30%。四氟硼酸盐的摩尔浓度可大于另外的电解质盐的摩尔浓度的1%,优选大于5%,例如,大于10%。在一个实施方式中,四氟硼酸盐的摩尔浓度可为另外的电解质盐的摩尔浓度的I %?40%,优选5%?30%,例如10%?20%。
[0027]又一方面,本发明提供一种用于锂硫电池的电解质,所述电解质包括:
[0028]四氟硼酸盐;
[0029]有机溶剂;以及
[0030]锂盐,所述锂盐选自六氟磷酸锂、六氟砷酸锂、高氯酸锂、三氟甲磺酰亚胺锂和三氟甲磺酸锂中的至少一种;
[0031 ]其中,所述四氟硼酸盐在所述电解质中以0.05M?0.5M的浓度存在,并且
[0032]其中,所述锂盐在所述电解质中以所述锂盐在所述电解质中的饱和浓度的50%?100%的浓度存在。
[0033]如上所讨论,根据本发明的一个方面,提供一种锂硫电化学电池,所述锂硫电化学电池包括:阳极,所述阳极包括锂金属或锂金属合金;阴极,所述阴极包括电活性硫材料和固体导电材料的混合物;多孔隔膜;电解质,所述电解质包括至少一种锂盐、至少一种有机溶剂,和表面活性剂。
[0034]本发明的电化学电池可以是任何合适的锂硫电池。上述电池通常包括阳极、阴极、电解质和优选的多孔隔膜,该多孔隔膜可有利地设置在阳极和阴极之间。阳极可由锂金属或锂金属合金形成。优选地,阳极是金属箔电极,如锂箔电极。锂箔可由锂金属或锂金属合金形成。
[0035]电化学电池的阴极包括电活性硫材料和导电材料的混合物。该混合物形成电活性层,其可设置为与集流体接触。
[0036]上述电活性硫材料可包括单质硫、硫类有机化合物、硫类无机化合物和含硫的聚合物。优选使用单质硫。
[0037]上述固体导电性材料可以是任何合适的导电材料。优选该固体导电材料可由碳形成。实例包括炭黑、碳纤维、石墨烯和碳纳米管。其他合适的材料包括金属(例如薄片、碎肩和粉末)以及导电聚合物。优选使用炭黑。
[0038]电活性硫材料和导电性材料的混合物可以在溶剂(例如水或有机溶剂)中的浆料形式施用于集流体。然后可将溶剂除去,并将所得到的结构压延以形成复合结构,可将该复合结构切成所需形状以形成阴极。可将隔膜设置在阴极上并且将锂阳极设置在该隔膜上。然后可将电解质引入到组装的电池中以润湿阴极和隔膜。或者,在将锂阳极设置在隔膜上之前,例如可通过涂覆或喷涂将电解质施用于隔膜。
[0039]如上所讨论,上述电池包括电解质。电解质存在于或设置在电极之间,使电荷能够在阳极和阴极之间转移。优选地,电解质润湿阴极的孔以及隔膜的孔。
[0040]在电解质中使用的合适的有机溶剂是四氢呋喃、2-甲基四氢呋喃、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸甲丙酯、丙酸甲丙酯、丙酸乙丙酯、乙酸甲酯、二甲氧基乙烷、I,3-二氧戊环、二甘醇二甲醚(2-甲氧基乙醚)、四甘醇二甲醚、碳酸亚乙酯、碳酸亚丙酯、丁内酯、二氧戊环、六甲基磷酰胺、吡啶、二甲亚砜、磷酸三丁酯、磷酸三甲酯、N,N,N,N_四乙基磺酰胺和砜,以及它们的混合物。优选地,上述有机溶剂是砜或砜的混合物。砜的实例是二甲基砜和环丁砜。环丁砜可作为唯一的溶剂使用或例如与其他砜组合使用。在一个实施方式中,电解质包括三氟甲磺酸锂和环丁砜。
[0041 ]在电解质中使用的有机溶剂应能够溶解在电池放电过程中电活性硫材料还原时形成的多硫化物物质,例如,式Sn2—的多硫化物物质,其中η = 2?12。如上所讨论,四氟硼酸根阴离子有利地使多硫化物成溶剂化物,从而增加它们在电解质中的溶解度。
[0042]当隔膜存在于本发明的电池中时,该隔膜可包括任何合适的允许离子在电池电极之间移动的多孔基材。该隔膜应设置在电极之间以防止电极之间的直接接触。基材的孔隙率应为至少30%,优选至少50%,例如,60%以上。合适的隔膜包括由聚合物材料形成的网状物。合适的聚合物包括聚丙烯、尼龙和聚乙烯。特别优选无纺聚丙烯。可以使用多层隔膜。
【具体实施方式】
[0043]实施例
[0044]实施例1
[0045]在该实施例中,包括在环丁砜中的IM三氟甲磺酸锂的电解质被用作锂-硫电池中的参比电解质。测定了参比电池超过约140个循环的放电容量。以相同的方式制造了另外的电池,不同的是将四氟硼酸锂加入到参比电解质中以形成在电解质中0.1M的LiBF4溶液。测定了电池超过约140个循环的放电容量。从图1中可以看出,容量衰减的速率通过添加四氟硼酸盐而降低。在该实施例中,四氟硼酸根阴离子BF4—与电活性材料中S的比例为0.01875:1o
[0046]实施例2
[0047]在该实施例中,以与实施例1参比电池相同的方式制造了另外的电池,不同的是将四氟硼酸锂加入到参比电解质中以形成在电解质中0.05Μ的LiBF4溶液。测定了电池超过约60个循环的放电容量。将这些放电容量与参比电池的放电容量进行了比较。从图2中可以看出,在添加四氟硼酸盐的情况下,在约35个循环后可以观察到容量衰减的改进。在该实施例中,四氟硼酸根阴离子BF4—与电活性材料中S的比例为0.0093:1。
[0048]实施例3
[0049]在该实施例中,以与实施例1参比电池相同的方式制造了另外的电池,不同的是将四氟硼酸锂加入到参比电解质中以形成在电解质中0.2Μ的LiBF4溶液。测定了电池超过60+循环的放电容量。将这些放电容量与参比电池的放电容量进行了比较。从图3中可以看出,在添加四氟硼酸盐的情况下,在约25个循环后可以观察到容量衰减的改进。在该实施例中,四氟硼酸根阴离子BF4—与电活性材料中S的比例为0.0375:1。
[0050]实施例4
[0051]在该实施例中,以与实施例1参比电池相同的方式制造了另外的电池,不同的是将四氟硼酸锂加入到参比电解质中以形成在电解质中0.3M的LiBF4溶液。测定了电池超过50+循环的放电容量。将这些放电容量与参比电池的放电容量进行了比较。从图4中可以看出,在添加四氟硼酸盐的情况下,观察到了容量衰减的改进。在该实施例中,四氟硼酸根阴离子BF4—与电活性材料中S的比例为0.05625:1。
[0052]实施例5
[0053]在该实施例中,以与实施例1参比电池相同的方式制造了另外的电池,不同的是将四氟硼酸锂加入到参比电解质中以形成在电解质中0.4M的LiBF4溶液。测定了电池超过40+循环的放电容量。将这些放电容量与参比电池的放电容量进行了比较。从图5中可以看出,在添加四氟硼酸盐的情况下,观察到了容量衰减的改进。在该实施例中,四氟硼酸根阴离子BF4—与电活性材料中S的比例为0.075:1。
[0054]实施例6
[0055]在该实施例中,以与实施例1参比电池相同的方式制造了另外的电池,不同的是将四乙基四氟硼酸铵加入到参比电解质中以形成在电解质中0.05M的TEABF4溶液。测定了电池超过50+循环的放电容量。将这些放电容量与参比电池的放电容量进行了比较。从图6中可以看出,在添加四氟硼酸盐的情况下,观察到了容量衰减的改进。在该实施例中,四氟硼酸根阴离子BF4—与电活性材料中S的比例为0.0093:1。
[0056]实施例7
[0057]在该实施例中,以与实施例1参比电池相同的方式制造了另外的电池,不同的是使用包括在环丁砜中的1.25M三氟甲磺酸锂的电解质。测定了电池超过50+循环的放电容量。将这些放电容量与参比电池和实施例3电池(IM三氟甲磺酸锂+0.2M LiBF4)的放电容量进行了比较。从图7中可以看出,尽管电解质中的总锂盐浓度相当,使用包括1.25M三氟甲磺酸锂的电解质形成的电池也比使用包括IM三氟甲磺酸锂+0.2M LiBF4的电解质形成的电池表现明显更差。向电解质中添加0.2M LiBF4显著改进了电池对容量衰减的耐受性。
【主权项】
1.一种锂硫电池,包括: 阳极,所述阳极包括锂金属或锂金属合金; 阴极,所述阴极包括电活性硫材料和固体导电材料的混合物; 电解质,所述电解质包括四氟硼酸盐和有机溶剂; 其中,所述四氟硼酸盐在所述电解质中以0.05M?0.5M的浓度存在,并且其中,所述四氟硼酸盐以四氟硼酸根阴离子BF4—与电活性材料中硫S的摩尔比为0.009?0.09:1的量存在。2.根据权利要求1所述的电池,其中,所述四氟硼酸盐在所述电解质中以0.1M?0.4M的浓度存在。3.根据前述权利要求中任一项所述的电池,其中,所述四氟硼酸盐以四氟硼酸根阴离子BF4—与所述电活性材料中硫S的摩尔比为0.04?0.07:1的量存在。4.根据前述权利要求中任一项所述的电池,其中,所述四氟硼酸盐是碱金属盐或铵盐。5.根据权利要求4所述的电池,其中,所述四氟硼酸盐是四氟硼酸锂和/或四乙基四氟硼酸铵。6.根据前述权利要求中任一项所述的电池,其中,所述电解质包括另外的电解质盐。7.根据权利要求6所述的电池,其中,所述另外的电解质盐是锂盐。8.根据权利要求7所述的电池,其中,所述锂盐选自六氟磷酸锂、六氟砷酸锂、高氯酸锂、三氟甲磺酰亚胺锂和三氟甲磺酸锂中的至少一种盐。9.根据权利要求6?8中任一项所述的电池,其中,所述另外的电解质盐在所述电解质中以0.3M?2M的浓度存在。10.根据权利要求8或9所述的电池,其中,所述另外的电解质盐在所述电解质中以所述锂盐在所述电解质中的饱和浓度的50%?100%的浓度存在。11.根据权利要求8?10中任一项所述的电池,其中,所述四氟硼酸盐的摩尔浓度为所述另外的电解质盐的摩尔浓度的10%?20%。12.根据前述权利要求中任一项所述的电池,其中,所述电活性硫材料是单质硫。13.四氟硼酸盐作为用于提高锂硫电池循环寿命的添加剂的用途。14.一种用于锂硫电池的电解质,所述电解质包括: 四氟硼酸盐; 有机溶剂;以及 锂盐,所述锂盐选自六氟磷酸锂、六氟砷酸锂、高氯酸锂、三氟甲磺酰亚胺锂和三氟甲磺酸锂中的至少一种; 其中,所述四氟硼酸盐在所述电解质中以0.05M?0.5M的浓度存在,并且其中,所述另外的电解质盐在所述电解质中以所述锂盐在所述电解质中的饱和浓度的50%?100%的浓度存在。
【文档编号】H01M4/38GK105830258SQ201480068250
【公开日】2016年8月3日
【申请日】2014年12月16日
【发明人】塞巴斯蒂安·德西拉尼
【申请人】奥克斯能源有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1