直接转换型射频接收器的混波器的制作方法

文档序号:7509362阅读:224来源:国知局
专利名称:直接转换型射频接收器的混波器的制作方法
技术领域
本发明是关于一种直接转换型(Direct Conversion或Homodyne)射频接收器(Radio Frequency receiver,RF receiver),特别是关于直接转换型射频接收器其中的混波器(Mixer)。
背景技术
传统的无线电子产品其中的射频接收器是以“外差式射频接收器”为主流技术。外差式射频接收器,又称异频混波(heterodyne)接收器。此类型的射频接收器具有良好的性能表现,其它种结构的射频接收器,例如直接转换型(direct conversion)射频接收器、宽中频(wideband IF)射频接收器或低中频(low IF)射频接收器,亦可指为外差式射频接收器的变形技术或衍生技术。
外差式射频接收器通常将所接收的射频信号,藉由至少两次的降频步骤以得到所需的基频电信号。例如,高频的射频信号是经由第一降频步骤,以降至中频,再由第二降频步骤,以降至可在电子产品中被辨识与工作的低频电信号(接近于直流电频率)。
外差式射频接收器虽然拥有良好的性能,但是因为必须使用到价格昂贵、且无法整合于集成电路芯片中的一些电子元件,且其整体结构较为复杂,因此,在现今技术要求单芯片整合的趋势下,外差式射频接收器具有不易实现与生产成本过高的缺点。
相较之下,直接转换型射频接收器则较符合于单芯片整合的趋势。直接转换型射频接收器又称为同频混波(Homodyne)射频接收器,而由于直接转换型射频接收器可视为一个“中频被定在零”的外差式简化结构,因此其又称为零中频(Zero IF)射频接收器。请参照图1,直接转换型射频接收器10是藉由直接混合所接收到的射频信号(通常处于高频),与位于相同频率范围的本地振荡信号(LO),以一次的降频步骤即产生所需的低频电信号。相较于前面所提到的外差式结构,直接转换型的结构显得较直接且自然。并且,直接转换型射频接收器之中,由镜频(image frequency)所造成的假像信号并不存在,此则为另一项优于外差式射频接收器的好处。
典型的直接转换型射频接收器10的前级电路(front end circuit),系包含低噪声放大器(LNA)14,以及混波器(mixer)16a与16b;后级电路则包括基频放大器(ba seband amplifier)22a与22b、低通滤波器(LPF)23a与23b、模拟数字转换器(ADC)24a与24b、以及数字信号处理器(DSP)26。其中,混波器16a、基频放大器22a、低通滤波器23a、以及模拟数字转换器24a系属I路径,而另一组相同的元件(图中标号16b、22b、23b与24b)是属Q路径。
在已知技术中,有时会在低噪声放大器14之前进一步设置射频前端滤波器(preselection filter)12,以将天线11所收下来的信号进行滤波,可将所欲使用的频带以外的干扰信号(out-of band signal)予以滤除;有时,射频前端滤波器12亦可将射频信号中的镜频作部分地抑制。射频前端滤波器12的输出端是耦合于低噪声放大器14进行信号的放大。以IEEE 802.11b无线局域网络规范为例,接收到的射频信号、射频前端滤波器12与低噪声放大器14皆处于2.4GHz至2.48GHz的频率范围。
低噪声放大器14的输出端是分别耦合于混波器16a与16b。本地振荡器18提供本地振荡信号,经由除频器15产生正交相位分别输入I、Q路径上的混波器16a与16b。以IEEE 802.11b无线局域网络规范为例,本地振荡器18操作于2.4GHz,以使得高频的射频信号,可直接转换成低频的电信号。基频放大器19a与19b则分别耦合于混波器16a与16b,以将混波器16a与16b所得出的电信号予以放大。之后,利用基频的低通滤波器23a与23b来抑制所需频带之外的干扰信号,在直接转换型射频接收器10之中,低通滤波器23a与23b可视为负责频道选择的元件。最后,则经由模拟数字转换器24a与24b以将信号予以数字化,而送进数字信号处理器26,以进行与射频信号相关的预定应用的运算。
直接转换型射频接收器的结构有着不少优点,例如外差式射频接收器所需的中频电路的各元件予以省除,因此整体的电路复杂度系可降低,可减轻系统应用设计者的研发重担。而也正因为复杂度降低,因此,单芯片整合的理念是可在直接转换型射频接收器的结构下实现。高整合度、低成本、低功率消耗与高频宽为其优点。
然而,直接转换型射频接收器10虽然可整合于单芯片中,但其性能表现却不如传统的外差式射频接收器般优异。由于直接转换型射频接收器10系将信号直接降频至直流电(DC)附近,因此,其中的混波器16a与16b在本地振荡信号混合(LO self-mixing)与低频表现上更显敏感。也因为这样的特性,因此造成了直接转换型射频接收器10具有嗓声指数(noise figure,NF)偏高、线性度不足、与直流电压偏移(DC-offsets)等缺点。
嗓声指数由于在直接转换型射频接收器10中大部分的放大功能都放在混波器16a(与16b)之后的电路上,因此,低频噪声就成了需要注意的重点。在基频带中,就算是只有数微伏(μV)的微弱噪声,也相当容易在后级电路放大而造成可观的噪声。若是使用具有较高增益的射频电路来改善基频带电路的噪声问题,则又需考虑到因此较高增益所带来的线性度问题。
上述基频带的噪声,其中最主要的来源为闪烁噪声(flicker noise),或称为频率反比噪声(1/f noise)。闪烁噪声的大小是与基频带的直流电频率成反比,因此,操作于低频的混波器16a(与16b)的输出会有特别高的转换增益。而在互补金属氧化物半导体(CMOS)制程的直接转换型射频接收器10中,MOS元件又会带来特别高的闪烁噪声,已知技术中曾有加大金属氧化物半导体(MOS)元件尺寸的做法,但如此一来又会增加其电容值,且耗费更多本地振荡器18能量或是在高噪声频率带降低了本地振荡的振幅。
线性度表现关于直接转换型射频接收器10的线性度表现,主要是决定于前级电路的混波器16a(与16b)之中。电路的实现上,混波器16a(与16b)可区分为转换电路(switching stage)与负载电路(loading stage)。在常见的各种制定规格中,大多对于混波器16a(与16b)的第二阶截止点倍增斜率(即IIP2参数)与第三阶截止点倍增斜率(即IIP3参数)有所规范。
IIP2参数与IIP3参数对整体的线性度表现有很大的影响。这是因为高频信号就是在转换电路中被直接降频至所需的基频带;而负载电路则负责信号降频之后的首次增益。因此,此二部分的设计会对整体的线性度表现有着关键的影响。
直流电压偏移直流电压偏移应该可以算是直接转换型射频接收器10的前级电路所面临到最严重的一个问题。其不但使得所想要的信号失真走样,还可能造成后级电路的饱和。即使撇开互补金属氧化物半导体(CMOS)制程中元件不匹配或是信号线不对称等常见问题不谈,本地振荡信号、或是其它在基频带中较大的干扰信号所造成的自身混波现象,亦会导致直流电压偏移。

发明内容
在单芯片整合的发展趋势下,本发明的主要目的是在于改善已知直接转换型射频接收器所仍然具有的缺点。
本发明的另一目的是在于提供一种混波器,以使直接转换射频接收器具有低噪声指数。
本发明的另一目的是在于提供一种混波器,以使直接转换射频接收器具有高线性度。
本发明提供一种直接转换型射频接收器的混波器包括增益电路、负载电路及转换电路。增益电路接收差动型式的射频信号以产生第一增益信号。转换电路将第一增益信号与本地振荡信号混合,以直接降频产生调制信号。负载电路包括一对第一晶体管、一对第二晶体管以及一对阻抗单元。阻抗单元提供增益参数。第一晶体管提供低阻抗,以使该调制信号继续输入至负载电路。第二晶体管提供高阻抗,以将输入至负载电路的该调制信号导向该阻抗单元并输出符合该增益参数的第二增益信号。
第二晶体管是为利用金属氧化物半导体(MOS)制程时所寄生而成的直向(Vertical npn,Vnpn)型双极性晶体管,藉此,本发明有效地提升了直接转换型射频接收器在噪声指数的议题上的性能。在另一实施例中,第一晶体管是利用金属氧化物半导体(MOS)结构以寄生而成横向(Lateral pnp,Lpnp)型双极性晶体管,藉此,可提升直接转换型射频接收器在线性度上的表现。
关于本发明的优点与精神可以藉由以下的发明详述及所附图式得到进一步的了解。


藉由以下详细的描述结合所附图示,将可轻易的了解上述内容及此项发明的诸多优点,其中图1显示一直接转换型射频接收器典型结构;
图2为本发明一实施例直接转换型射频接收器的前端电路图;图3为图2的第一晶体管以直向npn型双极性晶体管实施时的侧剖面视图;图4为本发明另一实施例电路图;图5A为一典型pMOS元件侧剖面视图;图5B为利用图5A的pMOS元件所寄生而成的横向pnp型双极性晶体管侧剖面视图;以及图6为本发明另一实施例电路图。
直接转换型射频接收器10、30天线11射频前端滤波器12 低噪声放大器14混波器16a、16b基频放大器22a、22b低通滤波器23a、23b模拟数字转换器24a、24b数字信号处理器26 接收端301输出端303 偏压31增益电路32本地振荡器33本地振荡信号331 转换电路34除频器15、35 负载电路36第一晶体管361 第二晶体管362第一部分36a 第二部分36b电容365 电阻367、368、369电流源37 反馈单元38射频信号40第一增益信号42调制信号44第二增益信号46集电极119、298N型井192浅槽隔离结构195 P型掺杂区197N型掺杂区198 发射极198’、298’基极191、291 栅极295增益电路电流源371
具体实施例方式
本发明是提供一种利用互补金属氧化物半导体(CMOS)制程制作的直接转换型射频接收器的混波器,此混波器包括增益电路、转换电路以及负载电路。
若依照图1的结构图来看,本发明所提供的电路与所申请的保护范围是属于图1的混波器16a(或16b)。特别值得一提的是,直接转换型射频接收器10的前级电路中,低噪声放大器14的电路结构类似于本发明其中的增益电路,然而二者并不相同。
请参照图2,图2为本发明一实施例电路图。如上述,混波器30包括增益电路32、转换电路34以及负载电路36。增益电路32接收差动型式(differential type)的射频信号40,以产生第一增益信号(first gain)42。射频信号40是由天线所接收,在送至增益电路32的接收端301之前,可利用射频前端滤波器(pre-selection filter,可参考图1标号12),将天线(图1标号11)所收下来的信号进行滤波,以将所欲使用的频带以外的干扰信号予以滤除。之后,可利用耦合于混波器30前端的低噪声放大器(请参考图1标号14),将信号放大后输入至接收端301。其中,第一增益信号42为差动型式。
由于所接收的射频信号40为差动型式,因此,本发明的电路设计也因应以平衡电路的方式设计之,其中,无论是增益电路32、转换电路34或是负载电路36皆以对称的方式设置。
转换电路34用以将第一增益信号42与本地振荡信号331混合,以直接降频产生(direct down-convert)调制信号44。当然,调制信号44亦为差动型式。本地振荡信号331是由本地振荡器(local oscillator)33所提供,其频率是接近于射频信号40与第一增益信号42。本地振荡信号331与第一增益信号42混合后,由于二者频率相近,因此所得到的调制信号44的频率是为二者频率的差值,其是接近于直流电频率。实施上,转换电路34需为平衡关系良好的电路,以避免差动型式的信号产生偏移。
值得一提的是,由于图2仅显示本发明直接转换型射频接收器其中的一个混波器30,所显示的混波器30可应用于I路径,而应用于Q路径的前级电路亦应与之对称,关于此结构可参照图1与相关的说明。因此,本地振荡器33可耦合于除频器(quadrature differential output)35,以形成I路径与Q路径所需的相位差。实施上,二者的相位差为九十度。
请继续参考图2的右半部。负载电路36包括一对第一晶体管(1sttransistor)361、一对第二晶体管(2ndtransistor)362以及一对阻抗单元(此实施例中,每一阻抗单元是指电阻368)。阻抗单元提供增益参数,用以转换交流电流增益至交流电压增益。
负载电路36是平行区分为第一部分36a与第二部分36b,此是为本发明中为了差动型式的信号所进行的对称电路设计方式。
上述一对第一晶体管361是分别属于第一部分36a与第二部分36b;而上述一对第二晶体管362亦分别属于第一部分36a与第二部分36b。
上述一对阻抗单元亦分别属于第一部分36a与第二部分36b,例如,本实施例中是为一对电容364分别属于第一部分36a与第二部分36b,以及一对电阻368分别属于第一部分36a与第二部分36b。
请单独参照第一部分36a或第二部分36b其中之一第一晶体管361提供一低阻抗,相对于电流源37的高阻抗,因此可将调制信号44继续输入至负载电路36中。
第二晶体管362提供高阻抗,以将输入至负载电路36的调制信号44导向阻抗单元(是指电阻368与电容365,于本实施例),并藉由输出端303,输出符合阻抗单元的增益参数的一第二增益信号46。第二增益信号46亦符合输入端301的射频信号,而为差动型式。第二增益信号46由输出端303输出至直接转换型射频接收器的后级电路。关于后级电路可参考图1的相关说明。
实施上,电流源37提供转换电路34与负载电路36所需的总电流。输入至第一晶体管361的电流是为电流源37提供的电流与增益电路电流源371的电流的差值。该对第一晶体管361是具有共栅极,可通入偏压(bias)31至第一晶体管361。实施上,第一部分36a与第二部分36b的二个第二晶体管362提供所需的高阻抗而有利于调制信号44经由阻抗单元(365与368),产生第二增益信号46并经输出端303输出。其中,电阻367亦具有很高的阻抗值,以避免信号取道自电阻367。
该对第二晶体管362可具有共栅极。共栅极的接点可耦合于反馈单元(CMFB)38,以检测信号的不对称情况而予以反馈,如此一来可避免输出的第二增益信号46的不对称情形,例如信号偏移的杠杆现象等情况。另一实施例中,该对第二晶体管362可具有共源极,然而并不利用反馈单元38,而形成一电流镜(current mirror)的方式实施之,可参考图4。上述的实施方式,皆为了确保负载电路36的第一部分36a与第二部分36b的平衡关系,可有效地弥除直流电压偏移的缺点。
本实施例中,提供高阻抗的第二晶体管362是为利用金属氧化物半导体(MOS)制程所寄生(parastic)而成的直向npn(Vnpn)型双极性晶体管,请参照图3。
本发明考虑于由于一般直接转换型射频接收器的互补金属氧化物半导体(CMOS)制程下,并不具有双极性晶体管的制程,而图2所示的第二晶体管362若利用传统的n型金属氧化物半导体(n-MOS)实施,则n型金属氧化物半导体(n-MOS)的频率反比噪声(1/f noise)较大,且会直接影响于输出的第二增益信号46,因此会对于整体噪声有很大的负面影响。
基于上述考虑,本发明是对于n型金属氧化物半导体(n-MOS)结构进行变更,在加入一深N型井(deep N-well)以作为集电极(collector)119之后,如图3所示,则由集电极119、基极(base)191与发射极(emitter)198’而形成了所需的双极性晶体管构造。其中,标号195是为浅槽隔离结构(STI)。基极191主要是为原本n型金属氧化物半导体(n-MOS)结构所具有的P型井(p-well)。而发射极198’则为原本n型金属氧化物半导体(n-MOS)结构中的源极或漏极。基极191二端所耦合的P型掺杂区197、以及集电极119二端所耦合的N型井192与N型掺杂区198,其可降低基极191与集电极119的阻坑。
藉由上述的实施方式,则可有效地降低直接转换型射频接收器的噪声比(noise to signal ratio)。由于在低频(小于10MHz)的情形下,混波器30的噪声来源主要为频率反比噪声(1/f noise),而本发明所提供的直向npn(Vnpn)型双极性晶体管(如图3),其频率反比噪声远较n型金属氧化物半导体(n-MOS)降低约一百倍,因此本发明混波器30在噪声议题的性能上是大幅地提升。
请参照图4,图4为本发明另一实施例电路图。其中第一晶体管361为利用金属氧化物半导体(MOS)结构所寄生而成的横向pnp(Lpnp)型双极性晶体管。本实施例将负载电路36中的第一晶体管361以双极性晶体管实施之,如此一来,所提供的直接转换型射频接收器的线性度是有效地被提升。在不少文献中已有记载,位于负载电路36中,且迭加于转换电路34之后的第一个p型金属氧化物半导体(p-MOS)元件,其对于负载电路36的线性度表现(即IIP3参数)有举足轻重的负面影响。因此,对于第一晶体管361采用双极性晶体管,以取代传统的pMOS元件,双极性晶体管具有较低的输入阻抗(Zm),而可产生较高增益(gm)。因此,就电流层面而言,调制信号44可在第一晶体管361看到较已知技术更低的阻抗,如此一来,可抑制因第一晶体管361所产生的非线性输出,本发明在IIP3参数上的表现因此可有显著地提升。
但如前所述,在一般直接转换型射频接收器的互补金属氧化物半导体(CMOS)制程下,并不具有双极性晶体管的制程。而若采用类似前述实施例的做法,对pMOS元件寄生而成直向pnp(vertical pnp)结构,虽然概念上可行,但是在实际付诸制作时,发现性能非常低落。这是因为由P型掺杂区、N型井与深P型井(顺序由上至下,未图示)所组成的直向pnp型双极性晶体管会因为集电极不具有隔离端子(isolated collector terminal),意即-集电极(collector)与基极(substrate)形成短路,如此一来造成过低的β值(仅2.5),而导致性能不彰。
基于这样的理由,本发明是利用pMOS元件以寄生而成横向pnp(Lpnp)型双极性晶体管的方式,以实施之。请参照图5A与图5B,图5A为一典型的pMOS元件,而图5B则为利用图5A的pMOS元件所寄生而成的横向pnp(Lpnp)型双极性晶体管。如图5B所示集电极298、基极291与发射极298’形成了所需的双极性晶体管构造。其中,原本在pMOS元件中作为源极或漏极的P型掺杂区,其在本实施例中则成为集电极298或是发射极298’;原本pMOS元件中的N型井,其位于集电极298与发射极298’之间的部分用以作为基极291。操作上,需对于原本pMOS元件中的栅极295通入参考电位(VDD),以将pMOS关闭,以避免信号取道自栅极295。
经由上述的实施方式,对于图4所示的该对第二晶体管362采取双极性晶体管以实施之,则至少可以使得IIP3参数维持在规范所需的性能,甚至,可超出规范所需的性能。一般而言,在模拟测试(simulation)中,若第二晶体管362为pMOS元件,则负载电路36的线性度(IIP3参数)会因之而减损3~4dBm;若其为双极性晶体管,则可使IIP3参数持平,甚至会有较佳的线性度结果。举例而言,通道长度为0.3微米(μm)的CMOS制程下,规范的第二晶体管362需要具有高于10MHz的截止频率(fT),而在相同制程条件下,利用本发明的方法所形成的横向pnp(Lpnp)型双极性晶体管(如图5B),则非常容易可超越此标准。
请参照图6,图6为本发明另一实施例电路图。本实施例是结合图2实施例与图4实施例的优点,使其中的第一晶体管361,利用已知互补金属氧化物半导体(CMOS)制程技术中的pMOS元件以寄生而成横向pnp(Lpnp)型双极性晶体管;另一方面,则使其中的第二晶体管362,利用已知互补金属氧化物半导体(CMOS)制程技术中的nMOS元件以寄生而成直向npn(Vnpn)型双极性晶体管。藉由上述的实施方式,是可提供如图6所示具良好线性度与低噪声的直接转换型射频接收器的混波器30。并且,配合本发明具有良好的平衡电路的设计方式,本发明亦对于直流电压偏移的问题有卓越的抑制效果。而本发明的另一项优点,则在于可应用目前既有的互补金属氧化物半导体(CMOS)制程,仅在集成电路布局(layout)上利用微小的变更,且不需要增加光罩或更改制程,而使得直接转换型射频接收器不但仍能符合单芯片整合趋势,并且具有更好的性能。综合以上所述,本发明不但在技术上具有显著的进步性,并且可融入于现行的产业与设备中,对于产业竞争力的提升助益甚巨。
本发明虽以较佳实例阐明如上,然其并非用以限定本发明精神与发明实体仅止于上述实施例尔。对本领域技术人员,当可轻易了解并利用其它元件或方式来产生相同的功效。是以,在不脱离本发明的精神与范围内所作的修改,均应包含在所述的权利要求范围内。
权利要求
1.一种利用互补金属氧化物半导体制程制作的直接转换型射频接收器的混波器,包括增益电路,接收差动型式的射频信号,以产生第一增益信号;转换电路,用以将该第一增益信号与本地振荡信号混合,以直接降频产生调制信号;以及负载电路,包括第一晶体管、第二晶体管以及阻抗单元,该阻抗单元提供增益参数,该第一晶体管提供低阻抗,以使该调制信号继续输入至该负载电路,该第二晶体管提供高阻抗,以将输入至该负载电路的该调制信号导向该阻抗单元并输出符合该增益参数的第二增益信号,其中,该第二晶体管是为利用金属氧化物半导体结构所寄生而成的直向npn型双极性晶体管,藉此,可降低该直接转换型射频接收器的噪声比。
2.根据权利要求1所述的直接转换型射频接收器的混波器,其中该第一晶体管是为利用金属氧化物半导体结构所寄生而成的横向pnp型双极性晶体管,以提升该直接转换型射频接收器的线性度。
3.根据权利要求1所述的直接转换型射频接收器的混波器,其中该第一增益信号、该调制信号以及该第二增益信号,皆为差动型式。
4.根据权利要求1所述的直接转换型射频接收器的混波器,对应于差动型式的该射频信号,而具有一对该第一晶体管以及一对该第二晶体管,且分别属于该负载电路所平行区分的第一部分与第二部分。
5.根据权利要求4所述的直接转换型射频接收器的混波器,其中该对该第一晶体管是具有共栅极,以维持该负载电路的该第一部分与该第二部分的平衡。
6.根据权利要求4所述的直接转换型射频接收器的混波器,其中该对该第二晶体管是具有共栅极,以维持该负载电路的该第一部分与该第二部分的平衡。
7.根据权利要求1所述的直接转换型射频接收器的混波器,其中该阻抗单元是选自电容、电阻或其任意组合。
8.根据权利要求1所述的直接转换型射频接收器的混波器,其中该第二晶体管耦合于电阻以提供该高阻抗。
9.根据权利要求4所述的直接转换型射频接收器的混波器,其中该对该第二晶体管,是形成电流镜。
10.根据权利要求4所述的直接转换型射频接收器的混波器,其中该对第二晶体管的共栅极接点是耦合于反馈单元,以检测信号的不对称情况而予以反馈。
全文摘要
一种直接转换型射频接收器的混波器包括增益电路、负载电路及转换电路。增益电路接收差动型式的射频信号以产生第一增益信号。转换电路将第一增益信号与本地振荡信号混合,以直接降频产生调制信号。负载电路包括一对第一晶体管、一对第二晶体管以及一对阻抗单元。阻抗单元提供增益参数。第一晶体管提供低阻抗,以使该调制信号继续输入至负载电路。第二晶体管提供高阻抗,以将输入至负载电路的该调制信号导向该阻抗单元并输出符合该增益参数的第二增益信号。第二晶体管是为利用金属氧化物半导体结构所寄生而成的直向npn型双极性晶体管。
文档编号H03D1/18GK1731691SQ20051009659
公开日2006年2月8日 申请日期2005年8月25日 优先权日2005年8月25日
发明者曾英哲, 郑念祖 申请人:威盛电子股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1