接收装置及接收方法

文档序号:7647187阅读:172来源:国知局
专利名称:接收装置及接收方法
技术领域
本发明涉及数字无线/有线通信系统中使用的、用导频信号(已知信号)来进行信道估计的接收装置。
背景技术
以往,安藤等人提出了在导频内插型通信方式(在信息信号中周期性地插入导频信号的方式)中用多个导频块来进行信道估计的方法(RCS96-72 DS-CDMA中使用多个导频块的高精度信道估计法)。以下,参照图1来说明该信道估计方法。
图1是现有接收装置进行的信道估计的原理性示意图。如图1所示,在现有接收装置中,采用在信息信号中周期性地插入Np个码元的导频信号(已知信号)的帧结构(即,Np个码元的导频信号被插入到各时隙中的帧结构)。用这些导频信号,来估计由于多径瑞利衰落而变动的传播路径。将Np个码元的导频信号称为“导频块”。
着眼于第n个时隙(图1中的时隙21)中的导频块、即第n个导频块(图1中的导频块11)。首先,对导频块11内的多个导频码元进行同相相加,求第n个导频块中的信道估计值。该信道估计值由下式来表示。其中,p是同相相加的导频码元,Cn是第n个导频块中的信道估计值。Cn=Σm=0Np-1pm----(1)]]>接着,对第n个时隙21的前后K个(这里是前后1个)导频块中的信道估计值进行加权相加,来求第n个时隙21的信道估计值。该信道估计值由下式来表示。其中,Wn是第n个时隙的加权系数。ξn=Σl=-K+1KWlcl----(2)]]>用这样求出的信道估计值,来进行第n个时隙的同步检波,进行RAKE合成。
接着,除了参照图1之外还参照图2及图3来说明用于实现上述现有信道估计的结构。图2是现有接收装置的结构方框图。图3是现有接收装置中的信道估计电路的结构方框图。
在图2中,接收信号由A/D变换器31进行A/D变换并送至解扩电路32。解扩电路32用A/D变换过的接收信号对导频信号及数据信号(信息信号)进行解扩。解扩过的导频信号被送至信道估计电路33,解扩过的数据信号被送至同步检波电路34。
信道估计电路33用解扩过的导频信号来进行信道估计,得到同步检波用的信道估计值。具体地说,解扩过的导频信号(即,第n个导频块中的导频码元)如图3所示由同相相加电路41进行同相相加。该同相相加相当于上述(1)式中说明过的同相相加。同相相加电路41通过同相相加而求出的信道估计值由乘法器42乘以加权系数。例如,在第n个导频块是导频块11(参照图11)的情况下,导频块11中的信道估计值被乘以加权系数W2。该乘法相当于上述(2)式中说明过的乘法。乘以了加权系数的信道估计值被送至矢量相加电路43。
矢量相加电路43对乘法器42乘以了加权系数的信道估计值、和乘以了加权系数的其他导频块中的信道估计值进行矢量相加。例如,在第n个导频块是导频块11(参照图1)的情况下,对乘以了加权系数W2的导频块11中的信道估计值、和乘以了加权系数W1的导频块10中的信道估计值及乘以了加权系数W2的导频块12中的信道估计值进行矢量相加。由此,求出同步检波用的信道估计值。
这样由信道估计电路33求出的信道估计值被送至图2所示的同步检波电路34。再次参照图2,同步检波电路34用来自解扩电路32的解扩过的数据信号、和来自信道估计电路33的信道估计值来进行同步检波处理。同步检波过的数据信号被送至RAKE合成电路35。
对各指状器(フインガ)都设有上述解扩电路32、信道估计电路33及同步检波电路34。各指状器(在图2中作为一例示出了指状器数为3的情况)中的同步检波电路34同步检波过的数据信号由RAKE合成电路35进行RAKE合成。
然而,在上述现有接收装置中,有下述问题。即,在插入有导频信号的周期(即,例如图1中插入导频块的周期)间频偏或衰落等造成的相位旋转量大的情况下,如果图2中的信道估计电路33用加权相加来进行矢量合成,则加权相加所得的信道估计值的振幅分量减少。
参照图4A及图4B来说明加权相加所得的信道估计值的振幅分量减少的具体例。图4A是现有接收装置加权相加所得的信道估计值的振幅分量的第1例的示意图。图4B是现有接收装置加权相加所得的信道估计值的振幅分量的第2例的示意图。为了简化说明,假设对第n个导频块中的信道估计值、和另一个导频块(第n个导频块之前或之后的导频块)中的信道估计值进行加权相加。
首先,参照图4A来说明在插入有导频信号的周期间频偏或衰落等造成的相位旋转量小的情况。在图4A中,设信道估计值51表示第n个导频块中的信道估计值,而设信道估计值52表示另一个导频块中的信道估计值。
在此情况下,信道估计值51和信道估计值52之间的相位旋转量小,所以通过用信道估计值51和信道估计值52进行加权及矢量合成而得到的信道估计值53的振幅分量的减少量小。信道估计值53的振幅不等于信道估计值51的振幅+信道估计值52的振幅,是因为加权系数的缘故。
接着,参照图4B来说明在插入有导频信号的周期间频偏或衰落等造成的相位旋转量大的情况。在图4B中,设信道估计值54表示第n个导频块中的信道估计值,而设信道估计值55表示另一个导频块中的信道估计值。
在此情况下,信道估计值54和信道估计值55之间的相位旋转量大,所以通过用信道估计值54和信道估计值55进行加权及矢量合成而得到的信道估计值56的振幅分量大幅度减少。
因此,在上述现有接收装置中,即使在插入有导频信号的周期间频偏或衰落等造成的相位旋转量大的情况下,也用振幅分量减少了的信道估计值来进行同步检波,所以通过该同步检波而得到的数据信号的振幅也减少。由此,不能在RAKE合成时对同步检波过的数据信号进行最大比合成,所以通过RAKE合成而得到的数据信号的接收质量恶化。
如上所述,在上述现有接收装置中,由于频偏或衰落的影响,数据信号(信息信号)的接收质量有可能恶化。

发明内容
本发明的目的在于提供一种接收装置,即使在存在频偏及衰落的状况下,也能抑制运算量并提高信道估计精度,降低信息信号的接收质量的恶化。
为了实现上述目的,在本发明中,对导频信号进行同相相加,计算每多个导频码元的同相相加值,单独用算出的同相相加值的振幅分量及相位分量来进行加权相加,从而分别计算信道估计值的振幅分量及相位分量。


图1是现有接收装置进行的信道估计的原理性示意图。
图2是现有接收装置的结构方框图。
图3是现有接收装置中的信道估计电路的结构方框图。
图4A是现有接收装置加权相加所得的信道估计值的振幅分量的第1例的示意图。
图4B是现有接收装置加权相加所得的信道估计值的振幅分量的第2例的示意图。
图5是本发明实施例1的接收装置的结构方框图。
图6是本发明实施例1的接收装置中的信道估计电路的结构方框图。
图7是本发明实施例1的接收装置进行的信道估计的原理性示意图。
图8是本发明实施例2的接收装置的结构方框图。
图9是本发明实施例2的接收装置中的信道估计电路的结构方框图。
图10是本发明实施例3的接收装置中的信道估计电路的结构方框图。
图11是本发明实施例4的接收装置中的信道估计电路的结构方框图。
具体实施例方式
以下,参照附图来详细说明本发明的实施例。
(实施例1)图5是本发明实施例1的接收装置的结构方框图。在图5中,A/D变换器101对接收信号进行A/D变换并送至解扩电路102。解扩电路102用A/D变换过的接收信号对导频信号及数据信号(信息信号)进行解扩,将解扩过的导频信号送至信道估计电路103,将解扩过的数据信号送至同步检波电路104。
信道估计电路103用解扩过的导频信号来进行信道估计,来求同步检波用的信道估计值并送至同步检波电路104。该信道估计电路103的具体结构待后述。同步检波电路104用来自解扩电路102的解扩过的数据信号和来自信道估计电路103的信道估计值来进行同步检波处理。
对各指状器(在图5中作为一例示出了指状器数为3的情况)都设有上述解扩电路102、信道估计电路103及同步检波电路104。各指状器中的同步检波电路104同步检波过的数据信号被送至RAKE合成电路105。
图6是本发明实施例1的接收装置中的信道估计电路的结构方框图。在图6中,同相相加电路201对各导频块的由图5所示的解扩电路102解扩过的导频信号的n个码元(其中n是1以上的整数)进行同相相加。
角度检测电路202检测同相相加电路201同相相加所得的导频信号(同相相加值)的角度分量并送至相位计算电路203。相位计算电路203用来自角度检测电路202的导频信号的角度分量、和各导频块的加权系数来进行相位计算处理,求信道估计值的相位分量。
绝对值计算电路204对同相相加电路201同相相加所得的导频信号(同相相加值)进行绝对值处理,检测该同相相加所得的导频信号(同相相加值)的振幅分量并送至乘法器205。乘法器205将来自绝对值计算电路204的导频信号的振幅分量、和导频块的加权系数相乘。振幅计算电路206将乘以了各导频块的加权系数的振幅分量相加,来求信道估计值的振幅分量。
矢量变换电路207将来自相位计算电路203的信道估计值的相位分量、和来自振幅计算电路206的信道估计值的振幅分量变换为矢量,输出信道估计值。
接着,除了参照图5及图6之外,还参照图7来说明具有上述结构的接收装置的工作。图7是本发明实施例1的接收装置进行的信道估计的原理性示意图。图7示出将本实施例的接收装置应用于W-CDMA的上行线路中的情况。
在W-CDMA的上行线路中,数据信道(用于进行数据信号的通信的信道)被加载在同相分量上,控制信道(用于进行导频信号等控制信号的通信的信道)被加载在正交分量上(IQ复用),进而通过扰码来进行HPSK调制并进行发送。
如图7所示,本实施例的接收装置接收通过数据信道而发送的数据信号(图7中的例如“A”及“B”)和通过控制信道而发送的控制信号(图7中的例如“导频(Pilot)”)被IQ复用的信号。在控制信道中,采用在控制信号中周期性地插入n个码元的导频信号(已知信号)的帧结构。n个码元的导频信号(图7中的“导频”)相当于上述导频块。
以下,以用图7中的导频块302来进行信道估计的情况为例,说明本实施例的接收装置的工作。在图5中,接收信号由A/D变换器101进行A/D变换并送至解扩电路102。解扩电路102用A/D变换过的接收信号对导频信号(图7中的“导频”等)及数据信号(图7中的“A”及“B”)进行解扩。解扩过的导频信号被送至信道估计电路103,而解扩过的数据信号被送至同步检波电路104。
信道估计电路103用解扩过的导频信号来进行信道估计,得到同步检波用的信道估计值。具体地说,参照图6,解扩过的导频信号(即导频块302中的n个导频码元)由同相相加电路201进行同相相加。角度检测电路202检测同相相加后的导频块302的角度分量。检测出的角度分量被送至相位计算电路203。
相位计算电路203用来自角度检测电路202的导频信号的角度分量、和各导频块的加权系数来进行相位计算处理。由此,求出导频块302中的信道估计值的相位分量。具体地说,用同相相加后的导频块302的角度分量、同相相加后的导频块301的角度分量、同相相加后的导频块303的角度分量、以及各导频块的加权系数即W1~W3(参照图7),根据下式来求导频块302中的信道估计值的相位分量。
θx+∑{Wn/(Wx+Wn)×(θn-θx)}(3)其中,θx(n≠x)是基准导频块的角度分量,也可以是任一个导频块的角度分量。此外,Wn是导频块n的加权系数,Wx是基准导频块的加权系数。在本实施例中,n=3。这样求出的导频块302的信道估计值的相位分量被送至矢量变换电路207。
另一方面,绝对值计算电路204对同相相加所得的导频信号(即导频块302)进行绝对值处理,检测该同相相加所得的导频块302的振幅分量。检测出的振幅分量由乘法器205乘以导频块302的加权系数(W2)后,送至振幅计算电路206。
振幅计算电路206将乘以了各导频块的加权系数的振幅分量相加,求出导频块302的信道估计值的振幅分量。具体地说,用乘以了加权系数(W2)的导频块302的振幅分量、乘以了加权系数(W1)的导频块301的振幅分量、乘以了加权系数(W3)的导频块303的振幅分量,根据下式来求导频块302中的信道估计值的振幅分量。其中,an是导频块n的振幅分量。
∑(an×Wn)(4)这样求出的导频块302的信道估计值的振幅分量被送至矢量变换电路207。矢量变换电路207将来自相位计算电路203的导频块302的信道估计值的相位分量、和来自振幅计算电路206的导频块302的信道估计值的振幅分量变换为矢量。由此,求出导频块302的信道估计值。
如上所述,在对各导频块求出同相相加所得的导频信号的相位分量和振幅分量后,对各导频块的相位分量和各导频块的振幅分量单独进行加权相加,从而单独求出信道估计值的相位分量及振幅分量。进而,通过将求出的信道估计值的相位分量及振幅分量变换为矢量,求出信道估计值。由此,即使在图4B所示的频偏及矢量造成的相位旋转量大的状况下,通过不是像以往那样简单地对信道估计值54和信道估计值55进行矢量相加,而是对信道估计值54及信道估计值55的每个振幅分量及每个相位分量进行加权相加,也能够防止最终求出的信道估计值的振幅分量减少。
这样求出的导频块302的信道估计值被送至图5所示的同步检波电路104。同步检波电路104用来自解扩电路102的解扩过的数据信号和来自信道估计电路103的信道估计值来进行同步检波处理。即,例如着眼于对数据信号304(参照图7)进行的同步检波处理,同步检波电路104用来自解扩电路102的解扩过的数据信号304、和来自信道估计电路103的导频块302的信道估计值来进行同步检波处理。由此,得到同步检波过的数据信号304。
同步检波过的数据信号在RAKE合成电路105中与其他指状器中的数据信号一起进行RAKE合成。在本实施例中,能抑制来自各指状器中的同步检波电路的数据信号的振幅减少,所以RAKE合成电路105能够对同步检波过的各数据信号进行最大比合成。由此,通过RAKE合成而得到的数据信号的接收质量良好。
以上,以用图7中的导频块302来进行信道估计的情况为例,说明了本实施例的接收装置的工作,但是当然可以用任一个导频块来进行信道估计。再者,在本实施例中,说明了在求导频块302的信道估计值时使用导频块302之前及之后的导频块的角度分量及振幅分量(即n=3)的情况,但是也可以使用更多的前后导频块。
此外,也可以在时隙的途中(即按照被同步检波的信息信号在接收信号中的位置)来切换加权相加时的加权系数(在本实施例中是W1~W3)。例如,在对图7中的数据信号304进行解调(同步检波)的情况下,可以将加权系数设定为(W1,W2,W3)=(0.2,0.6,0.2)。这种加权系数的设定反映出数据信号304的传播路径状态最接近导频块302的传播路径状态。
此外,在对图7中的数据信号305进行解调(同步检波)的情况下,也可以将加权系数设定为(W1,W2,W3)=(0,0.5,0.5)。这种加权系数的设定反映出数据信号305的传播路径状态最接近导频块302及导频块303的传播路径状态。加权系数被归一化,以便所有的加权系数的合计始终恒定(作为一例,在本实施例中是1)。
如上所述,通过在时隙的途中(即按照被同步检波的信息信号在接收信号中的位置)来切换加权系数,以使与要解调的数据信号的传播路径最接近的传播路径所对应的导频块反映在信道估计上,从而即使在相位旋转量大的情况下,也能够进行更高精度的信道估计。
这样,根据本实施例,对导频块(导频信号)的信道估计值的每个振幅分量及每个相位分量进行加权相加,单独求信道估计值的相位分量及振幅分量,进而将求出的相位分量及振幅分量变换为矢量来计算信道估计值,从而即使在存在频偏及衰落的状况下,也能抑制运算量并降低信息信号的接收质量的恶化。此外,通过在时隙的途中切换加权系数,能够进行更高精度的信道估计。
在本实施例中,以接收数据信号和控制信道被IQ复用来发送的信号的情况为例进行了说明,但是本发明不限于此,只要采用对多个导频信号进行加权相加来求信道估计值的结构,则可以应用于接收用任何帧格式发送的信号的情况(作为一例,图1所示的帧格式)。即,本发明不仅可以应用于例如接收用规定码元(n个码元)的导频块周期性地被插入到各时隙中的帧格式(参照图1)发送的信号的情况,也可以应用于接收对每个时隙设置不同码元数的导频块周期性地被插入到各时隙中的帧格式发送的信号的情况等。
(实施例2)在本实施例中,参照图8来说明按照相位旋转量来进行实施例1中说明过的信道估计或现有方式的信道估计的情况。图8是本发明实施例2的接收装置的结构方框图。对图8中与实施例1(图5)同样的结构附以与图5相同的标号,并省略其详细说明。
在图8中,相位旋转检测电路401用解扩电路102解扩过的信号(例如可以使用数据信号,但是也可以使用导频信号等控制信号)来取出该信号的相位差分,检测相位旋转量。该相位旋转检测电路401将检测出的相位旋转量送至信道估计电路402。
图9是本发明实施例2的接收装置中的信道估计电路的结构方框图。对图9中与实施例1(图6)及现有方式(图3)同样的结构分别附以与图6及图3相同的标号并省略其详细说明。
图9所示的信道估计电路402按照来自相位旋转检测电路401的相位旋转量,由接受控制部502控制的开关501来切换图6所示的信道估计电路和图3所示的信道估计电路。
具体地说,在相位旋转量小的情况下(即,在控制部502认为相位旋转量小的情况下),由于即使用现有方式的信道估计也能够得到高精度的信道估计值,所以开关501根据控制部502的控制,将来自同相相加电路201的同相相加所得的导频信号送至乘法器42,以进行现有方式的信道估计。如上所述,乘法器42及矢量相加电路43对乘以了加权系数的各导频块中的信道估计值进行矢量相加。由此,由于不进行实施例1(图6)中说明过的信道估计也能得到高精度的信道估计值,所以在相位旋转量小的情况下能够削减所需的运算量。
相反,在相位旋转量大的情况下(即,在控制部502认为相位旋转量大的情况下),开关501将来自同相相加电路201的同相相加所得的导频信号送至角度检测电路202及绝对值计算电路204,以进行实施例1中说明过的信道估计。角度检测电路202及绝对值计算电路204进行与实施例1中说明过的工作同样的工作。由此,与实施例1同样,即使在频偏及衰落造成的相位旋转量大的情况下,也能够降低信息信号的接收质量的恶化。相位旋转量小的情况和大的情况的阈值,例如可以根据同步检波过的数据信号的接收质量是否超过期望质量来设定。
此外,在本实施例中,可以与实施例1同样在时隙的途中切换加权相加时的加权系数。除此之外,可以按照来自相位旋转检测电路401的相位旋转量来改变该加权系数。具体地说,例如在相位旋转量大的情况下,在时隙的途中切换乘法器205所用的加权系数(例如,在图7中,增大W2,减小W1及W2等),而在相位旋转量小的情况下,不切换乘法器205所用的加权系数。由此,不管相位旋转量如何,都能够进行高精度的信道估计。
这样,根据本实施例,通过按照相位旋转量来切换使用实施例1中说明过的信道估计或现有方式的信道估计,能够抑制信道估计时的运算量及存储量的增加。再者,通过按照相位旋转量来控制加权相加时的加权系数,不管相位旋转量如何,都能够进行高精度的信道估计。
在本实施例中,未描述进行RAKE合成的方面,但是通过对各指状器设置图8所示的解扩电路102、相位旋转检测电路401、信道估计电路402及同步检波电路104,并且设置对各指状器中的同步检波电路104同步检波所得的数据信号进行RAKE合成的RAKE合成电路,与实施例1同样,能够对各指状器中的数据信号进行最大比合成。由此,通过RAKE合成而得到的数据信号的接收质量良好。
(实施例3)在本实施例中,参照图10来说明在实施例1及实施例2中用现有方式的矢量相加方式来求信道估计值的相位分量的情况。图10是本发明实施例3的接收装置中的信道估计电路的结构方框图。对图10中与实施例1(图6)及现有方式(图3)同样的结构分别附以与图6及图3相同的标号,并省略其详细说明。此外,本实施例的接收装置的结构除了信道估计电路103的内部结构以外,与图5所示的接收装置相同,所以省略其详细说明。
图10所示的信道估计电路的结构与实施例1中的信道估计电路(图6)等价。在图10中,归一化电路600对同相相加电路201同相相加所得的导频信号(同相相加值)进行归一化,将归一化过的同相相加值送至乘法器42。乘法器42将来自归一化电路600的归一化过的同相相加值和导频块的加权系数相乘,求导频块的相乘值。
矢量相加电路43将归一化的乘以了加权系数的各导频块的同相相加值(相乘值)相加,求矢量相加值。归一化电路601对求出的矢量相加值进行归一化。乘法器602将来自归一化电路601的归一化过的矢量相加值、和来自振幅计算电路206的信道估计值的振幅分量相乘,来求信道估计值。
接着,以用图7中的导频块302来进行信道估计的情况为例,说明本实施例的接收装置的工作。这里,在用导频块302来进行信道估计时,作为一例,假设将导频块302的前后1个导频块(即导频块301及导频块303)用于加权相加。本实施例的接收装置中的信道估计电路以外的工作与实施例1相同,所以省略其详细说明。
在图10中,对信道估计值的振幅分量进行与实施例1同样的处理,由振幅计算电路206来求。振幅计算电路206求出的信道估计值的振幅分量被送至乘法器602。
另一方面,归一化电路600对来自同相相加电路201的同相相加值(导频块302的同相相加值)进行归一化。即,归一化电路600将来自同相相加电路201的同相相加值变为振幅大小为1的矢量(单位矢量)。这相当于从来自同相相加电路201的同相相加值中除去振幅分量的影响,相当于在实施例1(图6)中的角度检测电路202中用同相相加值只求相位分量。
归一化过的导频块302的同相相加值由乘法器402乘以导频块302的加权系数(W2)。由此,求导频块302的相乘值。求出的导频块302的相乘值被送至矢量相加电路43。
矢量相加电路43将各导频块的相乘值(即归一化的乘以了加权系数的各导频块的同相相加值)相加,求出矢量相加值。具体地说,矢量相加电路43将导频块302的相乘值、导频块301的相乘值、及导频块303的相乘值相加,求出矢量相加值。
如上所述,矢量相加电路43得到的矢量相加值在相位旋转量小的情况下其振幅分量的减少量少(图4A),而在相位旋转量大的情况下其振幅分量减少。即,在通过该矢量相加而得到的矢量相加值中,振幅分量的精度低,而相位分量的精度高。因此,在本实施例中,着眼于利用矢量相加电路43得到的矢量相加值中的相位分量。
矢量相加电路43得到的矢量相加值由归一化电路601进行归一化,从而变为振幅大小为1的矢量(单位矢量)。归一化电路601得到的振幅大小为1的矢量由乘法器602乘以来自振幅计算电路206的信道估计值的振幅分量。由此,得到信道估计值。
如上所述,本实施例中的信道估计电路与实施例1中的信道估计电路(图6)等价,所以在本实施例中得到的信道估计值的精度与在实施例1中得到的信道估计值的精度相同。但是,在本实施例中,不用实施例1中的角度检测电路202来求信道估计值,所以与实施例1相比,能够抑制所需的运算量及电路规模(存储量)。
在本实施例中,说明了将用现有方式的矢量相加方式来求信道估计值的相位分量的方法应用于实施例1中的接收装置中的情况,但是也可以将这样求信道估计值的相位分量的方法同样应用于实施例2中的接收装置中。
这样,在本实施例中,对归一化过的各导频块的同相相加值进行矢量相加来求矢量相加值,对该矢量相加值进行归一化而变换为表示相位分量的单位矢量后,将信道估计值的振幅分量乘以该单位矢量,来求信道估计值。由此,不需要上述实施例1及实施例2中的角度检测电路202,所以与实施例1及实施例2相比,能够削减所需的运算量及电路规模(存储量)。
(实施例4)本实施例参照图11来说明在实施例3中进一步提高得到的信道估计值的精度的情况。图11是本发明实施例4的接收装置中的信道估计电路的结构方框图。对与图11中与实施例3(图10)同样的结构附以与图10相同的标号,省略其详细说明。此外,本实施例的接收装置的结构除了信道估计电路103的内部结构之外,与图5所示的结构相同,所以省略其详细说明。
图11所示的信道估计电路具有下述结构在实施例3中的信道估计电路(图10)中除去了归一化电路600。即,同相相加电路201将同相相加值送至乘法器42,乘法器42将来自同相相加电路201的同相相加值和导频块的加权系数相乘。
接着,以用图7中的导频块302来进行信道估计的情况为例,说明本实施例的接收装置的工作。这里,在用导频块302来进行信道估计时,作为一例,假设将导频块302的前后1个导频块(即导频块301及导频块303)用于加权相加。本实施例的接收装置中的信道估计电路以外的工作与实施例1相同,所以省略其详细说明。
在图11中,对信道估计值的振幅分量进行与实施例3同样的处理,由振幅计算电路206来求,并送至乘法器602。另一方面,同相相加电路201求出的同相相加值(导频块302的同相相加值)不被归一化就送至乘法器42,由该乘法器42乘以导频块302的加权系数(W2),由此,求出导频块302的相乘值。求出的导频块302的相乘值被送至矢量相加电路43。
矢量相加电路43将各导频块的相乘值(即,乘以了加权系数的各导频块的同相相加值)相加,求出矢量相加值。具体地说,矢量相加电路43将导频块302的相乘值、导频块301的相乘值、及导频块303的相乘值相加,求出矢量相加值。
矢量相加电路43得到的矢量相加值由归一化电路601进行归一化,变为振幅大小为1的矢量(单位矢量)。本实施例中的归一化电路601得到的矢量与实施例3中的归一化电路601得到的矢量在以下所述方面有所不同。
在上述实施例3中,对归一化的乘以了加权系数的各导频块的同相相加值进行矢量相加,来求矢量相加值,进而对该矢量相加值进行归一化,求出表示相位分量的矢量。即,在各导频块的同相相加值都被变换为大小为1的矢量后进行加权相加,所以表示相位分量的矢量不反映各导频块的同相相加值的振幅分量。
另一方面,在本实施例中,各导频块的同相相加值不被归一化就进行加权相加,所以表示相位分量的矢量反映各导频块的同相相加值的振幅分量。即,表示相位分量的矢量更强地反映振幅分量更大的导频块的同相相加值的振幅分量,而更弱地反映振幅分量更小的导频块的同相相加值的振幅分量。其结果是,本实施例中得到的表示相位分量的矢量与实施例3中得到的表示相位分量的矢量相比,精度更高。
如上所述,归一化电路601得到的矢量由乘法器602乘以来自振幅计算电路206的信道估计值的振幅分量。由此,得到信道估计值。
如上所述,本实施例中的归一化电路601得到的矢量的精度比实施例3中的归一化电路601得到的矢量的精度高,所以本实施例中得到的信道估计值也比实施例3中得到的信道估计值的精度高。
再者,实施例3需要对各导频块的同相相加值进行归一化的归一化电路(即与被矢量相加的同相相加值对应个归一化电路)、及对得到的矢量进行归一化的归一化电路,而本实施例只需要对得到的矢量相加值进行归一化的归一化电路。由此,本实施例与实施例3相比,能够进一步抑制所需的运算量及电路规模(存储量)。
这样,在本实施例中,在对各导频块的同相相加值进行矢量相加来求矢量相加值,对该矢量相加值进行归一化而变换为表示相位分量的单位矢量后,将信道估计值的振幅分量乘以该单位矢量,来求信道估计值。由此,不需要实施例3中的对各导频块的同相相加值进行归一化的归一化电路600,所以与实施例3相比,能够削减所需的运算量及电路规模(存储量)。再者,加入各导频块的同相相加值的振幅分量来求表示信道估计值的相位分量的矢量,所以与实施例3相比,能够求更高精度的信道估计值。
在上述实施例1至上述实施例4中,以将本发明的接收装置应用于无线通信的情况为例进行了说明,但是也可以将本发明的接收装置应用于有线通信。
如上所述,根据本发明,能够提供下述接收装置对导频信号进行同相相加,计算每个导频码元的同相相加值,单独用算出的同相相加值的振幅分量及相位分量来进行加权相加,从而分别计算信道估计值的振幅分量及相位分量,所以即使在存在频偏及衰落的状况下,也能抑制运算量并提高信道估计精度,降低信息信号的接收质量的恶化。
本说明书基于2000年10月10日申请的(日本)特愿2000-308883。其内容全部包含于此。
产业上的可利用性本发明适用于数字移动通信系统中的基站装置及通信终端装置。使用本发明的基站装置及通信终端装置通过包括即使在存在频偏及衰落的状况下也能抑制运算量并提高信道估计精度、降低信息信号的接收质量的恶化的接收装置,能够得到高精度的解调信号,所以能够进行良好的无线通信。
权利要求
1.一种接收装置,包括同相相加器,对接收信号中的导频信号进行同相相加,计算每多个导频码元的同相相加值;分量计算器,通过用算出的同相相加值的振幅分量进行加权相加来计算信道估计值的振幅分量,通过用算出的同相相加值的相位分量进行加权相加来计算信道估计值的相位分量;以及信道估计值生成器,用算出的振幅分量及相位分量来生成信道估计值。
2.如权利要求1所述的接收装置,其中,分量计算器包括振幅分量计算器,将算出的同相相加值的振幅分量和多个导频码元的加权系数相乘,得到每多个导频码元的相乘值,将各多个导频码元的相乘值相加,来计算信道估计值的振幅分量;以及相位分量计算器,用算出的同相相加值的相位分量及多个导频码元的加权系数进行相位计算处理,来计算信道估计值的相位分量;信道估计值生成器通过将算出的振幅分量及相位分量变换为矢量来生成信道估计值。
3.如权利要求1所述的接收装置,其中,分量计算器包括振幅分量计算器,将算出的同相相加值的振幅分量和多个导频码元的加权系数相乘,得到每多个导频码元的相乘值,将各多个导频码元的相乘值相加,来计算信道估计值的振幅分量;矢量相加值生成器,将算出的同相相加值和多个导频码元的加权系数相乘,得到每多个导频码元的相乘值,对各多个导频码元的相乘值进行矢量相加来生成矢量相加值;以及单位矢量生成器,通过对生成的矢量相加值进行归一化,来生成表示信道估计值的相位分量的单位矢量;信道估计值生成器通过将算出的信道估计值的振幅分量和生成的单位矢量相乘来生成信道估计值。
4.如权利要求3所述的接收装置,其中,矢量相加值生成器将对算出的同相相加值进行归一化所得的值和多个导频码元的加权系数相乘来得到各多个导频码元的相乘值。
5.如权利要求1所述的接收装置,还包括第2信道估计值生成器,将算出的同相相加值和多个导频码元的加权系数相乘,得到每多个导频码元的相乘值,对各多个导频码元的相乘值进行矢量相加来生成信道估计值;以及控制器,按照用接收信号检测出的相位旋转量,使信道估计值生成器或第2信道估计值生成器生成信道估计值。
6.如权利要求1所述的接收装置,还包括第1设定器,按照检测出的相位旋转量,来设定多个导频码元的加权系数。
7.如权利要求1所述的接收装置,还包括同步检波器,用生成的信道估计值,对接收信号中的信息信号进行同步检波;以及第2设定器,按照被同步检波的信息信号在接收信号中的位置,来设定多个导频码元的加权系数。
8.一种包括接收装置的通信终端装置,其中,所述接收装置包括同相相加器,对接收信号中的导频信号进行同相相加,计算每多个导频码元的同相相加值;分量计算器,通过用算出的同相相加值的振幅分量进行加权相加来计算信道估计值的振幅分量,通过用算出的同相相加值的相位分量进行加权相加来计算信道估计值的相位分量;以及信道估计值生成器,用算出的振幅分量及相位分量来生成信道估计值。
9.一种包括接收装置的基站装置,其中,所述接收装置包括同相相加器,对接收信号中的导频信号进行同相相加,计算每多个导频码元的同相相加值;分量计算器,通过用算出的同相相加值的振幅分量进行加权相加来计算信道估计值的振幅分量,通过用算出的同相相加值的相位分量进行加权相加来计算信道估计值的相位分量;以及信道估计值生成器,用算出的振幅分量及相位分量来生成信道估计值。
10.一种接收方法,包括同相相加步骤,对接收信号中的导频信号进行同相相加,计算每多个导频码元的同相相加值;分量计算步骤,通过用算出的同相相加值的振幅分量进行加权相加来计算信道估计值的振幅分量,通过用算出的同相相加值的相位分量进行加权相加来计算信道估计值的相位分量;以及信道估计值生成步骤,用算出的振幅分量及相位分量来生成信道估计值。
全文摘要
角度检测电路(202)检测同相相加所得的导频信号的相位分量。相位计算电路(203)用同相相加所得的导频信号的相位分量和导频块的加权系数来进行相位计算处理,求信道估计值的相位分量。绝对值计算电路(204)检测同相相加所得的导频信号的振幅分量。振幅计算电路(206)将乘以了导频块的加权系数的振幅分量相加,来求信道估计值的振幅分量。矢量变换电路(207)将求出的相位分量及振幅分量变换为矢量,获得信道估计值。
文档编号H04B1/707GK1393077SQ01803059
公开日2003年1月22日 申请日期2001年10月9日 优先权日2000年10月10日
发明者有马健晋, 宫和行 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1