电压转换装置与使用其的离子风散热装置的制作方法

文档序号:7477646阅读:337来源:国知局
专利名称:电压转换装置与使用其的离子风散热装置的制作方法
技术领域
本实用新型是有关于ー种电カ转换技术,且特别是有关于ー种在有限设备空间的电压转换装置与使用其的离子风散热装置。
背景技术
对于一般的电器用品在使用时,多半会伴随着热量的发生,而高温会导致电器用品或其内部的电子元件在运作时累积过大的热能而导致温度上升。并且,一般电器用品的设计会配合使用ー散热装置,以利于进行散热。较常见到的散热装置为风扇模块,施以强制对流的方式来进行散热作用。但是,此强制对流的散热装置在使用时,风扇模块会产生噪音,并且风扇模块本身会有使用寿命、易积尘、大体积以及耗能等问题,故至今仍令人诟病 与难解。另外,在许多的应用场合需要将低电压升压至较高电压,以提供设备的高电压需求,但因受限于元件与控制器的能力,或是受限于设备本身的空间,因此不可能在配置变压器时,毫无限制地对变压器提高绕组的匝数比。

实用新型内容本实用新型是在提供ー种电压转换装置与使用其的离子风散热装置,其得以解决所述及现有技术的问题。本实用新型提供ー种电压转换装置,其包括直流-交流转换单元、变压器以及电荷泵电路。直流-交流转换单元用以对直流输入电压进行转换,从而输出交流输出电压。变压器具有一次侧绕组与二次侧绕组,其中一次侧绕组耦接直流-交流转换单元的输出。电荷泵电路耦接二次侧绕组,用以反应二次侧绕组上的交流感应电压而进行一升压处理,从而产生输出电压给负载。在依据本实用新型的实施例中,所述直流-交流转换单元包括以脉宽调制架构为基础的控制器以及开关装置。开关装置用以接收并切换直流输入电压,从而输出交流输出电压。控制器耦接开关装置,用以控制开关装置进行切換,从而使开关装置输出交流输出电压。在依据本实用新型的实施例中,所述电荷泵电路由N个ニ极管与N个电容所组成,其中N为正整数。在依据本实用新型的实施例中,当负载为离子风扇模块吋,所述输出电压至少为4kV。从另ー观点来看,本实用新型又提供一种离子风散热装置。离子风散热装置包括电压转换装置以及离子风扇模块。电压转换装置包括直流-交流转换单元、变压器以及电荷泵电路。直流-交流转换单元用以对直流输入电压进行转换,从而输出交流输出电压。变压器具有一次侧绕组与二次侧绕组,其中一次侧绕组耦接直流-交流转换单元的输出。电荷泵电路耦接二次侧绕组,用以反应二次侧绕组上的交流感应电压而进行一升压处理,从而产生输出电压。离子风扇模块耦接电荷泵电路,用以操作在输出电压下以进行运转。在依据本实用新型的实施例中,所述直流-交流转换单元包括以脉宽调制架构为基础的控制器以及开关装置。开关装置用以接收并切换直流输入电压,从而输出交流输出电压。控制器耦接开关装置,用以控制开关装置进行切換,从而使开关装置输出交流输出电压。在依据本实用新型的实施例中,所述电荷泵电路由N个ニ极管与N个电容所组成,其中N为正整数。在依据本实用新型的实施例中,所述离子风散热装置输出电压至少为4kV。综上所述,本实用新型因采用两阶段升压方式,第一阶段以变压器进行升压,第二 阶段以电荷泵进行升压,所以可以有效地解决传统因受限于设备空间而无法提升电压的问题。另ー方面,本实用新型的离子风散热装置可以应用在有限空间,离子风扇模块可操作在输出电压下并进行运转,并且产生散热效果。由于离子风扇以无扇方式制风,所以不会有传统风扇噪音、风扇寿命、风扇积尘或大体积的问题。另外,本实用新型的离子风散热装置相较于传统的风扇散热装置具有体积小、无活动零件与节省能源的优点。为让本实用新型的上述特征和优点能更明显易懂,下文特举实施例,并配合附图,作详细说明如下。

图I是依据所列举ー实施例的离子风散热装置的电路示意图;图2是图I的离子风散热装置的各节点电压随着时间变化的波形示意图。附图标记说明10 :直流-交流转换单元;20:控制器;24 :开关装置;25、26、27、28 :开关;30 :变压器;40 : 一次侧绕组;50 : 二次侧绕组;60:电荷泵电路;62 : ニ极管;64 电容;100 :离子风散热装置;110:电压转换装置;120 :离子风扇模块;节点;Vaci :交流感应电压;Vacq:交流输出电压;Vin :输入电压;[0036]Vout:输出电压。
具体实施方式
本实用新型的实施例现将以详细实施方式来作为參考,在附图中说明所述实施例的实例。在可能的情况下,将在附图说明中始終使用相同參考附图标记说明来指代相同或相似的部分。在下述诸实施例中,当元件被指为“连接”或“耦接”至另一元件时,其可为直接连接或耦接至另一元件,或可能存在介于其间的元件。相对地,当元件被指为“直接连接”或“直接耦接”至另一元件吋,则不存在有介于其间的元件。图I是依据所列举ー实施例的离子风散热装置的电路示意图。请參阅图I。离子 风散热装置100包括电压转换装置110以及离子风扇模块120。此电压转换装置110电性连接于输入电压Vin及离子风扇模块120之间,用以提升直流输入电压Vin而成为输出电压(高电压)¥_给离子风扇模块120(负载)来使用。直流输入电压Vin可以为一般的直流电压源,输入电压Vin范围可介于5至18V,但不以此为限,而所述输出电压Vtot是指电压值为千伏等级以上的闻电压。更清楚来说,电压转换装置110包括直流-交流转换单元10、变压器30以及电荷泵电路60。直流-交流转换单元10用以对直流输入电压Vin进行转换,从而输出一交流输出电压变压器30具有一次侧绕组40与二次侧绕组50,其中一次侧绕组40耦接直流-交流转换单元10的输出。此电压转换装置110分两阶段进行升压,第一阶段利用变压器30进行升压,第二阶段利用电荷泵电路60进行另一次的升压。直流-交流转换单元10包括以脉宽调制架构为基础的控制器20以及开关装置24。开关装置24接收直流输入电压VIN。控制器20耦接至开关装置24。控制器20通过脉宽调制(pulse width modulation, PWM)的方式控制开关装置24进行切换,从而使开关装置24输出交流输出电压Vacq至变压器30的一次侧绕组40上。变压器30在第一阶段升压过程中,一次侧绕组40与二次侧绕组50透过磁耦合到同一个变压器铁芯,并且进行升压而产生交流感应电压VACI。二次侧绕组50用于提升原先的输入电压Vin的电平,其中交流输出电压的电平介于+Vin至-VIN。另外,一次侧绕组40与二次侧绕组50的匝数比可以为I : K。请注意,本实用新型的变压器30不以很高的匝数比进行升压,所以相较于传统的变压器而言,电压转换装置110内的变压器体积不会很大,有助于将变压器30配置在有限的设备空间内。另ー方面,变压器30因不使用非常高的匝数比,所以一次侧绕组40与二次侧绕组50之间的损耗不会严重,甚至可以忽略。电荷泵电路60耦接至变压器30的二次侧绕组50。在第二阶段升压过程中,电荷泵电路60用以接收交流感应电压VAa,并且对交流感应电压VAa升压以产生ー输出电压VTOT,其中此输出电压Vtot为提供离子风扇模块120所需的高电压,而输出电压Votit可以为I至N倍的交流感应电压VAa,其中N为大于I的数字。在又一实施例中,可以将输出电压Vmjt设计为至少4kV或4kV以上,但本实用新型的输出电压Vtot的数值不以此为限。当离子风扇模块120施加4kV以上的高电压时,在强电场之下将造成电晕现象,使得空气离子移动而产生电风,或称为离子风,带动空气经由离子风扇模块120的本体而进行散热。因此配置有离子风散热装置100的电子设备可以因热对流原理而产生散热效果。由于离子风扇模块120以无扇方式制风,所以不会有传统的风扇噪音、风扇寿命、风扇积尘或大体积等问题。并且,本实用新型的离子风散热装置100相较于传统的风扇散热装置,本实用新型具有体积小、无活动零件与节省能源的优点。另外,当不需要大风流进行冷却时,可以经由控制器20的脉宽调制控制,来降低所输出的电压。在了解本实用新型的电路构造与运作必须的细节之后,以下再举几个实施方式以便本领域的技术人员能够更进一歩的了解本实用新型的精神,并实施本实用新型。请再參阅图I。在此实施例中,开关装置24可包括开关25、开关26、开关27及开关28,其中开关25、开关26可以为P型金氧半导体(p-type metal oxide semiconductor,PMOS),而开关 27、开关 28 可以为 N 型金氧半导体(n-type metal oxide semiconductor,NM0S),但不以此为限。以脉宽调制架构为基础的控制器20可以全桥驱动方式控制开关 25 开关28以进行切換。全桥驱动方式可以如下当开关25及开关28导通吋,开关26及开关27不导通;而当开关26及开关27导通吋,开关25及开关28不导通。因此导通于ー次侧绕组40的能量会反应于二次侧绕组50上。上述控制器20与开关装置24的设计是以全桥驱动方式。另外,在又一变化实施例中,控制器20可以改为半桥驱动方式,并且通过半桥驱动方式来控制开关装置24内的各开关的切換。请注意,本实用新型的驱动方式应当不限制于上述可能的方式。针对变压器30的设计,一次侧绕组40与二次侧绕组50的匝数比可以为I : K,用以将一次侧绕组40的交流输出电压νΑω提升K倍。例如一次侧绕组40的弦波在电平+Vin至-Vin之间振荡,而反应二次侧绕组50的弦波则在电平+Vp至-Vp之间振荡,其中电压Vp=K X Vin,并且交流感应电压VAa = KXVAC。。电荷泵电路60耦接在变压器30的二次侧绕组50。电荷泵电路60接收交流感应电压VAa,之后对交流感应电压Vaci升压并且产生ー输出电压Vtm,其中此输出电压Votit为提供给离子风扇模块120所需的高电压。因此,输出电压Vtot可以为I至N倍的交流感应电
压 Vaci。值得ー提的是,电荷泵电路60是由N个ニ极管62与N个电容64所组成,其中N为正整数。例如,电荷泵电路60包括ニ极管62以及电容64所组成的电路,利用电压递升原理倍增电压。图2是图I的离子风散热装置100的各节点电压随着时间变化的波形示意图。请合并參阅图I和图2。节点Ntl的电压为交流感应电压VAa,而交流感应电压VAa的弦波大约在+Vp至-Vp之间振荡。节点N1的电压为电压V1,而电压V1的弦波大约在2VP至O之间振荡。节点N2的电压为电压V2,而电压V2的直流电压大约为2VP ;较精确来说,电压V2的直流大小=2X (KXVin-Vf),Vf为ニ极管的顺向电压。节点N3的电压为电压V3,而电压V3的弦波大约在3VP至2VP之间振荡。在节点Notit提供ー输出电压VOT,而此输出电压Votit的直流大小=2XN X (K XVin-Vf)。故,在本实施例中输出电压Vtot的数值可以很容易地通过输入电压VIN、K与N等,经计算而获得设计值。例如,将输出电压Vot设计为4kV或4kV以上,以提供后端所需的高电压与高电场。请注意,可以根据实际需求来设计输出电HVott的数值,从而当离子风扇模块120通以高电压时,带动空气经由离子风扇模块120的本体而流动,并使设备空间中的热量散去。[0053]总结本实用新型的重要特征,本实用新型的离子风散热装置中,电压转换装置采用两阶段升压方式,第一阶段以变压器进行升压,第二阶段以电荷泵进行升压,所以可以有效地解决传统因受限于设备空间而无法提升电压的问题。另ー方面,本实用新型的离子风散热装置可以应用在有限空间,离子风扇模块可操作在输出电压下并进行运转,并且产生散热效果。由于离子风扇模块以无扇方式制风,所以不会有传统风扇噪音、风扇寿命、风扇积尘或大体积的问题。另外,本实用新型的离子风散热装置相较于传统的风扇散热装置具有体积小、无活动零件与节省能源的优点,从而配置本实用新型的离子风散热装置的电子设备的组合可以变得轻巧,增加应用上与使用上的便利性。如上述较佳实施例及电路分析的评价,相对于现有技术,本实用新型的新颖电路提供了高效率即可大量制造的替代方案。最后应说明的是以上各实施例仅用以说明本实用新型的技术方案,而非对其限制;尽管參照前述各实施例对本实用新型进行了详细的说明,本领域的普通技术人员应当 理解其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本实用新型各实施例技术方案的范围。
权利要求1.ー种电压转换装置,其特征在于,包括 一直流-交流转换单元,用以对一直流输入电压进行转换,从而输出一交流输出电压;ー变压器,具有一次侧绕组与二次侧绕组,其中上述一次侧绕组耦接上述直流-交流转换单元的输出;以及 ー电荷泵电路,耦接上述二次侧绕组,用以反应上述二次侧绕组上的一交流感应电压而进行一升压处理,从而产生ー输出电压给一负载。
2.根据权利要求I所述的电压转换装置,其特征在于,上述直流-交流转换单元包括 ー开关装置,用以接收并切换上述直流输入电压,从而输出上述交流输出电压;以及 一以脉宽调制架构为基础的控制器,耦接上述开关装置,用以控制上述开关装置进行切換,从而使上述开关装置输出上述交流输出电压。
3.根据权利要求I所述的电压转换装置,其特征在干,上述电荷泵电路由N个ニ极管与N个电容所组成,其中N为正整数。
4.根据权利要求I所述的电压转换装置,其特征在于,上述负载为一离子风扇模块,且上述输出电压至少为4kV。
5.一种离子风散热装置,其特征在于,包括 ー电压转换装置,包括 一直流-交流转换单元,用以对一直流输入电压进行转换,从而输出一交流输出电压;ー变压器,具有一次侧绕组与二次侧绕组,其中上述一次侧绕组耦接上述直流-交流转换单元的输出;以及 ー电荷泵电路,耦接上述二次侧绕组,用以反应上述二次侧绕组上的一交流感应电压而进行一升压处理,从而产生ー输出电压;以及 一离子风扇模块,耦接上述电荷泵电路,用以操作在上述输出电压下以进行运转。
6.根据权利要求5所述的离子风散热装置,其特征在干,上述直流-交流转换单元包括 ー开关装置,用以接收并切换上述直流输入电压,从而输出上述交流输出电压;以及一以脉宽调制架构为基础的控制器,耦接上述开关装置,用以控制上述开关装置进行切換,从而使上述开关装置输出上述交流输出电压。
7.根据权利要求5所述的离子风散热装置,其特征在于,上述电荷泵电路由N个ニ极管与N个电容所组成,其中N为正整数。
8.根据权利要求5所述的离子风散热装置,其特征在干,上述输出电压至少为4kV。
专利摘要本实用新型提供一种电压转换装置与使用其的离子风散热装置。电压转换装置包括直流-交流转换单元、变压器以及电荷泵电路。直流-交流转换单元用以对直流输入电压进行转换,从而输出交流输出电压。变压器具有一次侧绕组和二次侧绕组。电荷泵电路用以反应于二次侧绕组上的交流感应电压而进行一升压处理,从而产生输出电压给负载,其中此输出电压为提供离子风扇模块所需的高电压。
文档编号H02M7/5387GK202634281SQ201220186628
公开日2012年12月26日 申请日期2012年4月27日 优先权日2012年4月27日
发明者于岳平, 陈冠霖, 简旻助, 陈福元 申请人:力钜电子股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1