一种风电储能的控制设备、储能系统及其控制方法与流程

文档序号:11873883阅读:1186来源:国知局
一种风电储能的控制设备、储能系统及其控制方法与流程

本发明涉及风力发电的系统设计领域,特别涉及一种风电储能用的控制设备、含有该设备的储能系统及其控制方法。



背景技术:

风电应用是新能源发展的热点,风电组件又称风力发电机,是利用风能装置中线圈绕组的磁通量改变而将风能直接转变为电能的一种技术;狭义的风力发电系统多指风电组件、控制器和逆变器三部分,不涉及蓄电池和机械部件。

风力发电系统分为独立风力发电系统、并网风力发电系统及分布式风力发电系统,其中独立风力发电亦称离网风力发电,主要由风电组件、控制器、蓄电池(本说明书又简称为电池)组成,若要为交流负载供电,还需要配置交流逆变器;风力发电系统按运行方式可分为独立运行逆变器和并网逆变器。行业预期在今后十几年,市场将由独立发电系统转向并网发电系统,其中又分为带蓄电池的和不带蓄电池的并网发电系统;行业公认,带蓄电池的并网发电系统具有可调度性,可根据需要并入或退出电网,而且具有备用电源的功能,是并网风力发电技术应用的主流发展方向。现阶段行业对配套蓄电池用的充放电控制器的标准化设计大多着眼于控制蓄电池组过充电或过放电,或附加以蓄电池充电电压为控制内容的温度补偿电路。

现阶段风力发电系统的设计中,潜移默化地将蓄电池视为一种理想储能装置,一个应用现象为:风力在设计范围内,所匹配蓄电池的载荷正常,但当风力很小时,即使增加了风电组件内部的机械加速系统,所能增加的储电量也很有限,一般认为当风电组件获得的电流太弱时,对蓄电池充电无贡献。研究认为,蓄电池内阻与荷电态这一对关联变量的系统效应,还未被充分重视,行业希望寻求到一种能增加系统储存电量、有效延长蓄电池组寿命、降低系统发电成本的技术方案。



技术实现要素:

本发明的目的,在于针对常规风电储能系统的技术现状,提供一种结构有别于常规充电器的控制设备的设计方案,该控制设备设计为多充电接口端,具有对风力发电状态的数据采集和系统反应功能,可以有效延长储能电池的匹配使用寿命,降低蓄电池的更换成本,增加风电储能系统的储电、发电量。

为实现上述技术目的,本发明提供了一种风电储能用的控制设备,所述的控制设备包括:测控装置2、风电输入端3、电源输出接口5、风电采集装置6和巡检装置12;所述测控装置2的电源输入端通过风电输入端3电连接风电组件1,其电源输出端与电源输出接口5电连接;所述风电采集装置6的输入端连接风电输入端3,其信号输出端连接测控装置2;所述的电源输出接口5由若干电控逻辑开关组成,其连接用于风电储能的蓄电池组4两端以及蓄电池组中的串联抽头端;所述控制设备通过对所述风电输入端3的风电状态进行信号采集、处理,在设定控制逻辑下对所述蓄电池组4实现智能化充电。

本发明中,所述与控制设备匹配的蓄电池组4包括至少两个串联连接的电池模块,且电池模块串联的接口设置有外接端。

所述控制设备的测控装置2包括接口逻辑模块2a、信号处理模块2b和充电模块2c;所述各个子模块选择性分立设置或共用一体化模块实现其功能。

优选的,所述信号处理模块2b的信号输入端连接风电采集装置6,其信号输出端分别连接所述的充电模块2c和接口逻辑模块2a;所述接口逻辑模块2a的信号输出端电连接电源输出接口5,其信号输入端连接所述的信号处理模块2b;所述充电模块2c的电源输入端电连接风电输入端3或风电采集装置6,其电源输出端电连接电源输出接口5,其信号输入端连接信号处理模块2b。

优选的,所述的充电模块2c包括输出电压恒定电路和输出电流限制电路。

优选的,所述充电模块的输出电流不限波形、频率及占空比。

作为上述技术方案的一种改进,所述测控装置中的充电模块2c分立设置。

作为上述技术方案的又一种改进,所述测控装置中的接口逻辑模块2a分立设置。

所述的测控装置2还包括电压提升模块7,电压提升模块的信号输入端连接信号处理模块2b,其电源输入端/输出端电连接风电输入端3/充电模块2c或充电模块2c/电源输出接口5;即电源输入端电连接风电输入端3、电源输出端电连接充电模块2c,或电源输入端电连接充电模块2c、电源输出端电连接电源输出接口5。

优选的,所述的电压提升模块7独立设置,亦可将其部分功能或全部功能与所述的充电模块2c一体化集成。

所述的控制设备中,巡检装置12的信号输入端连接蓄电池组4中受控电池模块的两端,其信号输出端连接所述的测控装置2;所述的巡检装置12独立设置,亦可将其部分功能或全部功能与所述的电源输出接口5一体化集成。

所述巡检装置的功能,是将蓄电池组4中受控电池模块的状态数据反馈给测控装置(信号处理模块2b),所述的状态数据包括受控电池模块的电压数据或/和容量数据,为在设定逻辑状态下充电模块2c对某受控电池模块或某电池模块组实现优先充电提供逻辑依据。

作为上述技术方案的再一种改进,所述风电采集装置6的信号采集功能内置于测控装置2,通过测控装置的一体化设计实现其部分逻辑功能或全部逻辑功能。

本发明还公开了一种含有上述控制设备的风电储能系统,所述的风电储能系统包括风电组件1、蓄电池组4和系统控制装置;所述风电储能系统至少设置一套所述的控制设备;所述控制设备可与风电储能系统常规的系统控制装置分立设置,亦可将其部分功能或全部功能与所述常规的系统控制装置一体化集成。

所述风电储能系统中,风电组件1包括所有通过装置中线圈绕组的磁通量改变而将风能转变为电能的装置,包括单机、机组以及组件内部增设机械加速系统的装置;所述的蓄电池组4包括至少两个串联连接的电池模块,且电池模块串联的接口设置有外接端;所述蓄电池包括任意可反复充电使用的二次电池,例如锂电池、铅电池、镍锌电池以及金属储氢电池等。

所述风电储能系统后置的放电负载10形式任意,包括使用直流电、逆变为交流电供电或以任意电流波形、频率输出的放电负载,例如家用电器、灯具、电子仪器、工业及民用电器设备,以及包括并网的局域电力网。

本发明还公开了一种前述控制设备的控制方法,该方法由所述风电采集装置6对风电输入端3的风电状态进行信号采集,并由所述测控装置2进行处理,根据其与测控装置2内贮数据的比较结果而实时变换电源输出接口5若干逻辑开关的组合状态,使所述测控设备对所述蓄电池组4实现智能化充电。

所述对蓄电池组智能化充电的方法,是当风电采集装置6采集到的风能电流强度或其变换反映的电压值低于测控装置2所设定的阀值时,将蓄电池组4的整组充电方式,变换为对蓄电池组中的受控电池模块充电。

所述对受控电池模块的充电,为测控装置2根据巡检装置12反馈的电压数据或/和容量数据,对电压或/和容量较低的电池模块进行优先充电;当若干电池模块的实时电压或/和容量相同时,在设定时间内对其实行充电时间平均分配。

所述的电池模块可以是单体电池,也可以是多个单体电池内/外串联而成的一体化产品;所述电池模块包括电池模块组,电池模块组专指两个电池模块以上(包括两个电池模块)外部串联组合的连接方式,其可视为一个外接电压更高的电池模块,若干电池模块的智能化组合充电方法依具体设计而定。

所述控制设备为配置有蓄电池组的风电储能系统使用,其与常规充电器输出接口的区别在于:常规充电器的充电输出端与蓄电池组是固定电连接,一般仅电固连蓄电池组的正极、负极两端;而本发明所述电源输出接口5是多个电控开关,除了连接蓄电池组的正极、负极两端外,还连接到蓄电池组中所需单独控制的电池模块,甚至连接到单体电池,所述的连接不等同于电导通,该连接是否电导通取决于该路接口端所对应的电控逻辑开关状态。

蓄电池的内阻与荷电态是一关联密切的变量,内阻与荷电态成正比,换言之电池空荷时内阻较小,充电接受能力强;而当电池满荷时内阻较大,充电接受能力弱;由于蓄电池内阻的存在,使外电路电阻与蓄电池内阻共同构成了蓄电池充电回路的总电阻,当源于风电组件的充电电流相对恒定时,所表现的负载电压将在蓄电池内阻与外电路电阻中正比分配,这一规律在广义欧姆定律得到完美表述。

风电组件获得的电能在一定区间表现为功率形式,其风电电流、电压值与负载总电阻相关,当风电电流相对恒定时,风电组件输出电压与负载总电阻成正比;当风力较小时,风电组件的输出功率较小,如果负载总电阻不变,风电组件的输出电压也较小;当风电组件输出功率小至充电外电路分配到的电压等于甚至小于蓄电池的载荷电压时,蓄电池充电完全终止。

本发明是基于上述外电路电阻与蓄电池内阻共同构成风电充电回路总电阻的基础原理,当风电强度小于设计值下限时,通过电源输出接口5若干逻辑开关的组合变换,实时降低受充蓄电池组的电压(减少蓄电池组中的电池模块数量,等效降低受充电池的内阻),例如降低蓄电池组一半电压(减少蓄电池组中一半的电池模块),使受充电池的内阻降低一半,从而使风电组件的充电电流获得提升;当降低受充电池电压但风电强度仍小于设计值下限时,逻辑上可继续减少受充电池模块的数量,降低受充电池的电压,使蓄电池的风电充电电流获得动态提升。

这种控制设备的应用可视为使风电组件获得微功率发电效率的提升,并且这种微功率充电方式对延长储能电池的寿命很有效,直接降低蓄电池的使用成本;以风电储能系统常用的铅酸电池为例,这种微功率充电方式可有效抑制负极板的硫酸铅结晶盐化现象,保持蓄电池的受充能力和有效载荷能力。

本发明为解决风电储能系统的市场需求提供了一种切实可行的技术方案,使系统在自身运行中可有效实现对配套蓄电池组的长期维护保障。

本发明的优点在于:运用所述控制设备对风电组件1的风电状态进行信号采集、处理,在设定控制逻辑下相应变换所述电源输出接口5若干电控逻辑开关的组合状态,有效提升了风力充电效率、增加储电量;所述的控制设备结构简单、组合多样化、成本低,适应高端风电储能系统的设备配置要求。

附图说明

图1a是常规风电系统的一种结构示意图。

图1b是常规风电系统的另一种结构示意图。

图2a是本发明所述控制设备的基础结构示意图。

图2b是所述风电储能系统的基础结构示意图。

图3a是一种控制设备的逻辑控制结构示意图。

图3b是充电模块独立设置的逻辑控制结构示意图。

图3c是接口逻辑模块独立设置的逻辑控制结构示意图。

图3d是充电模块、接口逻辑模块均独立设置的逻辑控制结构示意图。

图4a是增设电压提升模块的一种控制结构示意图。

图4b是增设电压提升模块的另一种控制结构示意图。

图4c是电压提升模块与充电模块一体化设置的控制结构示意图。

图5a是一种控制两个电池模块充电的逻辑结构示意图。

图5b是一种控制三个电池模块充电的逻辑结构示意图。

图6a是一种两个电池模块的巡检装置结构示意图。

图6b是一种三个电池模块的巡检装置结构示意图。

图7是本发明所述风电储能系统的一种结构示意图。

附图标识:

1、风电组件;2、测控装置;2a、接口逻辑模块;2b、信号处理模块;2c、充电模块;3、风电输入端;4、蓄电池组;4a、电池模块1;4b、电池模块2;4c、电池模块3;5、电源输出接口;5a、逻辑开关1;5b、逻辑开关2;5c、逻辑开关3;5d、逻辑开关4;6、风电采集装置;7、电压提升模块;8、常规充放电控制器;8a、常规充电器;8b、放电控制器;9、逆变器;10、放电负载;12、巡检装置。

具体实施方式

下面结合附图和实施例进一步对本发明进行详细说明。

图1a是常规风力发电系统的一种结构示意图,风电组件1与蓄电池组4之间连接使用常规充放电控制器8,充电电路的设计特点是与蓄电池组4成组电固连;同时,充电器的逻辑功能较简单,一般标准化设计是着眼于控制蓄电池组过充电(常规设计为恒定充电电压、限制充电电流方式),或在此基础上应用动态微调蓄电池充电恒压值的温度补偿电路。这类常规风电系统在蓄电池组后置的放电负载10可以是各种形式,当负载使用交流电时附加逆变器9,其中充放电控制器8既可一体化设计,也可将充电控制器8a和放电控制器8b分开设计,如图1b所示。

参见图2a,本发明所述的控制设备与常规的风电充电器相比,专门设计有风电采集装置6与风电输入端3对接;此外,充电输出端设计为具有多个电控逻辑开关形式的电源输出接口5,其除了电固连蓄电池组的两极端外,还分别连接至蓄电池组中的受控电池模块(图5a给出了一种具有三个充电输出端的基础设计例,其工作逻辑以下详述);巡检装置12的信号输入端连接蓄电池组中各个受控电池模块的两端;当所述控制设备与风电组件1、蓄电池组4组成如图2b所示的风电储能系统时,可以通过风电采集装置6获得风电组件1的充电状态信号,通过测控装置2的处理实现对蓄电池组4的智能化充电。图2b所示风电储能系统的基础结构,亦可以将所述控制设备中的风电采集装置6内置于测控装置2。

图3a为所述控制设备的一种逻辑控制结构示意图,其中测控装置2的内部结构包括了接口逻辑模块2a、信号处理模块2b和充电模块2c;所述信号处理模块2b的逻辑功能,包括了对风电采集装置6采集到的实时状态信号进行处理,为电源输出接口5的若干逻辑开关组合提供逻辑依据;所述风电采集装置6对风电输入端3的实时状态信号采集,既可采集实时充电的电流强度,也可采集实时充电电流变换反映的相对电压状态,还可以同时采集以提高控制精度;所述信号采集可设计为连续采集,也可以定时采集;信号处理模块2b对所述信号通过与内贮数据进行比较,在设定逻辑条件下对接口逻辑模块2a发出相应信号,使电源输出接口5的若干逻辑开关进行相应组合,达到对蓄电池组智能化充电的设计目的。

所述的充电为行业公知的风电组件1对蓄电池4的充电技术,当测控装置2用一体化模块实现其内部功能时,所述功能通过对测控装置的CPU编程而实现。充电模块2c一般包括整流电路、输出电压恒定电路和输出电流限制电路,对技术要求较高时,可附加蓄电池充电电压补偿的温度微调控制电路。

目前风电储能系统配置的二次电池主要是铅酸蓄电池,其因性价比高而占市场主流地位,铅酸电池比能量较低(约30~35VAh/Kg)的缺陷在风电储能系统不是主要问题;一般锂电池的单体比能量约100~120VAh/Kg,镍氢电池的单体比能量约60~70VAh/Kg,几类二次电池在风电储能系统中使用各有其优缺点。

作为测控装置2的功能子模块,充电模块2c可以独立设置,市场已有各种规格的集成电路器件模块;功率器件与逻辑控制器件分立有利于工作稳定性,尤其当充电模块的功率较大时,图3b为一种充电模块独立设置的逻辑控制结构示意图。同理,接口逻辑模块2a同样可以独立设置,图3c为一种接口逻辑模块独立设置的逻辑控制结构示意图;当所述测控装置2的三个基本功能子模块全部独立设置时,其基础逻辑控制结构如图3d所示(其中电源输出接口5与巡检装置12一体化集成设计),该结构适合大功率系统使用。

当风电组件1的设计电压低于蓄电池组4的电压时,需在所述控制设备中加入电压提升模块7才能实现对蓄电池组充电;例如风电组件的设计电压为48V,蓄电池组的电压为96V,需要通过电压提升模块把充电电压提升至96V以上;电压提升模块可独立设置,图4a是在图3d述例基础上加入电压提升模块的一种控制结构示意图,电压提升模块设置在充电模块2c输入端与风电输入端3之间,其中,电源输出接口5与巡检装置12一体化集成设计;同理,电压提升模块亦可设置在充电模块2c的输出端与电源输出接口5之间,如图4b所示;电压提升模块的功能还可以与充电模块2c一体化集成,如图4c所示。

本发明中,所述电源输出接口5若干电控逻辑开关的组合状态,取决于测控装置2对风电采集装置6所采集信号的处理结果。图5a给出了一种电源输出接口5由3个电控逻辑开关组成的设计例,除了逻辑开关5a和5c分别连接蓄电池组4的正极、负极两端外,逻辑开关5b还连接到两个电池模块4a和电池模块4b的串联接口端;一种工作逻辑示例可设定为:当风力充裕、风电采集装置6获得的风电电流为正常值时,电源输出接口5中的逻辑开关5a和5c导通,逻辑开关5b关断,此时电源输出接口5连接蓄电池组4的两端,该连接状态与常规充电器的充电方式类同;当风力较小引致风电电流低于设计最小值下限时,测控装置2控制电源输出接口5中的逻辑开关5b闭合导通,逻辑开关5a和5c选择为“或”逻辑,或5a导通5c关断,或5c导通5a关断,从而使测控装置实现分别对电池模块4a或电池模块4b充电;值得注意,所述逻辑开关5a和5c选择“或”逻辑时,需保持测控装置充电电流方向与受充电池模块4a或电池模块4b的极性相对应,该同极性充电设计可通过对测控装置内部信号处理模块2b的编程实现,目前充电控制器已普遍运用脉冲数字电路技术,其技术实现方法为行业所公知。

在图5a所示的电源输出接口5述例中,通过逻辑开关5a、5b、5c导通/关断状态的变换,可以把对蓄电池组4的整组充电方式变换为对电池模块4a或电池模块4b的充电方式,由于受充电池的电压下降一倍,可使进入电池模块的充电电流获得提升,从而可使受充电池模块取得相对较好的充电效果。

图5a所示述例的电源输出接口5含有3个电控逻辑开关,配合两个电池模块组成的蓄电池组使用;同理,电源输出接口也可以设计为由4个电控逻辑开关配合3个电池模块组成的蓄电池组使用,如图5b所示;如此类推,可设计由n个电控逻辑开关配合(n―1)个电池模块组成的蓄电池组使用(n为≥2的正整数);所述的单个电控逻辑开关,包括若干个开关并联替代一个开关使用。

所述风电组件的充电电流最小值是设计者选择的数值,该数值与蓄电池的类型和容量(C)相关,例如某风电组件充电配套蓄电池组是使用容量为C的铅酸电池,行业公知其一般正常充电工作电流值区间为0.03~0.20C/A,可设定该风电组件的充电电流最小值为0.03C/A,只要风电采集装置6采集到的风电电流小于0.03C/A,测控装置2即发出相应的逻辑处理信号,控制电源输出接口5的若干电控逻辑开关改变通/断组合的状态,使蓄电池受充电流获得最佳值,并对电压或/和容量较低的受控电池模块或电池模块组进行优先充电。

所述风电采集装置6对风电电流的采集,可在风电输入端3采用公知的微分流电路方式,可实时连续采集也可定时采集;在脉冲数字电路应用设计中,通常是变换为采集微分流电路中所设计电阻两端表现的电压值,通过其电压值判知风电电流值,所述的电流值采集或电压值采集为等效技术方法。

所述测控装置2对某电池模块或电池模块组进行优先充电,需要首先对其储电状态作出判定,这一判定信号由巡检装置12反馈给测控装置2,所述信号包括电压数据或/和容量数据;所述的电池模块组包括至少两个电池模块,当蓄电池组4中由众多电池模块串联组成(例如8个电池模块)而控制精度又不必要太高时,可把众多电池模块分为若干组(例如将8个电池模块分为2组或4组);图6a给出了一种在图5a所示结构基础上的巡检装置12连接方法设计例,巡检装置12设计有两路,分别并联连接电池模块4a和电池模块4b的两端;图6b给出了一种在图5b所示结构基础上的巡检装置12连接方法设计例,巡检装置12设计有三路,分别并联连接电池模块4a、电池模块4b和电池模块4c的两端。

对电池模块或电池模块组的储电容量状态判定,包括实时电压和实时容量,可择一监测也可以同时监测,可连续监测也可以定时监测,可在电池的充电态、放电态、静置状态监测也可综合监测比较出结果;以铅酸电池为例,铅酸电池在正常工作(包括充电态、放电态)的实时电压与储电状态存在对应关系,其单体一般工作电压区间为1.80V至2.15V,其以标称时率放电至标称工作电压2.0V时大略对应为半荷态;同批次电池在同一状态下(包括充/放电、静置)一般电压表现越低,储电容量越低,只要监测到某电池模块或某电池模块组的实时电压相对较低,即可大略判定该电池模块或该电池模块组的储电容量较低,对其进行优先充电。

行业公知,蓄电池的实时电压与储电容量并非线性关系,对技术要求较高的应实时监测电池模块或电池模块组的实时容量;常规快速检测电池容量的技术是采用微分流数据比较方法,市场上已有各种精度的容量测试仪及测试器件模块,将其与电池模块或电池模块组并联即可读出容量信号;使用时,容量测试仪或测试器件模块不必与电池模块或电池模块组常态并联,优选在信号处理模块设定为定时巡检各电池模块或电池模块组读取容量信号(例如每间隔10分钟);只要监测到某电池模块或某电池模块组的实时容量相对较低,即可对其进行优先充电。

所述测控装置2也可加入电容器,其技术目的是消除电路之间的冲击干扰;风电储能系统及其外围设备运行时,有诸多因素对测控装置可能发生干扰,加入电容器可有效消除系统偶联带来的影响;电容器可并联设置在测控装置的输出端,也可设置在测控装置的输入端,或在测控装置输出端与输入端同时设置。

所述电源输出接口5通常采用数字信号控制逻辑的功率开关制成,其自动控制逻辑一般设计为,当接收“0”信号时不闭合(断路),当接收到“1”信号时闭合(电路导通);为消除风电储能系统的后置设备及其控制设备通过电池通道带来的脉冲干扰影响,可以在电源输出接口与测控装置的信号通道中加入滤波保护电路。同理,更多的滤波保护模块可设置在测控装置的任一信号输入通道;所述的滤波保护模块可单独设置,亦可一体化集成在测控装置的内部。

所述风电储能系统的放电负载10的放电形式任意,图7是一种在蓄电池4后置放电控制器8b使负载工作的系统结构示例;如果负载的工作电流为交流电,需加入逆变器9,逆变器可一体化集成于放电控制器,也可以分立设置。

以下实施例仅用于说明本发明的技术方案,这些技术方案可单独使用,也可加入或组合并用其他成熟技术;只要根据风电采集装置6采集到风电充电电流下降所表现的技术特点,通过测控装置2对其采集的信号进行数据比较及逻辑处理,在设定的逻辑条件下控制电源输出接口5若干电控逻辑开关的通/断组合状态,即可实现本发明方案所述对储能蓄电池组4智能化充电的基本技术目标。

实施例1、

设计一种风电储能系统用的小功率控制设备,并采用该设备与两只12V100Ah的铅酸免维护蓄电池、100W的风电组件共构为一个风电储能系统。

该控制设备包括测控装置2、风电输入端3、电源输出接口5、风电采集装置6和巡检装置12,测控装置2通过风电输入端3电连接风电组件1的电源输出端;巡检装置12的信号输入端分别连接两只蓄电池(电池模块)的两端,其信号输出端连接测控装置2;电源输出接口5由3个电控逻辑开关组成,测控装置2通过该3个电控逻辑开关连接两只电池串联的3个外接端,即分别连接两只电池串联的蓄电池组4的两端和两只电池串联的中间抽头端,其局部连接结构如图5a所示。

测控装置2的内部结构包括接口逻辑模块2a、信号处理模块2b和充电模块2c,采用一体化的数据处理、功率模块通过CPU编程并配置辅设器件实现其功能,风电采集装置6内置于测控装置2,其输入端与风电输入端3电连接,其输出端以内置方式接入信号处理模块2b的输入端,其局部连接结构如图3a所示;其中对蓄电池充电的充电模块2c包括整流电路、输出电压恒定电路和输出电流限制电路,设定有对整组蓄电池4充电或对单只电池充电的两种工作模式,附加电池充电电压的温度微调补偿控制电路,运用脉冲数字技术实现所述充电模块2c的技术功能。

风电采集装置6的信号采集采用微分流方式,每分钟采集一次,将采集到的风能电流强度(或变换处理的相应电压值)数据输入测控装置2处理,设定状态逻辑为:当采集到的风能电流强度连续3次大于3.00A时,逻辑开关5a和5c闭合导通,逻辑开关5b关断,此时充电模块2c连接两只串联蓄电池组4的两端;当采集到的风能电流强度连续3次等于或小于3.00A时,启动逻辑开关5b闭合导通,逻辑开关5a和5c依程序设计为或5a导通5c关断、或5c导通5a关断,该导通/关断启动后设定周期为30分钟,30分钟后对风能电流强度重新进行采集;所述该导通/关断启动后,使充电模块2c实现实现分别对两只蓄电池之一进行充电;充电模块对两只蓄电池之一的充电极性与所述逻辑开关的导通/关断状态同步对应。

巡检装置12对两只蓄电池的巡检方式为巡检电压,其输入端分别与两只铅酸蓄电池(电池模块)并联,每5分钟巡检一次实时电压,并将其电压信号反馈给测控装置2;测控装置对每次获得的巡检电压数据更新上次的数据,通过两只蓄电池的实时电压数据比较,间接判知其储电容量,优先对电压表现低的蓄电池进行充电;当两只蓄电池的实时电压相同时,对两只蓄电池实行时间平均分配充电。

电源输出接口5的3个电控逻辑开关3a、3b、3c,均采用常规数字信号控制开关逻辑的功率开关制成,其自动控制逻辑设计为,当接收“0”信号时不闭合(断路),当接收到“1”信号时闭合(导通电路)。

本实施例所述的风电储能系统,通过所述控制设备中逻辑开关5a、5b、5c导通/关断状态的智能变换,可以在风能电流强度大于3.00A时如使用常规充电设备一样工作,设定充电模块2c此状态的工作模式为恒定充电电压27.00V、限制最大充电电流18.00A;当风能电流强度等于或小于3.00A时,把对蓄电池组4的整组充电方式实时变换为对电池模块4a或电池模块4b充电,设定充电模块2c该状态下的工作模式为恒定充电电压13.50V、限制最大充电电流18.00A;由于受充蓄电池的电压下降一倍,使进入电池模块的充电电流强度获得提升,从而可取得对电池模块相对较好的充电效果,实现了对蓄电池组4的智能化充电。

本实施例的控制设备可有效利用风电组件在弱风环境发出的电能,风电利用率高,同时这种微功率充电方式可有效抑制铅酸免维护蓄电池中负极板的硫酸铅结晶盐化现象,保持蓄电池的受充能力和载荷能力,延长其使用寿命,降低其更换成本。所述的风电储能系统在蓄电池后置恒流控制器和LED灯具,即成为一种市称道路用的风能路灯;继续在蓄电池前端增加设置光伏组件及其充电控制器,即成为一种市称道路用的风能、太阳能互补路灯。

实施例2、

将实施例1所述的两只12V100Ah铅酸免维护蓄电池改变为4只6V100Ah的铅酸免维护蓄电池,4只电池串联形成蓄电池组4的两个极端和中间3个串联抽头端,共5个外接端;电源输出接口5相应改由5个电控逻辑开关组成,测控装置2通过该5个电控逻辑开关分别连接4只电池串联的蓄电池组的两个极端和中间3个串联抽头端,5个电控逻辑开关与串联蓄电池组5个外接端的排接方法以及所述风电储能控制设备、储能系统的其余连接方法,与实施例1类同。

本实施例由于采用具有5个外接端的串联蓄电池组结构,可控精度更高,设计为两级精度控制:所述一级精度控制为,将4只6V100Ah电池的串联蓄电池组视为两只12V100Ah串联形成,只控制4只6V100Ah电池串联的中间抽头端(仅启用3只逻辑开关,等效于图5a所示的局部连接结构),电源输出接口5只启用3个电控逻辑开关,等效于实施例1所述的充电效果;当一级精度控制、风电采集装置6采集到的风能电流强度仍然等于或小于3.00A时,启动二级精度控制,在测控装置2的编程控制下将5只逻辑开关进行相应的导通/关断组合,实现分别对4个6V100Ah电池模块实行充电,优先对电压表现低的蓄电池进行充电,从而使进入电池模块的风能充电强度实现进一步的间接提升。

本实施例可更充分地利用风电组件在弱风环境发出的电能。

实施例3、

对实施例2实施进一步变形,将4只6V100Ah的铅酸免维护蓄电池用12只2V100Ah的单体铅酸电池替代,各单体电池采用外部串联连接的方式,单体电池外部串联的接口同时作为电池模块外接端;电源输出接口5相应设计为13个电控逻辑开关组成,其与12只单体电池13个外接端的排接方法与实施例2类同。

本实施例通过电源输出接口5的13个电控逻辑开关在测控装置2的编程控制下进行相应的导通/关断组合,从而在风能更弱状态下使进入单体电池的充电强度实现间接提升,进一步利用风电组件在弱风环境获得的电能,同时分别对12个单体电池实行时间平均分配充电,达到有效维护电池的目的。

实施例4、

将实施例3所述的12只2V100Ah单体铅酸电池替代为16只1.7V100Ah的单体镍锌电池,电源输出接口5相应设计为17个电控逻辑开关组成,其与16个单体镍锌电池串联成组的17个外接端的排接方法,与实施例3类同。

本实施例是基于近年大容量镍锌电池技术成熟而提出的细分市场需求,这类镍锌电池的低温性能卓越,一般在―20℃温度环境下放电可保持90%左右的常温容量,比能量一般可达60Wh/Kg以上,是道路用太阳能路灯理想配置的蓄电池。

实施例5、

在实施例1基础上加入电压提升模块7,其独立设置在充电模块2c的输出端与电源输出接口5之间,其信号输入端连接测控装置2的信号处理模块2b,如图4a所示;这类电压提升模块在市场有各种规格产品,功率数可达到风电储能控制设备的匹配需求,购置后只需按说明书编程、填入对应数据即可使用。

本实施例中,采用两只标称60V20Ah的锂电池模块串联组成蓄电池组4,两只锂电池串联的连接口为中间抽头端;电源输出接口5同样由3个电控逻辑开关组成,测控装置2通过电源输出接口5的3个电控逻辑开关分别连接两只锂电池模块串联蓄电池组4的两端和中间抽头端,该局部连接结构与实施例1类同。

本实施例可有效适应某些放电设备对风电储能系统的高电压储能需求。

实施例6、

将实施例5所述的电压提升模块7的功能与测控装置2中的充电模块2c一体化集成,如图4c所示,其余与实施例5类同,所取得的实施效果也类同。

实施例7、

将前述实施例1测控装置2中的充电模块2c分立设计,如图3b所示,通过编程实现所述的功能;因充电模块2c的最大工作电流达到18A,充电模块2c的分立设置更有利于信号处理模块2b的工作稳定性。

实施例8、

将前述实施例1巡检装置12对两只蓄电池的巡检方式改为巡检容量,市购一种电池容量测试专用的器件模块,该器件模块的输入端分别与两只铅酸蓄电池(电池模块)并联,每10分钟巡检一次电池容量,并将其容量数据信号反馈给测控装置(2),测控装置对每次获得的巡检容量数据更新上次的数据,通过两只蓄电池的实时容量数据比较,直接判知电池模块4a或电池模块4b的储电容量,实时优先对容量表现低的电池模块组进行充电;当两只蓄电池的实时容量相同时,测控装置2对电池模块4a或电池模块4b实行时间平均分配充电。

其余与实施例1相同,由于巡检装置12对两只蓄电池的巡检方式为巡检容量,直接判知电池模块4a或电池模块4b的储电容量,优先充电效果更好。

实施例9、

将本发明所述技术方案推广到大、中型风电储能系统应用,控制设备的设计依风电组件1、蓄电池组4的功率数而定,其输入/输出电压、电流根据风电组件1、若干电池模块组合的蓄电池组的电压、电流特点而设计。

本实施例中,所述的受控电池模块由3个标称外接电压为90V、容量为3000Ah的镍锌电堆组成,每一镍锌电堆由52×2只标称1.71V、1500Ah的单体镍锌电池每两只并联后串联而成,标称储电功率270KVAh,3个镍锌电堆串联组成的蓄电池组4计储电功率数810KVAh;该镍锌电堆匹配的风电组件1标称为330V输出、风电设计的额定功率100KVAh,风力发电的最大电流理论值约300A。

由于本实施例的风力发电功率、储电功率数较大,测控装置2中的接口逻辑模块2a、信号处理模块2b和充电模块2c全部分立设置,采用大功率模块对CPU编程并通过外加辅助组件而实现其功能;充电模块2c设定有对整组镍锌电池4充电或对单个镍锌电堆充电的两种工作模式;电源输出接口5设计为4个电控逻辑的大功率开关,分别连接3个镍锌电堆串联的蓄电池组4的两个极端和中间镍锌电堆的两个抽头端;电控逻辑开关与镍锌电堆组4个外接端的连接方法、巡检装置12以及其他组件的局部连接方法,参见图5b和6b所示。

当风电采集装置6采集到的风能电流强度大于30A时,信号处理模块2b控制接口逻辑模块2a对逻辑开关5a、5d发出“1”信号,使逻辑开关5a、5d导通,同时对逻辑开关5b、5c发出“0”信号,使逻辑开关5b、5c关断,风电组件1在信号处理模块2b控制下通过充电模块2c对镍锌电堆组4实行整组充电,充电模块2c此状态下的工作模式为恒定充电电压297V、限制最大充电电流300A;当风电采集装置6采集到的风能电流强度等于或小于30A时,逻辑开关5a、5b、5c、5d在信号处理模块2b控制下通过接口逻辑模块2a相应发出的“1”或“0”信号,重新进行4个逻辑开关的导通/关断组合,使充电模块2c实现对镍锌电堆4a、镍锌电堆4b或镍锌电堆4c的分别充电,充电模块2c此状态下的工作模式为恒定充电电压99V、限制最大充电电流300A。

巡检装置12对三只镍锌电堆的巡检方式既可如实施例1方案设置为巡检电压,也可如实施例8所述方案设置为巡检容量,测控装置2通过对三只镍锌电堆的实时电压或容量数据比较,优先对电压或容量表现低的镍锌电堆进行充电;当三只镍锌电堆的实时电压或容量数据相同时,对三只镍锌电堆实行时间平均分配充电,达到充分利用风电组件在弱光环境所发电能的技术目标。

本实施例在镍锌电池组4后置行业通称的逆变器、交流配电柜、中央控制系统等,即成为一种市称的太阳能发电站。

实施例10、

将实施例9所述的3个镍锌电堆改变为6个标称外接电压为45V、容量为3000Ah镍锌电堆,该电堆由26×2只标称1.71V、1500Ah的镍锌电池每两只并联后串联而成,标称储电功率135KVAh,6个镍锌电堆串联构成的蓄电池组4计储电功率数同样为810KVAh;电源输出接口5相应设计为由7个电控逻辑开关组成。

7个电控逻辑开关与6个45V、3000Ah镍锌电堆串联蓄电池组4的7个外接端的排布方法原理与实施例9类同,技术目标为当风电采集装置6采集到的风能电流强度等于或小于30A时,在信号处理模块2b的编程控制下,通过接口逻辑模块2a对7个电控逻辑开关进行相应的导通/关断组合,使进入镍锌电堆充电的电流强度获得间接提升,进一步实现分别对6个45V、3000Ah镍锌电堆实行智能分配充电,使风电组件的弱风电能得到充分利用。

以上实施例仅用以说明本发明的技术方案而非限制,尽管参照实施例对本发明进行了详细说明,本领域的技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1