通信系统的制作方法

文档序号:7964827阅读:153来源:国知局
专利名称:通信系统的制作方法
本申请是申请号为99108470.5、申请日为1994年3月25日、发明名称为“通信系统”的申请的分案申请。
本发明涉及通过调制载频来传送数字信号的通信系统。
近年来,数字式通信系统在各种领域的应用正在不断地进步。特别是数字图象通信技术获得了惊人的进展。
其中,数字电视的传送方式最近越来越引人注目。现在的数字TV通信系统不过是作为播放台之间的中继而使用的、把数字电视的传送技术部分实用化了的设备。然而各国都在进行研究预定在不久的将来向地面广播和卫星广播方面扩展应用。
为适应高消费者的要求,今后有必要提高HDTV广播、PCM音乐广播、信息广播和FAX广播等等广播服务内容的质量和数量。这就要求在TV广播所限定的频带内使信息量增大。在这个频带内能够传送的信息传送量随时代的技术极限而增加。因此,最理想的是能够随着时代的变化而变更接收系统,扩充信息传送量。
然而从广播的观点看,通常性和长时期确保所有的视听者的既得权利是重要的。开始新的广播服务时,能用现有的接收机或者电视机享受服务是必要的条件。可以说,在过去和现在、以及现在和将来的新旧广播服务之间,接收机或电视机的互换性、广播的兼容性是最重要的。
今后推出的新的通信标准,例如数字电视广播标准中,需要能与将来的社会要求和技术进步相对应的信息量的扩充性、和现有的接收设备间的互换性及兼容性。
这里,从扩充性和兼容性的观点出发,阐述至今为止所提出的TV广播的传送方式。
首先,作为数字TV的卫星广播方式,提出了把NTSC-TV信号压缩为大约6Mbps,用4值psk调制这个压缩信号,用TDM方式实现多路化,使用1个脉冲转发器传送4-20个频道NTSC的TV节目或者传送1个频道的HDTV的广播方式。另外,作为HDTV的地面广播方式,正在研究把1个频道的HDTV图象信号压缩成约15Mbps的数据,再用16或者32QAM调制方式进行地面广播的方式。
首先,在卫星广播方式中,现在所建议的广播方式由于单纯地用以往的传送方式进行广播,因而播放1个频道的HDTV节目时使用了几个频道的NTSC的频带。因此,在HDTV节目的播放时间带内不能接收、播放几个频道的NTSC节目。可以说在NTSC和HDTV广播之间接收机、电视机没有互换性、兼容性。另外,还可以说完全没有考虑到将来伴随技术进步而成为必要的信息传送量的扩充性。
其次,现在所研究的先有方式的HDTV的地面播放方式不过是把HDTV信号在先有的16QAM及32QAM的信号点等间隔上用固定的调制方式直接播放。播放现存的模似信号时,在广播服务范围内也必然存在有楼房阴影、低洼地以及受到邻近电视台的干扰等接收状态差的区域。在这样的区域,现存的模拟广播的图象质量虽然劣化但还能再生图象、收看TV节目。然而,用先有的数字TV播送方式,在这样的区域就有完全不能再生图象、完全不能收看TV节目。这包括数字TV广播本质的课题,是数字TV广播的普及所遇到的致命的问题。
本发明旨在解决上述先有的问题,特别是提供一种通信系统,该系统在卫星广播方面具有NTSC广播和HDTV广播的兼容性,在地面广播方面使服务范围内的不能接收区域大幅度减少。
为达到上述目的,本发明的通信系统是通过有意识地变更或者在时间上变化现有的等间隔的信号点的位置来传送信号的。例如在应用于QAM时,本发明的通信系统具有2个结构部分,即由信号的输入部、调制部和发送调制信号的发送部构成的进行数据发送的发送装置和具有上述发送信号的输入部、解调部和输出部的接收装置。上述调制部根据来自输入部的输入信号调制不同相位的多个载波并在信号矢量图上产生m个值的信号点。上述解调部在矢量图上解调单值信号点的QAM调制波。
根据这样的构造,作为输入信号,输入具有n个值的数据的第1数据串和第2数据串;用发送装置的调制器产生在矢量图上具有m个值的信号点的变形m值QAM方式的调制波。把这m个值的信号点分割成n组信号点群,把这个信号点群分配给第1数据串的n个各数据;把第2数据串的各个数据分配给这个信号点群中的m/n个信号点或者副信号点群;由发送装置发出发送信号。根据情况,也可以发送第3数据串。
其次,在具有p(p>m)个值的解调器的接收装置中,接收上述发送信号,对信号间隔曲线图上p个点的信号点,首先把p个点的信号点分割成n组信号点群,再解调第1数据串的信号,并进行再生。使p/n个值的第2数据串与该信号点群中的p/n个点的信号点对应,进行解调,从而解调出第1数据串和第2数据串,并进行再生。在p=n的接收机中,再生n组的信号点群,使其分别对应于n个值,只解调第1数据串,并进行再生。
根据以上的操作,在接收来自发送装置的同一信号时,具有大型天线和多值解调能力的接收机中能够解调第1数据串和第2数据串。同时,具有小型天线和少值解调能力的接收机能够接收第1数据串。这样,便能构成具有兼容性的通信系统。通过把第1数据串分配到NTSC或HDTV的低频成分等的低频TV信号,把第2数据串分配到HDTV的高频成分等的高频TV信号,对于同一电波,便能用具有少值解调能力的接收机接收NTSC信号,用具有多值解调能力的接收机接收HDTV信号。由此使可进行具有NTSC和HDTV兼容性的数字式播放。
如以上那样,本发明能得到具有兼容性和发展性的通信系统。该兼容性的效果即使对于仅具有n(n<m)个值解调能力的接收机也可能把调制成最大的m个值的数据的多值调制波解调成n个值的数据。其作法是在由信号输入部、调制部(该调制部根据来自上述输入部的输入信号调制不同相位的多个载波,在信号矢量图上产生m个值的信号点)和发送调制信号的发送部构成的进行数据传送的通信系统中,输入n个值的第1数据串和第2数据串,把上述信号分割成n个信号点群,把该信号点群分配给第1数据串的各个数据,而把第2数据串的各数据分配给上述信号点群中的各信号点;由发送机发送信号,在具有该发送信号的输入部、解调部(该解调部在信号间隔曲线图上解调p个值的信号点的QAM调制波)和输出部的接收装置中,把上述信号点分割成n个值的信号点群,使其与各信号点群n个值的第1数据串相对应并解调,在信号点群中大约p/n值的信号点上解调p/n值的第2数据串的数据并进行再生,通过接收装置传送数据,例如利用发送机1的调制器4把n个值的第1数据串,第2数据串和第3数据串分割成信号点群并分配上数据,发送变形m个值的QAM调制信号,在第1接收机23中,利用解调器25解调n个值的第1数据串,在第2接收机33中解调第1数据串和第2数据串,在第3接收机43中解调第1数据串、第2数据串和第3数据串。进而,QAM方式的信号点中最靠近原点的信号点和I轴或Q轴的距离为f时,通过移动上述信号点使这个距离成为n>1的nf,从而,能够进行分级型的传送。
在这个通信系统中,通过把NTSC信号作为第1数据串、把HDTV的差信号作为第2数据串而发送,在卫星广播中便具有了NTSC广播和HDTV广播的兼容性,从而能进行信息量扩充性高的数字广播,在地面广播中,具有显著的扩大服务范围和消除不能接收区域的效果。
下面接合


本发明。其中,图1是本发明第1实施例的通信系统的系统总体结构图。
图2是本发明实施例1的发送机1的框图。
图3是本发明实施例1的发送信号的矢量图。
图4是本发明实施例1的发送信号的矢量图。
图5是本发明实施例1的对信号点的代码分配图。
图6是本发明实施例1的对信号点群的编号图。
图7是本发明实施例1的对信号点群中信号点的编码图。
图8是本发明实施例1的对信号点群和信号点的编码图。
图9是本发明实施例1的发送信号的信号点群的阈值状态图。
图10是本发明实施例1的变形16值QAM的矢量图。
图11是本发明实施例1的天线半径r2和发送电功率比n的关系图。
图12是本发明实施例1的变形64值QAM信号点图。
图13是本发明实施例1的天线半径r3和发送电功率比n的关系图。
图14是本发明实施例1的变形64值QAM的信号群和副信号群的矢量图。
图15是本发明实施例1的变形64值QAM的比率A1、A2的说明图。
图16是本发明实施例的天线半径r2、r3和发送电功率比n16、n64的关系图。
图17是本发明实施例1的数字式发送机的框图。
图18是本发明实施例1的4psk调制的信号间隔图。
图19是本发明实施例1的第1接收机的框图。
图20是本发明实施例1的4psk调制的信号间隔图。
图21是本发明实施例1的第2接收机的框图。
图22是本发明实施例1的变形16值QAM的信号矢量图。
图23是本发明实施例1的变形64值QAM的信号矢量图。
图24是本发明实施例1的流程图。
图25(a)是本发明实施例1的8值QAM的信号矢量图。
图25(b)是本发明实施例1的16值的QAM的信号矢量图。
图26是本发明实施例1的第3接收机的框图。
图27是本发明实施例1的变形64值QAM的信号点图。
图28是本发明实施例1的流程图。
图29是本发明实施例3中通信系统的总体结构图。
图30是本发明实施例3的第1图象编码器框图。
图31是本发明实施例3的第1图象译码器框图。
图32是本发明实施例3的第2图象译码器框图。
图33是本发明实施例3的第3图象译码器框图。
图34是本发明实施例3的D1、D2、D3信号的时间多路化的说明图。
图35是本发明实施例3的D1、D2、D3信号的时间多路化的说明图。
图36是本发明实施例3的D1、D2、D3信号的时间多路化的说明图。
图37是本发明实施例4中通信系统的系统总体结构图。
图38是本发明实施例3中变形16QAM的信号点矢量图。
图39是本发明实施例3中变形16QAM的信号点矢量图。
图40是本发明实施例3中变形64QAM的信号点矢量图。
图41是本发明实施例3的时间轴上的信号配置图。
图42是本发明实施例3的TDMA方式的时间轴上的信号配置图。
图43是本发明实施例3的载波再生电路的框图。
图44是本发明实施例3的载波再生的原理图。
图45是本发明实施例3的反调制方式的载波再生电路的框图。
图46是本发明实施例3的16QAM信号的信号点配置图。
图47是本发明实施例3的64QAM信号的信号点配置图。
图48是本发明实施例3的16倍增方式的载波再生电路的框图。
图49是本发明实施例3的Dv1、DH1、Dv2、DH2、Dv3、DH3信号的时间多路化说明图。
图50是本发明实施例3的Dv1、DH1、Dv2、DH2、Dv3、DH3信号的时间多路化说明图。
图51是本发明实施例3的Dv1、DH1、Dv2、DH2、Dv3、DH3信号的时间多路化说明图。
图52是本发明实施例4中先有方式的接收干扰区域图。
图53是本发明实施例4中分级型广播方式的接收干扰区域图。
图54是本发明实施例4中先有方式的接收干扰区域图。
图55是本发明实施例4中分级型广播方式的接收干扰区域图。
图56是本发明实施例4中数字式播放台2个台的接收干扰区域图。
图57是本发明实施例5中变形4ASK信号的信号点配置图。
图58是本发明实施例5中变形4ASK的信号点配置图。
图59(a)、图59(b)、图59(c)、图59(d)是本发明实施例5中变形4ASK的信号点配置图。
图60是本发明实施例5中低C/N值时的变形4ASK信号的信号点配置图。
图61是实施例5中4VSB、8VSB的发送机;图62(a)是本发明实施例5中ASK信号(即滤波前的多值VSB信号)的频谱图;图62(b)是本发明实施例5中VSB信号的频率分布图;图63是实施例5中4VSB、8VSB、16VSB的接收机的框图;图64是本发明实施例5中图象信号发送机的框图。
图65是本发明实施例5中TV接收机的总体框图。
图66是本发明实施例5中其它的TV接收机的框图。
图67是本发明实施例5中卫星/地面TV接收机的框图。
图68(a)是实施例5、6中8VSB的星座图;图68(b)是实施例5、6中8VSB的星座图;图68(c)是实施例5、6中8VSB的信号—时间波形图;图69是本发明实施例5中图象编码器的另一个框图。
图70是本发明实施例5中分离电路内单个图象编码器的框图。
图71是本发明实施例5中图象译码器的框图。
图72是本发明实施例5中合成器内单个图象译码器的框图。
图73是基于本发明的实施例5的发送信号的时间配置图。
图74(a)是基于本发明的实施例5的图象译码器的框图。
图74(b)是基于本发明的实施例5的发送信号的时间配置图。
图75是基于本发明的实施例5的发送信号的时间配置图。
图76是基于本发明的实施例5的发送信号的时间配置图。
图77是基于本发明的实施例5的发送信号的时间配置图。
图78是基于本发明的实施例6的图象译码器的框图。
图79是基于本发明的实施例5的3重分级信号的时间配置图。
图80是基于本发明的实施例5的图象译码器的框图。
图81是基于本发明的实施例的发送信号的时间配置图。
图82是基于本发明的实施例5的D1的图象译码器的框图。
图83是基于本发明的实施例5的调频信号的频率——时间图。
图84是基于本发明的实施例5的磁记录再生装置的框图。
图85是基于本发明的实施例2的C/N和分级号码的关系图。
图86是基于本发明的实施例2的传送距离和C/N的关系图。
图87是基于本发明的实施例2的发送机的框图。
图88是基于本发明的实施例2的接收机的框图。
图89是基于本发明的实施例2的C/N-误码率的关系图。
图90是基于本发明的实施例5的3重分级的接收干扰区域图。
图91是基于本发胆的实施例7的4重分级的接收干扰区域图。
图92是基于本发明的实施例7的分级传送图。
图93是基于本发明的实施例7的分离回路的框图。
图94是基于本发明的实施例7的合成部的框图。
图95是基于本发明的实施例7的传送分级结构图。
图96是先有方式的数字TV广播的接收状态图。
图97是基于本发明的实施例7的数字TV分级播放的接收状态图。
图98是基于本发明的实施例7的传送分级结构图。
图99是基于本发明的实施例3的16SRQAM的矢量图。
图100是基于本发明的实施例3的32SRQAM的矢量图。
图101是基于本发明的实施例3的C/N-误码率关系图。
图102是基于本发明的实施例3的C/N-误码率关系图。
图103是基于本发明的实施例3的位移量n和传送时必要的C/N的关系图。
图104是基于本发明的实施例3的位移量n和传送时必要的C/N的关系图。
图105是基于本发明的实施例3的地面广播时发射天线到接收点的距离和信号电平的关系图。
图106是基于本发明的实施例3的32SRQAM的服务范围图。
图107是基于本发明的实施例3的32SRQAM的服务范围图。
图108是基于本发明的实施例3的TV信号频率分布图。
图109是基于本发明的实施例3的TV信号时间配置图。
图110是基于本发明的实施例3的C-CDM的原理图。
图111是基于本发明的实施例3的符号分配图。
图112是基于本发明的实施例3的扩充36QAM时的符号分配图。
图113是基于本发明的实施例5的调制信号频率配置图。
图114是基于本发明的实施例5的磁记录再生装置的框图。
图115是基于本发明的实施例8的携带电话的收发机的框图。
图116是基于本发明的实施例8的基地台的框图。
图117是先有方式的通信容量和通信量的分布图。
图118是基于本发明的实施例8的通信容量和通信量的分布图。
图119(a)是先有方式的时间插入配置图。
图119(b)是基于本发明的实施例8的时间插入配置图。
图120(a)是先有方式的TDMA方式时间插入配置图。
图120(b)是基于本发明的实施例8的TDMA方式时间插入配置图。
图121是基于本发明的实施例8的1重分级收发机的框图。
图122是基于本发明的实施例8的2重分级的收发机的框图。
图123是基于本发明的实施例9的OFDM方式的收发机的框图。
图124是基于本发明的实施例9的OFDM方式的工作原理图。
图125(a)是先有方式的调制信号的频率配置图。
图125(b)是基于本发明的实施例9的调制信号的频率配置图。
图126(a)是基于本发明的实施例9的发送信号的频率配置图。
图126(b)是基于本发明的实施例9的接收信号的频率配置图。
图126(c)是基于本发明的实施例9的OFDM信号频率配置图,其中加权载波间隔为两倍。
图126(d)是基于本发明的实施例9的OFDM信号频率配置图,其中载波间隔没有被加权。
图127是基于本发明的实施例9的收发机的框图。
图128(a)是实施例2、4、5中格状编码器(比率1/2)的框图;图128(b)是实施例2、4、5中格状编码器(比率(2/3)的框图;图128(c)是实施例2、4、5中格状编码器(比率3/4)的框图;图128(d)是实施例2、4、5中格状译码器(比率1/2)的框图;图128(e)是实施例2、4、5中格状译码器(比率2/3)的框图;图128(f)是实施例2、4、5中格状译码器(比率3/4)的框图;图129是实施例9的有效符号期间和保护期间的时间配置图。
图130是实施例9的C/N和误码率的关系图。
图131是实施例5的磁记录再生装置的框图。
图132是实施例5的磁带上的磁道记录格式和磁头的走行图。
图133是实施例3的收发机的框图。
图134是先有实例的播放方式的频率配置图。
图135是实施例3的使用3重分级的分级型通信方式时的服务范围和图象质量的关系图。
图136是实施例3的把分级通信方式和FDM组合在一起时的频率配置图。
图137是实施例3中使用格子结构符号化时的收发机的框图。
图138是实施例9中用OFDM传送部分低域信号时的收发机的框图。
图139所示为实施例1中8-PS-APSK的信号点配置图;图140为实施例1中16-PS-APSK的信号点配置图;图141为实施例1中8-PS-PSK的信号点配置图;图142为实施例1中16-PS-PSK(PS型)的信号点配置图;图143为实施例1的卫星天线的半径和传送容量的关系图;图144是实施例9的加权OFDM发送、接收机的框图;图145(a)为实施例9中多通路较短情况下的保护时间、符号时间分层型OFDM的波形图;图145(b)为实施例9中多通路较长情况下的保护时间、符号时间分层型OFDM的波形图;图146为实施例9中保护时间、符号时间分层型OFDM的原理图;图147是实施例9中功率重叠的二层传送方式的子通道配置图;图148示出了实施例9中D/V化、多通路延迟时间和保护时间的关系图;图149(a)为实施例9中各层的时间分隔图;图149(b)为实施例9中各层的保护时间的时间分布图;图149(c)为实施例9中各层的保护时间的时间分布图;图150所示为实施例9中多通路延迟时间与传送速率关系图中多通路的3层分层型播放方式的说明图;图151是实施例9中使GTW-OFDM与C-CDM(或CSW-OFDM)组合的情况下,延迟时间与CN值关系图中2维矩阵结构的分层型播放方式的说明图;图152是组合实施例9的GTW-OFDM和C=CDM(或CSW-OFDM)时,在各时间段中3分层的TV信号的时间配置图;图153是组合实施例9的GTW-OFDM和C-CDM(或CSW-OFDM)时,在多通道信号迟延时间、C/N值及传送速率的关系图中3维矩阵构造的分层型播放方式的说明图;图154是实施例9功率加权的OFDM的频率分布图;图155是组合实施例9的时间保护的OFDM和C-CDM时在各时间段三层分层TV信号的时间轴上的配置图;图156是实施例4、5中发送机和接收机的框图;图157是实施例4、5中发送机和接收机的框图;图158是实施例4、5中发送机和接收机的框图;图159(a)是实施例5中16VSB的信号点配置图;图159(b)是实施例5中16VSB的信号点配置图(8VSB);图159(c)是实施例5中16VSB的信号点配置图(4VSB);图159(d)是实施例5中16VSB的信号点配置图(16VSB);图160(a)是实施例5、6中ECC编码器的框图;图160(b)是实施例5、6中ECC编码器的框图161是实施例5中VSB接收机的总体框图;图162是实施例5中发送机的总体框图;图163是实施例中4VSB和TC-8VSB的出错率-C/N值曲线图;图164是实施例中4VSB和TC-8VSB的子通道1和子通道2的出错率曲线图;图165(a)是实施例2、4、5中里德·所罗门编码器的框图;图165(b)是实施例2、4、5中里德·所罗门译码器的框图;图166是实施例2、4、5的里德·所罗门误差校正、运算的流程图;图167是实施例2、3、4、5、6中逆隔行扫描部的框图;图168(a)是实施例2、3、4、5中隔行扫描、逆隔行扫描表;图168(b)是实施例2、3、4、5中隔行扫描的距离示意图;图169是实施例5中4VSB、8VSB、16VSB的冗余码的比较图;图170是实施例2、3、4、5中接收高优先权信号的TV接收机的框图;图171是实施例2、3、4、5中发送机和接收机的框图;图172是实施例2、3、4、5中发送机和接收机的框图;图173是实施例6的ASK方式的磁记录再生装置的框图;实施例1以下参照附图,说明本发明一个最佳实施例。
本发明的实施例叙述通信系统和记录再生装置。通信系统由发送数字HDTV信号等数字信号的发送机和接收信号的接收机组成。记录再生装置在磁带等记录媒体上记录、再生HDTV信号等数字信号。
而本发明的数字调制解调部分、误码校正编码器、译码器以及HDTV信号等的图象编码的编码器、译码器的构成和动作原理在通信系统和记录再生装置中是共同的,基本上是同样的技术。因而,为在各实施例中有效地说明,使用通信系统或记录再生装置的框图说明本发明。另外,本发明的各个实施例的构成,如果是像QAM、ASK、PSK那样在星座(constellation)上配置信号点的多值数字调制方式,则无论哪种方式都能够适用,这里只使用一种调制方式进行说明。
图1示出了基于本发明的通信系统的系统总体图。具体输入部2、分离电路3、调制器4和发送部5的发送机1由分离电路3把多个多路化的输入信号分离为第1数据串、D1、第2数据串、D2、第3数据串、D3,经调制器4调制,由发送部5输出调制信号,用天线6把这个调制信号经信道7传送到人造卫星10。在人造卫星10中用天线11接收这个信号,经中继器12放大,由天线13再向地球发送。
发送电波经传送通路21、31、41传送入第1接收机23、第2接收机33,和第3接收机43。首先,在第1接收机23中通过天线22由输入部24输入,由解调器25仅解调出第1数据串,由输出部26输出。这时不具备解调第2数据串,和第3数据串的能力。
在第2接收机33中,通过天线32由输入部34输入的信号,经解调器35解调出第2数据串和第3数据串,由合成器37合成为1个数据串经输出部36输出。
在第3接收机43中,通过天线42由输入部44输入的信号,经解调器45解调出第1数据串、第2数据串,和第3数据串等3个数据串,再用合成器47组成一个数据群,经输出部46输出。
如上那样,即使接收到来自同一个发送机1的相同的频带的电波,由于上述3个接收机解调器性能的差异能够接收的信息量也就不相同。由于这个特长,所以,能用一个频带对性能不同的接收机同时传送与其性能相对应的兼容性的3组信息。例如,传送同一节目的NTSC、HDTV和高分辨率型HDTV的3组数字TV信号时,把超外差HDTV信号分离为低频成分、高频差频成分、超高频差频成分,若使它们分别与第1数据串、第2数据串,和第3数据串对应,则用1个频道的频带就能够同时传送具有兼容性的中等分辨率、高分辨率、超高分辨率的3种数字TV信号。
这时,使用小型天线的少值解调接收机能够接收NTSC-TV信号,使用中型天线的中值解调接收机能够接收HDTV信号,使用大型天线的多值接收机能够接收超高分辨率型的HDTV信号。进一步说明图1,进行NTSC的数字TV播放的数字式发送机51由输入部52仅输入和第1数据群相同的数据,用调制制器54调制,通过发送机55和天线56经信道57向卫星10传送,然后,再经信道58向地球发送。
在第1接收机23中,用解调器244把来自数字式发送机1的接收信号解调为与第1数据串相当的数据。同样,第2接收机33和第3接收机43中也解调成和第1数据串内容相同的数据。即,3个接收机都能够接收数字式普通TV广播等的数字式播放信号。
下面说明各个部分。
图2是发送机1的框图。
输入信号由输入部2输入,由分离电路3分离成第1数据串信号、第2数据串信号和第3数据串信号3个数字信号。
例如输入图象信号时,可以考虑把图象信号的低频成分分配给第1数据串信号,把图象信号的高频成分分配给第2数据串信号,把图象信号的超高频成分分配给第3数据串信号。分离开的3个信号输入调制器4内部的调制输入部61。在这里,有根据外部信号调制或变更信号点的位置的信号点位置调制/变更回路67,根据外部信号调制或变更信号点的位置。在调制器4中分别对相互正交的2个载波进行幅度调制,得到多值的QAM信号。从调制输入部61输出的信号传送给第1AM调制器62和第2AM调制器63。Cos(2πfct)的载波发生器64输出的载波之一由第1AM调制器62进行AM调制后传送给合成器65,另一个载波传送给π/2移相器66,并移相90°,以Sin(2πfct)的状态传送给第2AM调制器63,接受多值幅度调制后,在合成器65中和第1调制波合成,由发送部分5作为发送信号输出。由于以往普遍实施的就是这种方式,故省略详细动作的说明。
下面用图3的16值一般QAM信号的间隔图的第1象限说明实施例的动作。在调制器4中产生的全部信号可以用相互正交的2个载波ACos2πfct的矢量81和BSin(2πfct)的矢量82的合成矢量表示。把超始于0点的合成矢量的顶端定义为信号点,对于16值QAM的情况,利用a1、a2、a3、a44值的振幅值和b1、b2、b3、b4值的振幅值的组合,可以设定16个信号点。图3的第1象限中存在信号点83的C11、信号点84的C12、信号点85的C22和信号点86的C214个信号。
C11是矢量oa1和矢量ob1的合成矢量,C11=a1cos2πfct-b2sin2πfct=Acos(2πfct+dπ/2)。
这里,图3的正交座标系上o-a1、a1-a2、o-b1、b1-b2间的距离如图示分别定义为A1、A2、B1、B2。
如图4的全部矢量图所示,存在总计16个信号点。由此,通过把各个点与4比特的信息相对应,则在1个周期,即1个时间段内能传送4比特的信息。
图5示出了用二进制表示各点时其一般的分配例。
当然,各信号点间的距离越拉开,接收机就越容易区别。因此,一般尽可能把各信号点间的距离分离开配置。如果使特定的信号点间的距离相互接近时,接收机就难子对该2点间进行识别,误码率就要恶化。因此,一般希望像图5那样做等间隔配置。因此,对于16QAM的情况,一般进行A1=A2/2的信号点配置。
本发明的发送机1首先把数据分割为第1数据串和第2数据串,依具体情况,有时也分割为第3数据串。而且如图6所示的那样,把16个信号点或信号点群分割为4个信号点群,并且,把第1数据串的4个数据分配给各个信号点群。即第1数据串为11时,发送第1数据象限的第1信号点群91的4个信号点中的任一个,第1数据为01.00.10时分别从第2象限的第2信号点群92、第3象限的第3信号点群93和第4象限的第4信号点群94中根据第2数据串的值选择各自的4个信号点中的一个信号点发送。其次,对于16QAM的情况,把第2数据串的2比特、4值数据分配给91、92、93、94各分割信号点群中的4个信号点或副信号点群,对于64QAM的情况把4比特16值数据,分配给91、92、93、94各分割信号点群中的4个信号点或副信号点群(如图7所示)。不论哪个象限都为对称配置。对信号点91、92、93、94的分配由第1数据群的2比特数据优先决定。这样,便能完全独立地发送第1数据串的2比特和第2数据串的2比特。而且,只要接收机的天线灵敏度大于一定值,用4psk接收机也能够解调第1数据串。如果天线有更高的灵敏度,本发明的变形16QAM接收机就能够解调第1数据串和第2数据串。
这里,在图8示出了第1数据串的2比特和第2数据中的2比特的分配例。
这时,把HDTV信号分为低频成分和高频成分,把低频图象信号分配给第1数据串,把高频图象信号分配给第2数据串,由此,4psk的接收系统能够再生第1数据串的相当于NTSC的图象,16QAM或64QAM的接收系统能再生第1数据串和第2数据串,把这些相加就能够得到HDTV的图象。
只是,像图9那样把信号点间的距离取相等距离时,从4psk接收来看,与第1象限上斜线所示部分间有一个极限距离。设极限距离为ATO,如果仅发送4psk,ATO的振幅是可以的。然而,若要维持ATO而发送16QAM的话,就需要3倍ATO的振幅。即,与发送4psk时相比,需要9倍的能量。即使不考虑别的,用16QAM模式发送4psk信号,电功率利用率也是很低的。另外,载波的再生也很困难。卫星传送时所能够使用的电功率受到制约。这种电功率利用率低的系统,在增大卫星的发送电功率之前,是不现实的。可以预测,将来开始数字TV播放时,4psk接收机会大量上市。一旦普及后,由于产生接收机兼容性的问题,可以说再来提高这些接收机的接收灵敏度是不可能的。因而不能减少4psk模式的发送电功率。为此,想以16QAM模式发送模拟4psk的信号点时,应减小发送电功率,使之小于以往的16QAM。否则,就不能以有限的卫星的电功率进行发送。
本发明的特征在于通过像图10那样把标号为91、94的4个分割信号群的距离拉开,能够降低模拟4psk型16QAM调制的发送电功率。
这里,为弄清楚接收灵敏度和发送输出的关系,再返回到图1介绍数字式发送机51和第1接收机23的接收方式。
首先,数字式发送机51和第1接收机23是一般的通信系统,用来进行包括数据传送或播放的图象传送。如图17所示的那样,数字式发送机51为4psk发送机,是从图2中所说明的多值QAM发送机1中去掉了AM调制功能的发送机。输入信号通过输入部52输入到调制器54中。在调制器54中,利用调制输入部121把输入信号分为2个信号,分别传送入将基准载波进行相位调制的第1-2相相位调制电路122和调制与基准载波相位差90°的载波的第2-2相相位调制电路123。这些相位调制波在合成器65中合成,经发送部55发送。
此时的调制信号间隔图如图18所示。
设定4个信号点,为提高电功率利用率,一般把信号点间的距离设为等间隔。作为一例,图中示出了分别把信号点125、126、127、128定义为(11)、(01)、(00)、(10)的情形。这时,4psk的第1接收机23为接收到满意的数据,要求数字式发送机51的输出大于一定的振幅值。以图18说明。为了用第1接收机23以4psk接收数字式发送机51的信号,把最低要求的发送信号的最低振幅值即o-a1间的距离定义为ATO时,只要以高于发送界限的最低振幅值ATO发送,第1接收机23就能接收。
下面,介绍第1接收机23。第1接收机23通过卫星10的中继器12用小型天线22接收发送机1的发送信号或数字式发送机51的4psk发送信号,由解调器24把接收的信号视为4psk信号进行解调。第1接收机23本来是按接收数字式发送机61的4psk或2psk信号以及接收数字TV广播或数据发送等信号而设计的。
图19是第1接收机的结构框图。用天线22接收来自卫星10的电波。这个信号经输入部24输入后,由载波再生电路131和π/2移相器132再生出载波和正交载波,分别由第1相位检测电路133和第2相位检测电路134各自独立地检波相互正交的成分,由定时波抽取电路135各自独立地识别每个时间段。经第1识别再生电路136和第2识别再生电路137,2个独立的解调信号由第1数据串再生部232解调成第1数据串,经输出部26输出。
下面,用图20的矢量图说明接收信号。第1接收机23根据数字式发送机51的4psk发送电波接收到的信号,如果是没有传送畸变或完全无噪声的理想条件,能够代表为图20的151-154的4个信号点。
然而,实际上受通信信道中的噪声及传送系统的振幅畸变及相位畸变的影响,所接收到的信号分布在信号点周围一定的范围内。偏离该信号点时因不能判断为相邻的信号点而误码率逐渐增加,当超过某个设定范围时,就不能复原数据。为了在最恶劣的条件下也能在所设定的误码率以内进行解调,最好采用相邻信号间的距离。把这个距离定义为2ARO。如果把系统设定得使4psk的极限接收输入的信号点151进入到图20的|0-aR0|≥AR0、|0-bR1|≥AR0的斜线所示的第1辨别区155中,则后者就既能再生载波又能解调。设天线22设定的最小半径值为r0,则只要使发送输出达到某一定值之上,就能够用全部系统接收。图18中发送信号的振幅设定为第1接收机23的4pks最低接收振幅值,即AR0。把这个发送最低振幅值定义为AR0。由此,如果天线22的半径大于r0,则即使是最恶劣的接收条件,第1接收机23也能解调数字式发送机51的信号。在接收本发明的变形16QAM、64QAM时,第1接收机23难于再生载波。为此,只要发送机1像图25(a)那样把8个信号点配置到(π/4+nπ/2)角度的位置进行发送,利用4倍增方式就能再生载波。另外,如果像图25(b)那样,把16个信号点配置到nπ/8的角度的延长线上,在载波再生电路131中采用16倍增方式的载波再生方式,使信号点退缩,便能很容易地再生模拟4psk型16QAM调制信号的载波。这时,可以按A1/(A1+A2)=tan(π/8)设定发送机1的信号点进行发送。下面,考虑接收QPSK信号的情形。如图2发送机的信号点位置调制/变更电路67那样,信号点位置也可以与图18的QPSK信号的信号点位置重叠进行AM等的调制。这时,第1接收机23的信号点位置解调部138把信号点的位置调制信号或位置变更信号进行PM、AM等的解调,并且从发送信号输出第1数据串和解调信号。
下面,再返回发送机1,用图9的矢量说明发送机1的16psk发送信号。像图9那样,使信号点83的水平矢量方向的振幅A1大于图18的数字式发送机51的4psk最低发送输出AT0。于是,图9第1象限的信号点83、84、85、86的信号就进入到斜线所示的第14psk可能接收领域87中。第1接收机23接收这些信号时,这4个信号点就进入到图20接收矢量图的第1辨别区域。因此,第1接收机23无论接收到图9的信号点83、84、85、86中的哪一个都判断为图20的信号点151,在该时间段解调(11)的数据。如图8所示那样这个数据是发送机1的第1分割信号点群91的(11),即第1数据串的(11)。第2、3、4象限的情况也一样,解调为第1数据串。即第1接收机23从16QAM或32QAM或64QAM的发送机1的调制信号的多个数据串中只解调第1数据串的2比特数据。这时,由于第2数据串和第3数据串的信号全部包含在第1-第4分割信号点群中,故对第1数据串的信号解调不产生影响。但是,因为对载波的再生有影响,所以,应采取后面所述的对策。
如果卫星中继器的输出方面没有限制,则用图9所示的以往的信号点等距离方式,一般能够用16-64QAM实现。但是,如前述那样,和地面传送不同,在卫星传送中如果增加卫星的重量,就要大大增加卫星的成本。因此,发送功率受主机中继器的输出极限和太阳能电池电功率的极限制约。只要还未能通过技术革新使火箭的发射成本减低,这种状态就会继续。发送功率对于通信卫星为20W,对于广播卫星则约为100W-200W。因而,像图9那样用信号点等距离方式的16QAM传送4psk时,16QAM的振幅为2A1=A2,所以需要3AT0,用电功率表示,就成为9倍。为使其具有兼容性,就需要4psk的9倍的电功率。而且,如果要使4psk的第1接收机也能用小型天线进行接收,则用现在所计划的卫星难于得到这样的输出功率。例如,使用40W的系统,需要360W,这在经济上是不能实现的。
这里,仔细考虑一下可知,在全部接收机具有相同尺寸的天线时,如果是相同的发送电力,等距离信号点方式确实对外服务效率较好。然而若考虑与不同尺寸天线的接收机群相组合的系统,则可构成新的传送方式。
具体说明这个方式,就是要用简单低成本的应用小型天线的接收系统来接收4psk,增加接收者的数量。其次,用高性能高成本的应用中型天线的多值解调接收系统接收16QAM信号,进行与投资的HDTV等高附加价值的服务,只要限定以特定的接收者为对象,就可以使系统成立。这样做,仅增加若干发送输出功率便可根据情况分级地发送4psk、16QAM和64QAM。
例如,像图10那样,通过取信号点间隔使A1=A2,便能降低整个发送输出功率。这时,发送4psk平方根。总振幅A(16)可以用矢量86表示,成为(A1+A2)2+(B1+B2)2的平方根。
|A(4)|2=A12+B12=AT02+AT02=2AT02]]>|A(16)|2=(A1+A2)2+(B1+B2)2=4AT02+4AT02]]>=8AT02]]>|A(16)|/|A(4)|=2即,可用发送4psk时的2倍振幅、4倍的发送能量进行发送。用等距离信号传送的一般的接收机,不能解调变形16值QAM,但是,通过预先设定A1和A2的两个阈值,可以用第2接收机33进行接收。图10的情况是第1分割信号点群91中的信号点的最短距离是A1,与4psk的信号点间距2A1之比为A2/2A1。由A1=A2,则成为1/2的信号点间距离,要得到相同的误码率,就需要2倍的振幅接收灵敏度,用能量表示,就是需要4倍的接收灵敏度。为得到4倍的接收灵敏度,可以使第2接收机33的天线32的半径r2为第1接收机23的天线22的半径r1的2倍,即r2=2r1。例如,如果第1接收机23的天线的直径为30cm,则可使第2接收机33的天线的直径为60cm。由此,经第2数据串的解调,只要把其分配给HDTV的高频成分,就能用同一个频道进行HDTV等新的服务。因为服务内容增加了所以接收者就能够得到与天线和接收机的投资相符合的服务。因而,即使第2接收机33的成本高也是可以的。这里,对于4psk模式的接收,决定最低发送电功率,为此,可以根据图10的A1和A2的比率决定对4psk的发送电功率的变形1 6APSK的发送电功率比n16和第2接收机33的天线半径r2。
为获得最优化设计而进行计算,4psk最低的必要的发送能量是{(A1+A2)/A1}2倍,把这个定义为n16,则用变形16值QAM接收时信号点间距是A2,用4psk接收时信号点间距是2A1,信号点间距的比率是A2/2A1,所以,设接收天线的半径为r2则得图11所示的关系。曲线101表示发送能量倍率n16和第2接收机23的天线22的半径r2之间的关系。
点102是发送等距离信号点时的16QAM时,如前所述,需要9倍的发送能量,不实用。从图11可知,即使把n16增加5倍以上,也不能使第2接收机23的天线半径r2过于减小。
对于卫星的情况,发送电功率是限定的,不能取一定值以上。由此可知,显然希望n16在5倍以下。用图11的区域103的斜线表示这个区域。例如,如果在这个区域内,则例如点104就是发送能量的4倍,于是第2接收机33的天线半径r2成为2倍。另外,点105是发送能量的2倍,则r2就约为5倍。这些都处在可实用化的范围。
如果用A1和A2表示n16小于5,则有n16=((A1+A2)/A1)2≤5A2≤1.23A1从图10可知,设分割信号点群间的距离为A(4),最大振幅为A(16),则A(4)和A(16)-A(4)与A1和A2成正比,因此,可以取{A(16)}2≤5{A(14)}2其次,示出使用变形64APSK调制的例子。第3接收机43能够解调64值QAM。
图12的矢量图是把图10的矢量图的分割信号点群从4值增加到16值的情况。图12的第1分割信号点群91中,以信号点170为起点,4×4=16值的信号点按等间隔配置。这时,为使其具有与4psk的兼容性,必须设定发送振幅A1≥AT0。设第3接收机43的天线半径为r3,按同样的方法求定义为发送、输出信号n64时的r3值,可得r32={62/(n-1)}r2]]>图13是64值QAM的半径r3与输出倍数n的关系曲线图。
然而,使用图12那样的配置,用第2接收机接收时,仅能解调4psk的2比特,所以,为使第1、第2、第3接收机的兼容性成立,就希望使第2接收机33具有从变形64值QAM调制波解调变形16值QAM的功能。
像图14那样,通过进行3分级信号点的组合,就能使3个接收机的兼容性成立。仅在第1象限进行说明,对第1分割信号群91分配第1数据串的2比特的(11)的情况进行说明。
其次,把第2数据串的2比特(11)分配给第1副分割信号点群181。把(01)、(00)、(10)分别分配给第2副分割信号点群182、第3副分割信号点群183和第4副分割信号点群184。这和图7等价。
用图15的第1象限矢量图详细说明第3数据串的信号点配置。例如,设信号点201、205、209、213为(11)、信号点202、206、210、214为(01)、信号点203、207、211、215为(00)、信号点204、208、212、216为(10),则使第3数据串的2比特的数据与第1、第2数据串独立,从而能够独立地传送3重分级的2比特数据。
作为本发明的特征,不仅仅发送6比特的数据,而是用3个性能水平各异的接收机可以传送2比特、4比特、6比特的不同传送量的数据,并且能够使3个分级传送之间具有兼容性。
下面,说明为使接收机具有3分级传送时的兼容性所需要的信号点的配置方法。
如图15那样,为了使用第1接收机23接收第1数据串的数据,应使A1≥AT0,这已在前面说明过了。
其次,必须确保信号点间距以便能区别第2数串的信号点,例如能把图10的信号点91和图15的副分割信号点群的182、183、184信号点加以区别。
图15中示出了分离开2/3A2的情况。这时,第1副分割信号点群181内的信号点201、202的信号点间距为A2/6。计算用第3接收机43接收时必要的接收能量。这时,设天线32半径为r3,定义需要的发送能量为4psk发送能量的n64倍,则r32=(12r1)2/(n-1)]]>这个曲线用图16的曲线221表示。从曲线图可知,例如点222、223的情况,如果能得到6倍于4psk发送能量的发送能量,则用8倍半径的天线就能解调第1、第2、第3数据串;若是9倍的发送能量,则用6倍的天线就能够解调第1、第2、第3数据串。这时,由于第2数据串的信号点间距接近2/3A2,故r32=(3r1)2/(n-1)]]>像曲线223那样,需要将第2接收机33的天线32加大若干尺寸。
这个方法能够在现阶段卫星的发送能量较小期间传送第1数据串和第2数据串,而在卫星的发送能量大幅度增加的将来,既不影响第1接收机23和第2接收机33的接收数据,又不用进行改造,就能够传送第3数据串,在兼容性和发展性两方面获得巨大效果。
为说明接收状态,首先从第2接收机33开始说明。前述的第1接收机23设定为用原来半径为r1的小天线能够解调数字式发送机51的4psk调制信号及发送机1的第1数据串,与此相反,用第2接收机33能够完全解调发送机1的图10所示的16值信号点即第2数据串的16QAM的2比特信号。和第1数据串组合后,能够解调4比特的信号。这时,A1,A2的比率随发送机而异。用图21的解调控制部231设定这个数据,向解调电路发送阈值。由此能进行AM解调。
图21的第2接收机33的框图和图19的第1接收机23的框图在结构上基本相同,不同点在于天线32的半径r2比天线22更大。所以,能够辨别信号点间距更短的信号。其次,在解调器35内部具有解调控制部231、第1数据串再生部232和第2数据串再生部233。第1识别再生电路136为解调变形16QAM,而具有AM解调功能。这时,各载波具有4个值,并且具有零电平和±各2个值的阈值。本发明的情况是变形16QAM信号,故像图22的信号矢量图那样,阈值随发送机的发送输出而异。因此,如果把TH16作为标准化的临界,则由图22可知。
TH16=(A1+A2/2)/(A1+A2)这个A1、A2或TH16以及多值调制值m的解调信息包括在第1数据串中由发送机1发送。另外,也可以采用解调控制部231对接收信号进行统计处理、求解调信息的方法。
下面,利用图26说明决定移动系数A1/A2的比率的方法。改变A1/A2,就会改变阈值。随着接收机一侧所设定的A1/A2偏离发送机一侧把设定的A/A2的值,误差增加。通过把来自图26的第2数据串再生部233的解调信号反馈给解调控制电路231,把移动系数A1/A2向误码率减少的方向进行控制,即使第3接收机43不解调移动系数A-1/A2也无妨,所以电路简单。另外,发送机不必发送A1/A2,故能增加传送容量。这个方法可以用于第2接收机33。
解调控制回路231具有存储器231a。存储每个TV广播频道不同的阈值,即移动比、信号点数和同步规则,当再次接收该频道时,通过读出这些数值,就能迅速而稳定地接收。
这个解调信息不明确时,就难于解调第2数据串。以下,用图24的流程图进行说明。
即使得不到解调信息时,也能进行步骤313的4psk的解调及步骤301的第1数据串的解调。因此,在步骤302,把在第1数据串再生部232得到的解调信息传送给解调控制部231。在步骤303,如果m是4或2,解调控制部231就进行步骤313的4psk或2psk的解调。如果不是,则在步骤304,m为8或16时转到步骤305。否则就转向步骤310。在步骤305,进行TH8和TH16的运算。在步骤306,解调控制231把AM解调的阈值TH16传送给第1识别再生电路136和第23识别再生电路137,在步骤307和315,进行16QAM的解调和第2数据串的再生。在步骤308,检查误码率,误码率恶化时,返回到步骤313,进行4psk的解调。
还有,这时图22的信号点85、83位于cos(ωt+nπ/2)的角度上,而信号点84、86不在这个角度上。因此,设定为由图21的第2数据串再生部233向载波再生电路131传送第2数据串的载波传送信息,而不从信号点84、86的定时信号抽取载波。
考虑到不能解调第2数据串的情况,发送机1利用第1数据串间歇式地发送载波定时信号。根据这个信号,即使不能解调第2数据串也可以仅由第1数据串知道信号点83、85。因此,通过把载波发送信息传送给载波再生电路131就能够再生载波。
其次,利用发送机1发送图23所示的变形64QAM信号时,返回到图24的流程,则在步骤304,判断m是否为16,在步骤310检查m是否小于64,在步骤311,不是等距信号点方式时便进入步骤312。下面,求64QAM时的信号点间距TH64,得TH64=(A1+A2/2)/(A1+A2)和TH16相同。但是,信号间距变小了。
设位于第1副分割信号群181中的信号点间距为A3,则第1副分割信号群181和第2副分割信号群182的距离是(A2-2A3),若把它基准化,则为(A2-2A3)/(A1+A2)。把它定义为d64,则d64低于第2接收机33的辨别能力T2时,就不能辨别。这时,在步骤313进行判断,若d64在允许范围内时,转向步骤305,进行步骤307和16QAM的解调。在步骤308,误码率大,则进入步骤313的4psk模式。
这时,如果发送机1发送图25(a)所示的信号点的变形8QAM信号,则由于所有的信号点都在cos(2πf+nπ/4)的角度上,所以,利用4倍增电路,所有的载波都退缩到相同的相位,从而,可以简单地再生载波。这时,即使使用特别考虑的4psk接收机也能解调第1数据串的比特信号,用第2接收机33能够再生第2数据串的1比特信号,合计能够再生3比特的信号。
下面,说明第3接收机43。图26是第3接收机43的框图。和图21的第2接收机33的结构基本上相同。不同点在于增加了第3数据串再生部234及在识别再生电路中具有8值的识别能力。由于天线42的半径r3比r2更大,所以,信号点间距更近的信号,例如32值QAM和64值QAM也能够解调。因此,为了解调64值QAM,第1识别再生电路136对于检波信号需要辨别8值的电平。这时,存在7个阈值电平。其中1个是0,所以,在1个象限内存在3个阈值。
像图27的信号间隔图所示的那样,在第1象限存在3个阈值。
如图27,存在3个归一化阈值TH164、TH264和TH364,可以表示为TH164=(A1+A3/2)/(A1+A2)TH264=(A1+A2/2)/(A1+A2)TH364=(A1+A2-A3/2)/(A1+A2)利用这个阈值,通过AM解调相位检波后的接收信号,与图21中说明的第1数据串和第2数据串一样,可以解调第3数据串的数据。如图23所示,第3数据串通过例如第1副分割信号群181中的4个信号点201、202、203、204的辨别,就可以取定4个值即2比特。这样,就能进行6比特即变形64值QAM的解调。
这时,解调控制部231利用包含在第1数据串再生部232的第1数据串中的解调信息,可以知道m、A1、A2、A3的值,所以,计算其阈值TH164、TH264和TH364后并传送第1识别再生电路136和第2识别再生电路137,就能确实地进行变形64QAM的解调。这时,由于在解调信息中加入了扰频,所以,还能够做到只有被允许的接收者才能解调64QAM。图28示出了变形64QAM的解调控制部231的流程图。下面,仅说明和图24的16值QAM流程不同的点。从图28的步骤304到步骤302,若m=32,则解调步骤322的32值QAM。否则,就在步骤321判断是否m=64,在步骤323,若A3低于设定值,就不能再生,所以返回步骤305,成为和图24相同的流程,进行变形16QAM的解调。现在,再返回到步骤323,若A3在设定值以上,就在步骤324进行阈值的计算,在步骤325向第1、第2识别再生电路传送3个阈值,在步骤326进行变形64QAM的再生,在步骤327进行第1、第2、第3数据串的再生,在步骤328,如果误码率大,则转向步骤305进行16QAM的解调,如果误码率小就继续644QAM的解调。
下面,说明解调时重要的载波再生方式。本发明在用4psk接收机使变形16QAM和变形64QAM的第1数据串再生方面有一个特征。这时,用通常的4psk接收时,再生载波困难,不能正常解调。为防止这一点,必须在发送机一侧和接收机一侧采取一些对策。
本发明的方法有2种方式。第1个方式是按一定的规则间歇式地发送(2n-1)π/4角度上的信号点。第2个方式是在nπ/8的角度上配置并发送大约全部的信号点。
第1个方法如图38所示,发送在4个角度,即π/4、3π/4、5π/4、7π/4的角度上的信号点,例如信号点83、85的信号时,按一定的规则设定间歇式发送的同步时间段452、452a、452b、452c,这些时间段在图38发送信号时序图中时间段群451内,用斜线表示。而且,在这个期间中,必定发送上述角度上的8个信号点中的1个信号点,在此外的时间段发送任意的信号点。而且发送机1把上述发送该时间段的规则配置到示于图41的数据的同步定时信息部499进行发送。
下面,用图41更详细地说明这时的发送信号的内容。包含时间段452、452a、4452b、452c的时间段群451构成1个单位数据串491、Dn。
在这个信号中,根据同步定时信息规则配置了间歇式的同步时间段,所以,只要知道这个配置规则,通过提取同步时间段中的信息,就能很容易地再生载波。
另一方面,数据串492的一帧起始部分有用S表示的同步区域493,这是由用斜线表示的同步时间段构成的。利用这样的结构,上述载波再生用的抽取信息便增多,所以,能准确而迅速地进行4psk接收机的载波再生。
这个同步区域493,含有用S1、S2、S3所示的同步部496、497、498等,在这个部分中,加入了用于同步的单值码和上述解调信息。此外,还有用IT表示的位相同步信息配置信息部499,其中加入了位相同步时间段配置间隔的信息和配置规则的信息等。
由于相位同步时间段区域的信号点只具有特定的相位,使用4psk接收机也能再生载波,准确地再生相位同步配置信息IT的内容,故输入这个信息后,就能准确地再生载波。
图41的同步区域493的后面有解调信息部501,装入了解调变形值QAM信号时所必须的有关阈值电压的解调信息。这个信息对多值QAM解调是重要的,所以,像图41的同步区域502那样,如果把解调信息纳入到同步区域中,就能更准确地得到解调信息。
图42是用TDMA方式发送脉冲串状信号时的信号配置图。与图41的区别是在数据串492、Dn和其它的数据串之间设置了保护时间521,在这个期间不能发送信号。还有在数据串492的起始部设立了为了取得同步信号的同步部522。在这个期间仅发送前述的(2n-1)π/4相位的信号点。因此,用4psk解调器也能够再生载波。这样,利用TDMA方式也能进行同步及再生载波。
下面,用图43和图44详细地说明图19的第1接收机23的载波再生方式。在图43中,输入的接收信号通过输入电路24,由同步检波电路541所进行的同步检波的解调信号中的一个信号送入到输出电路542被输出,再生第1数据串。由提取定时控制电路543判断图41的相位同步配置信号部499是否进行再生、以及在哪个定时中加入了(2n-1)π/4的相位同步部的信号,并且送出图44那样的间歇式相位同步控制信号561。解调信号传送入倍增电路545,4倍增后传送到载波再生控制电路544。像图44的信号562那样,包含真正的相位信息563和其它信号。像定时图564中斜线所示的那样,间歇式地含有由(2n-1)π/4的相位信号点组成的相位同步时间段452。把这些信号由载波再生控制电路544用相位同步控制信号564通过取样,可以得到相位标本信号565。通过把相位标本信号取样,可以得到所定的位相信号566。这个信号通过环状滤波器546,送入到VCO547再生载波,再送入到同步检波电路541。这样就能抽取出如图39的斜线所示的(2n-1)π/4的相位信号。以这个信号为基础利用4倍增方式就能够正确地再生载波。这时,可以,再生多个相位,但是,通过在图41的同步部496中装入单值字,就能够再生特定载波的绝对相位。
像图40那样发送变形64QAM信号时,发送机仅对大约(2n-1)π/4相位的斜线所示的相位同步区域471中的信号点发送相位同步时间段452、452b等。所以,用通常的4psk接收机不能再生载波,但是,用4psk的第1接收机23,通过装备本发明的载波再生电路,就能再生载波。
以上,是使用科斯塔思(Costas)式载波再生电路的情况。下面,说明在解调方式载波再生电路中使用本发明的情况。
图45示出了本发明的解调方式载波再生电路。来自输入电路24的接收信号经同步检波电路541,再生解调信号。另一方面,经第1延迟电路被延迟的输入信号,在4相位调制器592中利用上述解调信号进行调制,形成载波信号。能够通过载波再生控制电路544的上述载波信号传送入相位比较器593。另一方面,来自VCO547的再生载波经第2延迟电路594被延迟,在相位比较器中和上述解调载波信号进行相位比较,相位差信号通过环状滤波器546供给VCO547,再生和接收滤波同相位的滤波。这时,和图43的科斯塔思型载波再生电路一样,抽取定时控制电路543仅对图39的斜线所表示区域中的信号点的相位信息取样,所以,无论16QAM还是64QAM都能够用第1接收机23的4psk调制器再生载波。
下面,说明用16倍增方式再生载波的方式。图2的发送机1像图46那样把变形16QAM的信号点配置在nπ/8的相位上进行调制及发送。图19的第1接收机23通过使用具有图48所示的16倍增电路661的科斯塔思式载波再生电路,能够再生载波。由于利用16倍增电路661可以使图46那样的nπ/8相位的信号点退缩到第1象限,所以,利用环状滤波器546和VCO541能够再生载波。通过把单值字配置在同步区域,也能够从16个相位中提取出绝对相位。
下面,说明16倍增电路的结构。利用和电路662和差电路663从解调信号中产生和、差信号,利用乘法器664相乘产生cos2θ。另外,利用乘法运算,形成sin4θ。
同样,用和电路667和差电路668及乘法器670从sin2θ和cos2θ产生sin8θ,用和电路671和差电路672及乘法器产生cos8θ,并且通过用乘法器674产生sin16θ,便能形成16倍增。
用以上的16倍增方式便能从像图46那样的信号点配置的16QAM信号的所有信号点的载波中抽出并再生特定的信号点。
另外,也能够再生像图47那样配置的变形64QAM信号的载波,但由于n个信号点从同步区域产生若干偏移,所以,解调时就增加了误码率。
对此有2个解决方法。1个方法是不发送脱离同步区域的信号点的信号,减少信息量。这个方法的结构简单。另一个方法是像图38中说明的那样,设立同步时间段。通过发送时间段群451中的同步时间段期间内用斜线表示的nπ/8相位的同步相位区域471、471a等的信号点,在此期间能够正确地得到同步,故可使相位误差减少。
像以上那样按16倍增方式,用简单的接收机结构,利用4psk接收机就能再生变形16QAM和变形64QAM信号的载波。进一步设定同步时间段时,还能提高变形64QAM的载波再生时的相位精度。
像以上那样通过使用本发明的通信系统,可以在1个电波的频带区域内,按分级结构同时传送多个数。
这时,通过对一个发送机设定具有不同接受灵敏度和解调能力的三重分级的接收机,便能解调与接收机的投资相符合的数据量。首先,购入小型天线和分辨能力低但成本低的第1接收机的接收者,可以解调并再生第1数据串,其次,购入中型天丝和分辨能力中等,且成本高的接收机的使用者,可以再生第1、第2数据串;而购入大型天线和分辨能力高的成本很高的接收机的使用者,可以全部解调并再生第1、第2、第3数据串。
如果使第1接收机成为家庭用数字卫星广播接收机,就能实现使一般消费者能接受的价格低的接收机。第2接收机本来需要大型天线,由于成本高,难于使所有消费者接受,但是,对于想收看HDTV的人来说,价格多少高一点也是可以的。第3接收机在提高卫星的输出功率之前,需要相当大型的产业用天线,难于实现家庭使用,当初只适用于产业应用。例如,发送超高分辨率的HDTV信号,如果利用卫星的各地的电影馆传送,利用录象可以使电影馆实现电子化。这时,就可以降低电影馆及录象厅的经营成本。
如上所述,将本发明应用于TV传送时,可用一个电波的频带提供三种图象质量的图象服务,而且兼容性极佳。实施例中给出了4psk、变形8QAM、变形16KAM、变形64QAM的例子,但是,也能够实现32QAM和256QAM。另外,还能实施8psk和16psk,32psk。在实施例中示出了卫星传送的例子,但是,同样也能在地面传送和有线传送上实现。
另外,也能够适用于图58以及图68(a)、(b)那样的4值或8值的ASK信号。
实施例2实施例2根据误差校正能力的差别化进一步在逻辑上分割实施例1中所说明的物理分级结构,添加了逻辑分级构造。在实施例1的情况下,每个分级的频道,电信号的电平即物理的解调能力不同。与此相反,在实施例2中,误差校正能力等逻辑再生能力各异。具体地说,例如把D1分级频道中的数据分割成例如D1-1和D1-22个,使这个分割数据中的1个例如D1-1H数据的误差校正能力高于D1-2数据,利用误差校正能力的差别化,解调再生时D1-1和D1-2数据的解调能力就不相,故在降低发送信号的C/N值时,即使在不能再生D1-2的信号电平内也因D1-1在所设定的误码率内,所以,能够再生原信号。这样,就形成所谓的逻辑分级结构。
即,通过分割调制分级频道的数据,使用错误订正符号和积符号等使错误订正的符号间距离的大小有差别,追加错误订正能力的逻辑分级结构,可以进行更细的分级传送。
使用这种结构,就要在D1频道中增加D1-1、D1-22个子频道,在D2频道中增加D2-1、D2-2个子频道。
下面,利用输入信号的C/N值和分级频道序号的图87说明这一点,分级频道D1-1用最低的输入信号就能够进行再生。设这个CN值为d,则CN=d时,D1-1能再生,而D1-2、D2-1、D2-2不能再生。其次,若CN=C以上时,D1-2也可以再生,CN=b,增加D2-1,CN=a时再增加D2-2。这样,能再生的分级总数就随着CN的升高而增加。反之,能再生的分级总数就随着CN的降低而减少。下面,用图86的传送距离与能再生的CN值关系图说明这一点。一般,随着图86的实线861所示的传送距离加长,接收信号的C/N值降低。设在图85中所说明的CN=a时接收点距发送天线的距离为La,CN=b,c,d时,分别为Lb、Lc、Ld。如图85所说明的在比距离发送天线的距离Ld小的区域,只有D1-1频道能够再生。这个D1-1的可能接收范围用斜线区域862表示。从图中可知,D1-1频道在最广阔的区域内能够再生,同样,D1-2频道在距发送天线的距离为La以内的区域863能够再生。由于距离Lc以内的范围,也包含区域862,所以D1-1频道也能够再生。同样,在区域864D2-1频道能够再生,在区域865D2-2频道也变得能够再生。这样,就能够随着CN值恶化进行逐渐减少传送频道的分级型传送。把数据分离,做成分级结构,利用本发明的分级传送,就能像模拟传送那样随着C/N的恶化,进行逐渐减少数据量的分级型传送。
其次,说明具体的结构。这里说明物理分级2级,逻辑分级2级的实施例。图87是发送机1的框图。基本上和实施例1中说明的图2的发送机的框图相同,所以省略详细的说明,不同点在于添加了误差校正符号编码器。把其简称为ECC编码器。分离电路3具有1-1,1-2,2-1,2-2这4个输入,把输入信号分离为D1-1、D1-2、D2-1、D2-2四个信号后输出。其中,D1-1、D1-2信号输入到第1ECC编码器871a中,分别传送给主ECC编码器872a和副ECC编码器873a,进行误差校正的符号化。
这里,主ECC编码器872a具有比副ECC编码器873a更强的误差校正的能力。因而,如在图85的CN-分级频道的曲线图所说明的,解调再生时,即使在比D1-2频道的C/N值低时,D1-1频道也能够以小于基准误码率再生D1-1。D1-1在C/N值降低时成为比D1-2更强的逻辑分级结构。经过误差校正的D1-1。D1-1信号在合成器874a中合成为D1信号,输入到调制器4中。另一方面,D1-1。D1-1信号分别在第2ECC编码器871b中的主ECC编码器872b和副ECC编码器873b内进行误差校正,实现符号化,由合成器874b合成为D2信号,再输入到调制器4中。主ECC编码器872b比副ECC编码器873b的误差校正能力高。这时,调制器4根据D1、D2信号生成分级型调制信号,由发送部分发送。如上所述,图87的发送机1首先具有实施例1中所说明的调制的D1、D2这2级物理分级结构。这在前面已经说明过了。其次,利用误差校正能力的差别化,还具有D1-1、D1-2或D2-1、D2-2各2级的逻辑分级结构。
下面,说明接收这个信号时的状态。图88是接收机的框图。接收图87所示发送机的发送信号的第2接收机33的基本结构基本上和实施例1的图21中所说明的第2接收机33相同。不同点在于添加了ECC编码器876a、876b。这时,示出了QAM调制解调的例子,但是,也可以进行ASK,PSK和FSK的调制和解调。
图88中,接收的信号由解调器再生为D1、D2,信号,由分离器3a、3b再分别形成D1-1、D1-2、D2-1、D2-2等4个信号,输入到第1ECC编码器876a和第2ECC编码器876b中。在第1ECC编码器876a中,D1-1信号由主ECC编码器877a进行误码校正并送入合成部37。另一方面,D1-2信号由副ECC编码器878a进行误码校正并送入合成部37。同样,在第2ECC编码器876b中,D2-1信号在主ECC编码器877b、D2-2信号在副ECC编码器878b中进行误码校正。并输入到合成部37中。进行过误码校正的D1-1、D1-2、D2-1、D2-2信号在合成部37中合成为1个信号由输出部36输出。
这时,根据逻辑分级构造,D1-1比D1-2、D2-1比D2-2的误码校正能力高,故像图85中所说明的那样,在比输入信号的C/N值更低的状态下也能得到所定的误码率,从而能够再生原信号。
下面,具体说明在高码增益的主ECC编码器877a、877b和低码增益的副ECC编码器878a、878b之间进行误码校正能力差别化的方法。在副ECC编码器中使用了如图165(b)的ECC译码器框图所示的里德·所罗门码和BCH码这样的标准代码间距的编码方式时,能够通过在主ECC编码器中使用误码校正的代码间距大的编码方式使误码校正能力(即码增益)出现差别,而该误码校正码间距大的编码方式使用了里德。所罗门码和里德。所罗门码两者的积代码和长编码方式以及图128(d)、(e)、(f)所示的格状译码器744P、744q、744r。这样就能实现逻辑分层结构。已知有多种增大代码间距的方法,故省略了对其它方式的说明。本发明基本上适用于一种方式。
还有,如图160、图167的框图所示,在发送部设立隔行扫描器744k、在接收部设立逆隔行扫描器759kk、936b,根据图168(a)的隔行扫描表954,进行隔行扫描,并在逆隔行扫描器936b的逆隔行扫描器RAM936x中译码,由此,对于通信系统的区间误差也能够进行强有力的传送,且图象稳定。
这里用图89的C/N和误码校正后的误码率的关系图说明逻辑分级结构。在图89中,直线881表示D1-1频道的C/N和校正后的误码率的关系,直线882表示D1-2频道的C/N和校正后的误码率的关系。
输入信号的C/N值越小,校正后的数据的误码率就越大。在一定的C/N值以下,误码校正后的误码率没有被纳入在系统设计时的基准误码率Eth以下,所以,不能正常地再生原数据。而在图89中,如果逐渐地提高C/N,则像D1-1信号的直线881所示的那样,C/N在e以下时不能进行D1频道的解调。e≤C/N<d,能进行D1频道的解调,但是D1-1频道的误码率超过Eth时,就不能正常地再生原数据。
C/N=d时,D1-1的误码校正能力比D1-2高,故误码校正后的误码率如点885d所示,低于Eth,所以,能够再生数据。另一方面,D1-2的误码校正能力没有D1-1那样高,故校正后的误码率没有D1-1那样低,因而校正后的误码率超过E2和Eth,故不能再生。因此,这时,只能再生D1-1。
当提高C/N到C/N=C时,D1-2的误码校正后的误码率如点885c所示,达到Eth,所以,能再生。在这个时刻,D1-1、D1-2即D2频道的解调处于不确定状况。随着提高C/N,在CN=b′时D2频道就能确实地解调了。
进而提高C/N到C/N=b时,D2-1的误码率如点858b所示,减少到Eth。则D2-1能够再生。这时,D2-2的误码率比Eth大,故不能再生。C/N=a时,如点885a所示,D2-2的误码率减少到Eth,频道能够再生。
这样,通过运用误码校正能力的差别化,进而把物理分级D1、D2频道分割为2层的逻辑分级,便能进行总共4的分级传送。
这时,把数据结构作成分级结构,使得即使丢失高等级的数据,也能再生一部分原信号,通过与本发明的分级传送组合,可以像模拟传送那样,伴随C/N的恶化,可以进行逐渐减少数据量的分级型传送。特别是,由于近年来的图象压缩技术急速地进步。将图象压缩数据做成分级结构和分级传送组合时,在相同的点间可以传送画面质量远高于模拟传送的图象,同时,又能像模拟传送那样,根据接收信号电平,分阶段地降低画面质量,从而可在广阔的区域都能够接收。这样,就能够用数字技术保持高质画面,得到以往的数字图象传送所没有的分级传送的效果。
另外,图象分段数据的地址数据、图象压缩时的基准图象数据、示于图66扰频器部分的扰频解除数据以及帧同步信号等HDTV信号的图象扩展中最重要的数据作为高优先权数据D1-1,用图88、图133、图170、图172的高码增益的ECC编码器743a发送,用接收机43的高码增益的ECC译码器758接收。在这种方式中,即使C/N恶化、信号的出错率增加,高优先权数据D1-1的出错率并不以同样程度增加,因而能够获得防止数字图象特有的致命的画质破坏的效果,而往往是虽然画面质量不太好,但仍能可靠地得到图象。图133、图170的调制部749、解调部760无论是上述的16QAM、32QAM,还是后面的实施例4中所述的图57的4VSB和图68的8VSB或8PSK,都能够获得尽管画面质量不太好但仍能可靠地得到图象的效果。
而且,如图133、图156所示,在第2数据流输入单元744中的ECC编码器744a和格状编码器744b中进行高码增益的错误代码化,而仅在ECC编码器743a中进行低码增益的错误代码化,由此能够使接收时的高优先权数据和低优先权数据的出错率有大的差别。因此,由于即使通信系统的C/N值大幅度恶化,也能够接收高优先权数据,故在如汽车内TV接收机等接收条件恶劣的、C/N值剧烈恶化的条件下,伴随低优先权数据的恶化,画质也恶化。然而由于能够再生高优先权数据故能够再生象素框的配置信息,所以,能够得到图象不被破坏。只是清晰度和噪声恶化了的图象,能够得到使用户可以观看TV节目的显著效果。
实施例3以下,参照图面说明本发明的第3实施例。
图29是实施例3的总体图。实施例3示出了把本发明的传送装置用于数字TV广播系统的例子。超高分辨率的输入图象402输入到第1图象编码器401的输入部403,由分离电路404分离为第1数据串、第2数据串和第3数据串,再由压缩电路405压缩后输出。
其它输入图象406、407、408分别由和第1图象编码器401同样结构的第2图象编码器409、410、411压缩并输出。
这4组数据中,第1数据串的4组信号用多路器412的第1多路器413在时间上使TDM方式等实现多路化,作为第1数据串传送给发送机1。
第2数据串的信号群的全部或一部分由多路器414形成多路化,作为第2数据串传送到发送机1。另外,第3数据串的信号群的全部或一部分由多路器415形成多路化,作为第3数据串传送入发送机1。
接受这些数据的发送机1由调制器4对3个数据串进行实施例1中叙述的调制,经发送部5由天线6和信道7传送到卫星10,再经中继器12,传送到第1接收机23等3种接收机。
第1接收机23经信道21用半径为r1的小径天线22接收,在第1数据串再生部232中仅再生接收信号中第1数据串。由第1图象译码器421再生并输出NTSC信号或宽带NTSC信号等低分辨率的图象输出425和426。
第2接收机33用半径r2的中径天线32接收,由第1数据串再生部232和第2数据串再生部233再生第1数据串和第2数据串,由第2图象译码器422再生并输出HDTV信号等高分辨率的图象输出427或图象输出425、426。
第3接收机43用半径r3的大径天线33接收,由第1数据串再生部232、第2数据串再生部233和第3数据串再生部234再生第1、第2、第3数据串,输出录相厅和电影院用的超高分辨率HDTV等超高分辨率的图象输出428。同时,也能够输出图象输出425、426、427。一般的数字TV广播从数字式发送机发送,用第1接收机23接收时,只能以NTSC等低分辨率的图象输出426输出。
下面,根据图30的第1图象编码器401的框图详细地说明结构。超高分辨率的图象信号输入到输入部403,然后送入分离电路404。在分离电路404中,用部分频带编码方式分离为4个信号。用QMF等水平低通滤波器451和水平高通滤波器452分离成水平低频成分和水平高频成分。用二次取样部453、454,将各个成分的取样比率定为一半后,水平低频成分由垂直低通滤波器455和垂直高通滤波器456分别分离为水平低频垂直低频信号(简称HLVL信号)和水平低频垂直高频信号(简称HLVL信号),由二次取样部457和458去除取样比率,传送入压缩部405。
水平高频成分由垂直低通滤波器459和垂直高通滤波器460,分离为水平高频垂直低频信号(简称HHVL号)和水平高频垂直高频信号(简称HHVH信号),由二次取样部461、462去除取样比率,传送入压缩部405。
在压缩部405中,用第1压缩部471把HLVL信号进行DCT等最佳的压力,由第1输出部472作为第1数据串输出。
HLLH信号在第2压缩部473中被压缩后传送到第2输出部464。HHVL信号由第3压缩部463压缩后传送到第2输出部464。HHVL信号由分离电路465分为分辨率图象信号(HHVL1)和超高分辨率图象信号(HHVH2),H VH1传送到第2输出部464,HHVL传送到第3输出部468。
下面,用图31说明第1图象译码器421。第1图象译码器421把来自第1接收机23的输出、第1数据串即D1输入到输入部501,由译扰码器解除扰码后由扩展部503扩展后的前述HLVL信号,利用画面比率变更电路504和输出部505变更画面比率,输出NTSC信号的图象506、用NTSC信号突出画面的图象507、宽带TV的全画面的图象或宽带TV侧板画面的图象509。这时,可以选择非交错或交错2种扫描线。对于NTSC的情况能得到525条扫描线、2重扫描画面时能得到1050条扫描线。另外,在接收来自数字式发送机51的4psk的一般数字式TV广播时,利用第1接收机23和第1图象译码器421能解调并再生TV图象。下面,用图32的第2图象译码器框图说明第2图象译码器。首先,来自第2接收机33的D1信号由第1输入部521输入,由第1扩展部522进行扩展,由过度取样部523进行2倍取样,再由垂直低通滤波器524再生HLVL信号。D2信号经输入部530输入,由分离电路531分离为3个信号,再由第2扩展部532、第3扩展部533和第4扩展部534分别进行扩展及解除扰码,用过度取样部535、536、537做2倍的取样,由垂直高通滤波器538、垂直低通滤波器539、垂直高通滤波器540送出。HLVL信号和HLVH信号在加法器525相加,由过度取样部541和水平低通滤波器542形成水平低频图象信号,送到加法器543。HHVL信号和HHVH1信号由加法器526相加,用过度取样器544和水平高通滤波器545形成水平高频图象信号,再由加法器543形成HDTV等的高分辨率图象信号HD信号并从输出部546输出HDTV等的图象输出547。根据情况,也能输出NTSC信号。
图33是第3图象译码器的框图,D1信号从第1输入部521、D2信号从第2输入部530输入由高频图象译码器527按前述顺序再生HD信号。D3信号由第3输入部551输入,经超高频部图象译码器552扩展、去扰码及合成,再生HHVH信号在合成器553中被合成为超高分辨率TV信号即S-HD信号,由输出部554输出超高分辨率图象信号555。
下面,说明在图29的说明中接触过的多路器401的具体的多路化方法。图34是数据配列图。描述了在T的期间中,在第1数据串D1、第2数据串D2和第3数据串D3如何配置6个NTSC频道L1、L2、L3、L4、L5、L6和6个HDTV频道M1-M6以及6个S-HDTV频道H1-H6。图34首先在T期间以TDM方式等按时间多路在D1信号上配置L1到L6。把第1频道的HLVL信号传送到D1的区域601。接着在与第1频道相当的时间内把第1频道的HDTV和NTSC的差分信息M1,即上述的HLVH信号、HLVH信号和HHVH1信号传送到D2信号的区域602。另外,把第1频道的超级HDTV差分信息H1,即在图30所说明的HHVH-2H1传送入D3信号的的区域603。
下面说明选择第1频道的TV台的情况。首先,拥有小型天线、第1接收机23和第1图象译码器421的系统的一般接收者,能得到图31的NTSC或宽带NTSC的TV信号。其次,拥有中型天线、第2接收机33和第2图象译码器422的特定的接收者,选择频道1时,把第1数据串D1的区域601和第2数据串D2的区域602的信号合成后,可以得到和频道1的NTSC节目相同的节目内容的HDTV信号。
拥有大型天线、能够多值解调的第3接收机43和第3图象译码器423的电影院等的部分接收者,把D1的区域601、D2的区域602和D3的区域603的信号合成后,可以得到和频道1的NTSC的节目内容相同的电影院用图象质量的超高分辨率HDTV信号。2到3的其它频道,同样也能够再生。
图35是另一种区域的构成。首先,NTSC的第1频道配置在L1。这个L1位于D1信号的第1时间区域的区域601,在起始端加入了含有NTSC间的译扰码信息和实施例1所说明的解调信号的信息S11。其次,HDTV的第1频道分割为L1和M1,M1是HDTV和NTSC的差分信息,加入在D2的区域602和区域611中。这时,采用6Mbps的NTSC压缩信号并收容在L1,则M1的频带就成为2倍的12Mbps。将L1和M1组合,18Mbps的频带可从第2接收机33和第2图象译码器423进行解调和再生。另一方面,用现在建议的压缩方法在约15Mbps的频带内能够实现NDTV压缩信号。因此,利用图35的配置可以用频道1同时广播HDTV和NTSC。这时,不能用频道2再生HDTV。S21是HDTV的去扰码信息。另外,超HDTV信号被分割成L1、M1和H1发送。超HDTV的差分信息用D3的区域603、612、613,把NTSC设定为6Mbps时合计发送36Mbps,如果进行高度压缩,则也能传送扫描线约为2000条的电影院用画面质量的超HDTV信号。
图36的配置图示出了用D6占有6个时间区域传送超HDTV信号的情形。把NTSC压缩信号设定为6Mbps时,能够传送9倍的54Mbps。由此,能够传送高画面质量的超HDTV。
以上,是利用发送信号的电波的水平或垂直偏振面的情形。通过使用水平和垂直2个偏振面,频率利用率成为2倍。下面进行说明。
图49示出了第1数据串的水平偏振信号Dv1垂直偏振信号DH1第2数据串的相应的Dv2、DH2、和第3数据串的Dv3、DH3的配置图。这时,在第1数据串的垂直偏振信号Dv1上加入了NTSC等低频TV信号,在第1数据串的水平偏振信号DH1上加入了高频TV信号。因此,只具有垂直偏振天线的第1接收机23能够再生NTSC等的低频信号。另一方面,具有垂直、水平两方向偏振天线的第1接收23,就能够得到例如将L1和M1合成的HDTV信号。即,使用第1接收机23时,根据天线的能力,一方面能够再生NTSC,另一方面又能够再生NTSC和HDTV,故具有2种方式兼容的巨大效果。
图50是做成TDAM方式的情况。在各数据段721的起始部设置了同步部731和卡片部741。另外,在帧的起始部设置了同步信息部720。这时,各时间段群分别被分配到各一个频道。例如,用第1时间段750能够发送第1频道的完全相同节目的NTSC、HDTV、超HDTV。各个时间段750-750e完全独立。从而,特定的播放台用特定的时间段以TDAM方式广播时,具有能与其它电台独立地播放NTSC、HDTV、超HDTV的效果。另外,接收侧拥有使用水平偏振天线的第1接收机23的结构时,能够再生NTSC TV,若是双偏振天线则能再生HDTV。如果使用第2接收机33,则能够再生低分辨率的超HDTV。如果使用第3接收机43,则能够完全再生超HDTV信号。这样就能建立起具有兼容性的广播系统。这时不仅图50的配置那样分段状的TDMA方式能够再生,而且图449那样的连续信号的时间多路化也能再生。另外,如果按图151所示那样配置也能够再生高分判率的HDTV信号。
如上所述,根据实施例3,能进行具有超高分辨率型HDTV、HDTV和NTSC TV的3种信号兼容性的数字TV广播。特别是在电影院等传送时,具有能够把图象电子化的新的效果。
下面,把本发明的变形QAM称作SRQAM,说明其具体的误码率。
首先,计算16SRQAAM的误码率。图99是16SRQAM的信号点矢量图。在第1象限,对于16QAM的情况,信号点83a、83b、84a、85、86a等16个信号点的间隔相等,都是2δ。
16QAM的信号点83a处于距座标轴的I轴、Q轴δ的距离,这里,对于16QQAM的情况,把n定义为移动值,则移动信号点83a使距座标轴的距离向nδ位置的信号点83移动。这时,则0<n<3另外,其它的信号点84a、86a也移动到信号点84、86的位置。
设第1数据串的误码率为Pe1,则Pe1-16=14(erfc(nδ2σ)+erfc(3δ2σ)]]>=18erfc(nρ9+n2)]]>设第2数据列的误码率为Pe2,则Pe2-16=12erfc(3-n2δ2σ)]]>=14erfc(3-n29+n2ρ)]]>其次,计算36SRQAM或32SRQAM的误码率。图100是36SRQAM的信号矢量图,在第1象限,36QAM的信号点间距定义为2δ。
36QAM的信号点83a位于距座标轴δ处。这个信号点成为36SRQAM时就移动到信号点83的位置,距座标轴nδ。移动各信号点,成为信号点83、84、85、86、97、98、99、100、101。把由9个信号点组成的信号点群90看作为1个信号点,用变形4psk接收机接收,设再生第1数据串时的误码率为Pe1,分别辨别信号点群90中的9个信号点,设再生第2数据串时的误码为Pe2,则Pe1-32=16erfc(nδ2σ)]]>=16erfc(6ρ5×nn2+2n+25)]]>Pe2-31=23erfc(5-n42δρ)]]>=23erfc(3ρ40×5-nn2+2n+25)]]>
这时,图101的C/N-误码率图给出了计算误码率Pe和传送系统噪比C/N之间关系的例子。曲线900是为了比较而表示的先有方式的32QAM的误码率。直线905表示10的-1.5次方的直线。把本发明的SRQAM的移动量n取1.5时,第1分级D1的误码率为曲线901a,误码率在10-1.5时,对于曲线900的32QAM,即使C/N值下降5dB,D1也能以相同的误码率再生。
其次n=1.5时第2分级D2的误码率用曲线902a表示,误码率为10-1.5与示于曲线900的32QAM相比,如果不使C/N提高2.5dB,就不能以同等的误码率再生。曲线901b、902b表示n=2.0时的D1、D2。曲线902c表示D2。把这些归纳起来,则在误码率为10的-1.5次方的数值时,当n=1.5,2.0,2.5时,与32QAM相比,各个D1分别改善5,8,10dB,而D2恶化2.5dB。
对于32SKRQAM的情况,改变移动量11时,用图103的移动量n和C/N的关系图表示为了得到预定的误码率所需要的第1数据串D1和第2数据串D2的C/N值。由图103可知,如果n大于0.8,则出现分级传送,即第一数据串D1和第2数据串D2的传送所需要的C/N值之差,从而产生本发明的效果。因此,对于32SRQAM的情况,在n>0.85的条件下本发明有效果。对于16SRQAM的情况,误码率如图102的C/N与误码率的关系图所示的那样。在图102中,曲线900表示16QAM的误码率。曲线901a、901b、901c分别表示第1数据串D1的n=1.2、1.5、1.8时的误码率。曲线902a、902b、902c分别表示第2数据串D2的n=1.2、1.5、1.8时的误码率。
图104的移动量n和C/N的关系图示出了对于16SRQAM的情况,在改变移量n时为了得到特定的误码率所需要的第1数据串D1和第2数据串D2的C/N值。由图104可知,对于16SRQAM的情况,如果n>0.9,则本发明的分级传送能够实现。由上述所述,若n>0.9,则分级传送成立。
这里,具体示出对于数字TV地面广播应用本发明的SRQAM时的一个例子。图105给出地面广播时发送天线和接收天线间的距离与信号电平之间的关系图。曲线911表示发送天线的高度为1250ft时接收天线的信号电平。首先,假定现在正在进行研究的数字TV广播方式中所要求的传送系统需要的误码率为10的-1.5次方。区域912表示噪声电平,点910是C/N=15dB点,表示先有方式的32QAM方式的接收界限定。在这个L=60英里的地点能够接收数字的HDTV。
然而,由于天气等接收条件的恶化,有时C/N以5dB的幅度变化。在C/N值接近阈值的接收状态,如果C/N下降,就急剧地变得不能接收HDTV。还有,由于地形和建筑物的影响。估计至少有10dB左右的变化,在60英里半径内的所有地点当然就不能接收。这时,和模拟信号时不同,对于数字的情况完全不能传送图像。因此,先有的数字TV广播方式的服务区域是不准确的。
另一方面,对于本发明的32SRQAM的情况,如前所述,由图133、图137的结构组成3级的分级。在第1-1分级D1-1中发送MPEG电平的低分辨率NTSC信号,在第1-2分级D1-2中发送NTSC等中分辨率TV成分,在第2分级D2中发送HDTV的高频成分。例如,在图105中,第1-2分级的服务范围如点910a那样扩大到70英里的地点,第2分级则如点910b那样退缩到55英里的地点。图106的32SRQAM的服务范围图示出了这种情况下服务范围面积的差别。图106是进行计算机模拟,更具体地计算图53的服务范围。在图106中,区域708、703c、703a、703b、712分别表示先有方式的32QAM的服务范围,第1-1分级D1-1的服务范围、第1-2分级D1-2分级的服务范围、第2分级D2的服务范围和邻近模拟台的服务范围。其中,先有方式的32QAM的服务范围的数据用的是已公布的数据。
先有的32QAM广播方式名义上能够设定60英里的服务范围。然而,实际上由于气候和地形的条件变化等,在接收界限地区附近,接收状态极其不稳定。
然而,应用本发明的36SRQAM,通过用第1-1分级D1-1传送MPEG1等级的低频TV成分,用第1-2分级D1-2发送NTSC等级的中频TV成分,用第2分级D2发送HDTV的高频成分,则如图106那样,虽然高分辨率等级的HDTV的服务范围的半径缩小了5英里,但中分辨率等级的EDTV服务范围半径却扩大了10英里以上、低分辨率的LDTV的服务范围半径扩大了18英里以上。图107示出移动系数n或S=1.8时的服务范围,图135用面积表示了图107的服务范围。
由此,第一、即使在先有方式的接收条件恶劣的地区存在不能接收的区域,通过应用本发明的SRQAM方式,至少在所设定的服务范围内,可以发送几乎所有的接收机都能接收到中分辨率或低分辨率等级的TV广播的信号。因此,在通常的QAM中所产生的高楼阴影和低洼地等不能接收的区域和受到来自邻近模拟台干扰的区域,通过运用本发明,可以大大减少这些不能接收的区域,这样实际上就能增多接收人数。
第2,先有的数字TV广播方式,由于仅有拥有昂贵的接收机和电视机的接收者才能接收广播,故在服务范围之内也只有一部分接收者能够视听。但是,利用本发明,拥有先有的NTSC、PAL及SECAM方式的先有类型的TV机的接收者,只要增设数字式接收机,就能用NTSC或LDTV等级接收数字HDTV广播的节目。因而。接收者能够以比较少的经济负担视听节目。同时,由于总接收人数增加了,TV发送者可以得到更多的视听者,所以作为TV事业的经营能获得更稳定的社会效果。
第3,n=2.5时,中分辨率等级的接收区域的面积比先有方式扩大36%。接收者随面积扩大而增加。由于服务范围的扩大和接收者的增加,TV事业者的事业收入也增大。由此,数字式广播事业的风险就会减少,从而,可望提前普及数字式TV广播。
如在图107的32SRQAM的服务范围图中所见到的那样,n或s=1.8时,也能得到同样的效果,通过变更移动值n,各个播放台根据HDTV接收机及NTSC TV接收机的分布状况等地区特有的条件和情况,变更n,通过把SRQAM的D1和D2的服务范围703a、703b设定为最佳条件,接收者便能得到最大的满足,从而播放台便能得到最多的接收人数。
这时,n>1.0就能得到以上的效果。
因此,对于32SRQAM的情况,则n为1<n<5同样,对于16SRQAM的情况,n为1<n<3这时,在像图99、图100那样移动而得到第1和第2分级的SRQAM方式,如果在16SRQAM、32SRQAM、64SRQAM中n大于1.0,则在地面广播中能够得到本发明的效果。
实施例中说明了传送图像信号的情况,但是,如果把声音信号分为高频区或高分辨率区和低频区或低分辨率区,分别作为第1数据串和第2数据串,用本发明的传送方式进行传送,也能得到同样的效果。
用于PCM广播,收音机、携带电话时,可以扩大服务范围。
另外,在实施例3中,如图133所示,与时间分割多路(TDM)方式相组合,设置TDM的子通道,如ECC编码器743a和ECC编码器743b所示那样,通过把2个子通道的错误校正的码增益差别化,便能给各个子通道的阈值加上一个差值,从而可以增加分层型传送的子通道。这时,也可以如图137所示那样,改变2个子通道的格状编码器的码增益。由于和后述的实施例6的图131的说明相同,故省略详细的说明。图131的框图是磁记录再生装置,图137的框图是通信系统。从图中可知,把通信系统中发送机的升频变频器、接收机的降频变频器分别置换为磁记录再生装置的磁头记录信号增幅电路、磁头再生信号增幅电路,则发现两者结构完全相同。因此,调制、解调部分的结构和动作完全相同。同样可知,图84的磁记录再生系统和图156的通信系统的结构相同。另外,在希望简化结构的场合,可以采用图157的结构,希望进一步简化时,可以用图158所示的结构。在图106的模拟中,给出了在第1-1子通道D1-1和第1-2子通道D1-2之间建立5dB码增益之差的情况。SRQAM是把称为“C-CDM”的本发明的信号点代码分割多路方式(Constellation-Code Division Multiplex)应用于矩形QAM(rectangle-QAM)的方式。C-CDM是独立于TDM和FDM的多路化方式。是通过分割与代码对应的信号点代码得到子通道的方式。通过增加这个信号点的数,可以得到TDM和FDM中所没有的传送容量的扩充性,这一点,可以在保持和以往的机器几乎完全的互换性的同时来实现。这样,C-CDM便具有出色的效果。
以上用的是把C-CDM和TDM相组合的实施例,但是,和频率分割多路化(FDM)组合也能产生同样的阈值缓和效果。例如,用于TV广播时,成为图108所示的TV信号的频率分布图。以往的模拟广播例如NTSC方式的信号按频谱725那样的频率分布。最大的信号是图象的载波722。彩色的载波723和声音的载波724没有那么大。为了避免相互干涉,有用FDM把数字广播的信号分为2个频率的方法。这时,如图示那样,为了避开图像的载波722而分割为第1载波726和第2载波727,分别传送第1信号720和第2信号721,以此来减轻干涉。利用第1信号720以大功率发送低分辨率TV信号,用第2信号721以小功率发送高分辨率信号,既能避免干涉,又能实现FDM的分级型广播。
这里,把使用先有方式32QAM时的图示于图134。由于子通道A的输出大,所以,阈值Threshold1可以比子通道B的阈值Threshold2小4-5dB。因此,这时,如果接收信号的电平小于Threshold2,故不能全部接收占信息大部分的用斜线所示的第2信号721a的信号,只能接收信息量较少的第1信号720a。只能在第2分级接收画面质量显著恶化的图像。
然而,应用本发明时,如图108所示,首先,对于第1信号720利用根据C-CDM得到的32SRQAM追加A的子通道1。进而,把低分辨率的成分加在这个低阈值的A的子通道1中。设第2信号721为32SRQAM,把B的子通道1的阈值与第1信号的阈值Threshold2合并。于是,信号电平下降到Threshold2也不能接收。区域仅是用斜线所示的第2信号部721a,由于B的子通道1和子通道A能够接收,故传送量减少得不太多。因此,在第2分级中,画质优良的图象在Th-2的信号电平下也能接收。
通过在一方的子通道传送普通分辨率的成分,进一步增加分级的数量,可以扩展低分辨率的服务范围。通过把声音信息或同步信息以及各数据的字头等重要的信息纳入该阈值低的子通道,因可以准确地接收这些重要的信息而能稳定地接收。对于第2信号721,使用同样的方法,可以增加服务范围的分级。HDTV的扫描线为1050条时,加在525条上,利用C-CDM,可以增加775条的服务范围。
这样,把FDM和C-CDM组合时就能扩大服务区域。这时,利用FDM设立了2个子通道,但是,也可以分割为3个频率,设定3个子通道。
其次,说明把TDM和C-CDM组合,避免干扰的方法。如图109所示,模拟TV信号中有水平回扫线部732和图象信号部731。由于水平回扫线部732的信号电平低。所以,在这个期间中即使受到干扰也不会输出到画面上。利用这一点,把数字TV信号的同步和模拟信号合成,就能在水平回扫线部732的水平回扫线同步段733、733a发送重要的数据,例如发送同步信号等或以高输出发送很多的数据。由此,便可不增加干扰而增加数据量或提高输出。还有,在垂直回扫线部735、735a的期间使其同步,设立垂直回扫线同步段737、737a也能得到同样的效果。
图110是C-CDM的原理图。另外,图111示出16QAM扩充版的C-CDM码分配图,图112示出32QAM扩充版的代码分配图。像图110、111所示,256QAM被分为740a、740b、740c、740d等第1、第2、第3、第4级等四个级,分别具有4、16、64、256个段。第4级740d的256QAM信号点代码字742d是8比特“11111111”。把它按2比特一组分割为4个代码字741a、741b、741c、741d,把各个“11”、“11”、“11”、“11”分配到第1、2、3、4级740a、740b、740c、740d的信号点区域742a、742b、742c、742d。这样,便能得到各2比特和子通道,即子通道1、子通道2、子通道3、子通道4。称为信号点符号分割多路方式。图111示出16QAM的扩充版的具体符号配置,图112示出36QAM的扩充版。C-CDM多路化方式是独立的。因此,通过和先有的频率分割多路方式(FDM)及时间分割多路方式(TDM)相组合,可以进一步增加子通道。这样,利用C-CDM方式,能够实现新的多路方式。上面用矩形QAM说明了C-CDM,但是,具有信号点的其它调制方式,例如把其它形式的QAM及PSK、ASK以及频率区域视为信号点,FSK也同样能多路化。
实施例4下面,参照图面说明本发明的第4实施例。
图37是实施例4的总体系统图。实施例4是把实施例3说明过的通信系统用于地面广播,其结构和动作基本相同。与实施例3所说明的图29的区别仅在于发送用天线6a是在面传送天线,以及各接收机的各个天线21a、31a、41a是地面传送用天线。其它的动作完全相同,故省略重复的说明。与卫星广播相同,地面广播时发送天线6a和接收机的距离是很重要的,远距离的接收机收到的电波弱,用先有的发送机不只是完全不能解调多值QAM调制信号,而且不能视听节目。
然而,应用本发明的通信系统时,如图37那样在远距离具有天线22a的第1接收机23接收变形64QAM调制信号或变形16QAM调制信号时,由于是以4PSK模式解调、再生第1数据串的D1信号,所以,能得到NTSC的TV信号。因此,即使电波弱也能视听中分辨率的TV节目。
其次,使用处于中等距离具有天线32a的第2接收机33,由于到达的电波充分强,故能够从变形16或64QAM信号中解调出第2数据串和第1数据串,得到HDTV信号。因此,能够以HDTV视听同样的节目。
另一方面,对于处在近距离或具有超高灵敏度天线42a的第3接收机43,由于电波对于变形64QAM信号的解调足够强,故能解调出第1、2、3数据串D1、D1、D3,从而能够得到超高分辨率的HDTV信号。能够以和大型电影一样的画面质量的超级HDTV视听相同的TV节目。
这时,频率的配置方法能够利用图34、图35、图36,通过把时间多路配置换为频率配置进行说明。像图34那样从1到6频道分割频率时,把NTSC配置在D1信号的第1通道L1上,把HDTV的差分信息配置在D2信号的第1通道M1上,把超高分辨率HDTV的差分信息配置在D3信号的第1通道H1上,由此能够用同一个通道发送NTSC、HDTV和超分辨率HDTV。还有,如图35、图36所示,若允许使用其它通道的D2信号,则能够广播更高级画面南量的HDTV和超高分辨率HDTV。
如上所述,使用1个通道或其它通道的D2、D3信号区域播放相互具兼容性的3个数字TV地面广播。如果是中分辨率,则本发明能够以相同的频道大更广阔的区域接收相同内容的TV节目。
作为数字地面广播,提出了应用16QAM的6MHZ带宽的HDTV广播等方式。然而,这些方式用于NTSC没有兼容性,故采用的播放方式是以NTSC的其它频道发送相同节目。还有,对于16QAM的情况,可以预想,可传送的服务区域比较狭小。通过把本发明用于地面广播,不仅不需要另设通道,而且由于远距离的接收机也能从中公辨率视听节目,故服务范围广阔。
图52示出先有方式的HDTV数字地面广播时,接收受干扰的区域图,以及从使用先有方式的HDTV数字式播放台701到能接收HDTV的区域702和邻近的模拟播放台711的能接收的区域712。在二者的重复部分713,由于受到模拟播放台711的电波干扰,至少不能稳定地接收HDTV。
其次,图53示出应用本发明的分级型广播方式时的接收受干扰的区域图。本发明在和先有方式具有同样的发送电功率时,由于电功率利用率低,故HDTV高分辨率能接收的区域703就比上述先有方式接收能区域702狭窄一些。然而,存在比先有方式能接收的区域702更广范围的数字NTSC等的用低分辨率能接收的区域704。由以上2个区域构成本发明能接收的区域。这时,数字式播放台701对模拟台711的电波干扰,和图52所示的先有方式为同一水平。
这时,在本发明中,存在模拟台711对数字台701干扰的3个区域。1是不能接收HDTV、NTSC的第1干扰区域705。第2是虽受干扰但和干扰前一样能够接收NTSC的第2干扰区域706,用单斜线表示,这里,NTSC使用即使C/N降低也能接收的第1数据串,故即便因模拟台711的电波干扰使C/N下降,干扰的影响范围也不大。
第3是干扰前能够接收HDTV,而干扰后仅能接收NTSC的第3干扰区域707,用双重斜线表示。
这样,干扰前的HDTV的接收区域比先有方式的窄一些,但是包括NTSC的接收范围却变宽了。进而,由于来自模拟台711的干扰,在先有方式HDTV因干扰完全不能接收的区域也可能以NTSC接收和HDTV相同的节目。这样,就大幅度削减了不能接收节目的区域。这时,通过增加一些播放台有播放电功率,HDTV的能接收区域就和先有方式等同。进而,在先有方式完全不能视听的远方区域和在与模拟台重复的区域,都能以NTSC TV的品位接收节目。
前面示出了应用2分级传送方式的例子,但是,也能够应用图78的时间配置图那样的3重分级的传送方式。通过把HDTV分解为HDTV、NTSC、低分辨率NTSC等3个水平的图象发送,图53的可能接收领域便从2层扩展到3层,最外层成为广阔的区域,与此同时,2分级传送中在完全不能接收的第1干扰区705可能以低分辨率NTSC的品位来接收节目。以上示出了数字播放台给模拟广播带来干扰的例子。
下面示出数字广播不会给模拟广播干扰的限制条件下的实施例。现在,美国等正在研究的利用空频道的方式,是使用邻近的同样的频道。为此,从后面传送的数字广播就不能对已有的模拟广播带来干扰。因而,必需在图53的条件下根据发送的情况降低数字发送的发送电平。这时,对先有方式的16QAM和4ASK调制的情况,由于示于图54的干扰状态图上以双重斜线表示的不能接收区域713较大,故大幅度地缩小了HDTV的可能接收区域708。服务范围变窄,接收者减少,故广告节目减少。从而可以预想,先有方式的广播事业经济上难于成立。
其次,图55中示出应用了本发明传送方式的情况,HDTV的高分辨率可能接收区域703比先有方式的可能接收区域708狭窄一些。然而能得到比先有方式或更广阔范围的NTSC等低分辨率可能接收的区域704。单斜线表示的部分示出不能以HDTV水平接收同一节目,但能从NTSC水平接收的区域。其中,在第1干扰区域705受到模拟播放台711的干扰,HDTV、NTSC都不能接收。
如上所述,对于相同电波强度的情况,本发明的分级型广播HDTV品位的可能接收区域狭窄一些,但另一方面增加了能够以NTSC TV品位接收相同节目的区域。因此,能增加播放台的服务范围,能够向更多的接收者提供节目。从而能够更经济而稳定地使HDTV/NTSC TV的广播事业成立,将来,在数字收发机的比率增加了的阶段,会放宽对模拟广播的干扰规则的要求故能够加强电波强度。这样,就能够扩大HDTV的服务范围。这时,通过调整第1数据串和第2数据串的信号点的间隔,就能调整图55所示的数字HDTV/NTSC的可能接收区域和数字NTSC的可能接收区域。这时,如前所述那样,通过把这个间隔的信息发送到第1数据串便能更稳定地接收。
图56示出将来转换为数字广播的干扰状况图。这时,和图52不同,邻近台是进行数字广播的数字播放台701a。由于能够增加发射电功率,故HDTV等高分辨率可能接收区域703能够扩大到和模拟TV广播同等的可能接收区域702。
而且,由于在双方可能接收区域的竞争区域714互相受到干扰,故用通常的定向天线不能以HDTV的品位再生节目,但能够以NTSC TV的品位接收处在接收天线的定向方向的数字播放台的节目。另外,应用方向性极高的天线时,能够以HDTV的品位接收处在天线的定向方向的播放台的节目。低分辨率可能接收区域704比模拟TV广播标准的可能接收区域702广阔。在邻近播放台的低分辨率可能接收区域704a的竞争区域715、716能够以NTSC TV的品位再生处在天线的定向方向上的播放台的节目。
在比较远的将来,数字广播真正普及时,规则条件将进一步放宽,根据本发明的分层型广播将使在广阔服务范围内的HDTV广播成为可能。到那时,通过采用本发明的分层型广播方式,在确保和现有方式同样程度的广范围的HDTV接收范围的同时,现有方式能接收的远方区域竞争区域也能够以NTSCTV的品位接收节目,故能大幅度减少服务范围的缺损部分。
实施例5实施例5是本发明用于振幅调制(即ASK)方式的实施例。图57为实施例5的4值VSB信号等ASK信号的信号配置图,具有721、722、723、724这4个信号点。图68(a)示出8值VSB信号的星座。能够以1个周期发送4值时的2比特数据。4VSB的情况下能够使信号点721、722、723、724与例如00、01、10、11对应。
为了进行本发明的分层型传送,如图58的4电平VSB等的4电平ASK的信号配置图所示,把信号点721、722作为1个组(即第1信号点群725)处理,把信号723、724作为另外一个组处理,定义为第2信号点群726。而且,使2个信号点群间的间隔比等间隔的信号点的间隔更宽。即,设信号点721、722的间隔为L,则信号点723、724的间隔可以是同样的L,但是,信号点722和信号点723的间隔L0设定为大于L,即设定为L0>L。
这是本发明的分层通信系统的特征。然而,依系统的设计,根据条件和设定也可以暂时或始终取L=L0。在8值VSB的场合,成为如图68(a)、(b)所示的星座。
而且,像图59(a)那样,能够使第1数据串D1的比特数据对应于2个信号点群。例如把第1信号点群725定义为0,第2信号点群726定义为1,则能够定义第1数据串的1比特的信号。其次,使第2数据串D2的1比特的信号与各信号群中2个信号点群相对应。例如,如图59(b)那样,把信号点721、723作为D2=0、信号点722、724作为D2=1,则能够定义第2数据串D2的数据。这时,也成为2比特/字符。
通过这样配置信号点,就可以使用ASK方式进行本发明分层型传送。分层通信系统在信噪比即C/N值充分高时,和先有的等间隔信号点方式没什么两样。然而,C/N值低时,在先有方式完全再生数据的条件下,通过应用本发明,虽不能再生第2数据串D2,但能够再生第1数据串D1。为说明这一点,C/N值恶化的状态示于图60所示的4VSB的ASK的信号点配置图。即接收机再生的信号因噪声和传送畸变等,呈高斯分布分散在分散信号点区域721a、722a、723a、724a的广阔范围。这时,难于根据限幅电平2区别信号点721和722,根据限幅电平4区别信号点723和724。也就是说第2数据串D2的误码率非常高。但是,由图可知,很容易区别信号点721、722的集合和信号点723、724的集合。即能够区别第1信号点群725和第2信号点群726。因此,能够以低误码率再生第1数据串D1。
这样,能够收发2个层的数据串D1和D2。从而,在通信系统C/N良好的状态及地区能进行再生第1数据串D1和第2数据串D2的分层型传送,而在C/N值恶化的状态及地区能进行仅再生第1数据串D1的分层型传送。
图61是发送机741的框图,输入部742由第1数据串输入部分743和第2数据串输入部分744构成。来自载波发生器64的载波由在处理部分745中把来自输入部分742的信号汇合得到的输入信号在乘法器746中进行振幅调制,成为图62(a)所示的4值或8值ASK信号。此4ASK或8ASK信号进而由带通滤波器747限制带宽,成为图62(b)那样具有稍稍残留了载波边波带的残留边波带,即VSB等的ASK信号从输出部分748输出。
下面说明经过滤波后的输出波形。图62(a)ASK调制信号的频率分布图。如图,在载波的两侧有边波带。使这个信号经过滤波器747的带通滤波器,就像图62(b)的发送信号749那样,稍残留载波成分而去除掉单侧的边波带。把这叫作VSB信号,已知,若把f0作为调制频带,则因能以约f0/2的频带发送,频率的利用率高。图60的ASK信号原本是2比特字符,若用VSB方式,则4VSB和8VSB能在同一频带内传送相当于16QAM、32QAM的4比特/字符和5比特/字符的信息量。
其次,在图63所示的VSB接收机751中,用地面天线32a所接收的信号经输入部分752,在混频器753中和来自可变振荡器754的信号相混合,变换为较低的中间频率。其中,可变振荡器754根据频道的选择而变化。接着在检波器755中检波,由LPF756生成基本频带信号,对4VSB和8VSB的场合,分别通过具有4电平限幅或8电平限幅的识别再生器757再生第1数据串D1和第2数据串D2,最后从第1数据串输出部分758和第2数据串输出部分759输出。
下面,说明用发送机和接收机发送TV信号的情况,图64是图象信号发送机774的框图。HDTV信号等的高分辨率TV信号输入到第1图象编码器401的输入部403,由次频带滤波器等图象的分离电路404,分离为HLVL、HLVH、HHVL、HHVH等高频TV信号和低频TV信号。这部分内容因已在实施例3中用图30说明过,所以省略详细的说明。被分离的TV信号在压缩部405,应用在MPEG等中所使用的DPCM和DCT可变长编码等方法编码。动态补偿在输入部分403中处理。被压缩的4个图象数据由加法器778生成第1数据串D1和第2数据串D22个数据串。这时,HLVL信号即低频的图象信号包含在第1数据串中。然后,输入到发送机741的第1数据串输入部分743和第2数据串输入部分744进行振幅调制,形成VSB等的ASK信号,再从地面天线发送。
这个数字TV广播的TV接收机的整体框图是图65。用地面天线32a接收的4VSB和8VSB广播信号输入到TV发送机781中接收机751的输入部分752,接收者由检波VSB解调器760选台、解调所希望的任意的频道的信号,再生第1数据串D1和第2数据串D2后由第1数据串输出部分758和第2数据串输出部分759输出。详细的说明因重复而省略。D1、D2信号输入到分离器776。D1信号由除法器777分离,HLVL压缩成分输入到第1输入部分521。其它成分由加法器778和D2信号合成输入到第2输入部分531。在第2视频译码器中进入到第1输入部521的HLVL压缩信号由第1扩展部分523扩展为HLVL信号送入视频混频器548和画面比率变更电路779中。原TV信号为HDTV信号时,HLVL信号为宽带NTSC信号,原信号为NTSC信号时,成为MPEG1那样的比NTSC品位低的低分辨率TV信号。
在这一说明中,由于把原图象信号设定为HDTV信号,故HLVL信号成为宽带NTSC的TV信号。若TV画面的帧宽高比为16∶9,则经输出部分780就以16∶9的画面比率作为图象输出426输出,如果TV画面的帧宽高比为4∶3,就由画面比率变更电路779从16∶9变更成4∶3的画面帧宽高比的字母盒(letter box)形式或侧板(side panel)形式经输出部分780作为图象输出425而输出。
另一方面,来自第2数据串输出部分759的第2数据串D2在分离部分776的加法器778中和除法器777的信号合成,输入到第2图象译码器的第2输入部分531中,由分离电路分离出HLVH、HHVL、HHVH的压缩信号,分别送入第2扩展器535、第3扩展器506、第4扩展器537,扩展成为原HLVH、HHVL、HHVH信号,把HLVL信号加在这些信号上,输入到视频混频器548,合成为1个HDTV信号由输出部分546输出,同经输出部分780作为HDTV的图象信号427输出。
该输出部分780用误码率检测部分782检测第2数据串输出部分759的第2数据串的误码率,在误码就高时的状态持续一定时间时就自动地在另一一定时间内输出HLVL信号的低分辨率图象信号。
按照以上方式,可以发送、接收分层型广播。传送条件良好时,例如对于TV发送天线附近的广播,因为能够再生第1数据串和第2数据串,所以,能以HDTV的品位接收节目。另外对于和发送天线的距离较远的广播,再生第1数据串,从这个HLVL信号输出低分辨率的TV信号。因此可以从HTDV的品位或NTSCTV的品位在更广阔的区域接收同一节目。
另外,像图66的TV接收机的框图那样把接收机751的功能缩小到只有第1数据串输出部分768,则由于接收机不用处理第2数据串和HDTV信号,故能大幅度地简化结构。也可以使用图31中所说明的第1视频译码器421作为频视译码器。虽不能以HDTV的品位接收节目,但接收机的成本大幅度下降。从而有广泛普及的可能性。这个系统在不改变具有现有的TV显示器的众多接受系统的情况下,通过添加附件就能接收数字TV广播。
还有,如图66所示,接收加入了扰频的4VSB、8VSB信号时,用解密号码检验器502b检验由4VSB、8VSB信号发送的扰频解除信号和解密器502中的解密号码存储器502c的号码,只有在一致时才解密,由此能够合理地解除特定的密码节目的密码。
按照图67那样的结构,能够简单地构成具有解调PSK信号的卫星广播接收机和解调VSB信号的地面广播接收机性能的接收机。这时,来自卫星天线32的接收PSK信号在混合器786中和来自振荡器787的信号相混合,变换为低频输入到TV接收机781的输入部分34中,再输入到图63中所说明的混合器753。被变换为卫星TV广播的特定频道的低频的PSK、或者QAM信号,由解调部分35解调数据D1、D2,通过分离器788由第2图象译码器422而作为图象信号再生,由输出部分780输出。另一方面,由地面用天线32a接收的数字地面广播和模拟广播输入到输入部分752,用和图63中所说明的同样的过程,由混合器753选择特定的频道、检波,形成只有低域的基带信号。模拟卫星TV广播时,进入到混合器753被解调。数字广播时,由识别再生器再生数据串D1和D2,由第2图象译码器422再生、输出图象信号。另外,接收地面和卫星的模拟TV广播时,由图象解调部788进行AM解调的模拟信号由输出部分780输出。按照图67的结构,则混合器753能够在卫星广播和地面广播时共用。另外,第2图像译码器422也能够共用。还有,数字地面广播应用ASK信号时,能够兼用和为AM解调的先有的模拟广播同样的检波器755及LPF756等接收电路。像以上那样用图67所示的结构,可以大幅度地使接收电路通用化,削减电路数量。
另外,在实施例中,把4值的ASK信号分为2个组,进行D1、D2两层各1比特的分层型传送。然而也能够像图68(a)、(b)的8VSB信号的星座图所示那样,若用8值的ASK信号(即8电平VSB),则能进行D1、D2、D3三层各1比特共计3比特/字符的分层型传送。如图68(a)所示,首先说明第1比特的代码附加方法,D3信号的信号点是信号点721a和721b、722a和722b、723a和723b、724a和724b的2值,即1比特。其次说明下一个1比特的编码,D2的信号点是信号点群721和722、信号点群723和724的2值1比特。D3的数据是大信号群725和726的2值1比特。这时,把图57的4个信号721、722、723、724分离为各2个信号点721a和721b、722a和722b、723a和723b、724a和724b通过分开各组间的距离可能进行三层的分层型传送。
用这种3层的分层型通信系统进行的3层图象传送已经在实施例3中说明了,故省略动作的详细说明。
这里,说明用图68的8值VSB进行TV广播的效果。8VSB信号传送信息量多,但另一方面,对于相同的C/N值,其出错率比4VSB高。不过,在进行高画质的HDTV广播时,由于因传送容量有余量而多加入误码校正码,因而可降低出错率,其效果是使将来可能进行层次型的TV广播。
在这里,比较并说明4VSB、8VSB和16VSB的效果。
使用NTSC及PAL频带进行地面广播时,如图136所示对NTSC的情况,带宽限制为6MHz,允许约5MHz的实际传送带宽。4VSB的场合,频率利用效率是4bit/Hz,因而实际有5MHz×4=20Mbps的数据传送容量。另一方面,数字HDTV信号传送至少需要15Mbps-18Mbps。因此,由于4VSB中数据容量没有余量,如图169的比较图所示仅能把误码校正码的冗余度取为HDTV实际传送量的10-20%。
其次,8VSB的场合,频率利用效率是6bit/Hz,故能够得到5MHz×6=30Mbps的数据传送容量。如上述,传送HDTV信号需要15-18MHz,而在8VSB调制方式的场合,如图169所示那样就能够把HDTV信号的实际传送量的50%以上的信息量用于误码校正的代码。从而,在以6MHz的带宽对相同数据率的HDTV数字信号进行地面播放的条件下,因8VSB能够附加更大容量的误码校正码,所以如图161的出错率曲线805和806所示,对于通信系统的同一个C/N值,提高了误码校正的码增益的TCM-8VSB误码校正后的出错率比误码校正的码增益低的4VSB要低。因而,用高码增益进行了误码编码的8VSB比用4VSB扩展了TV地面广播的服务区域。诚然,8VSB由于增加了误码校正电路,有接收机电路更复杂的缺点。然而,由于VSB ASK方式是调幅方式,故与包含位相成分的QAM调制方式相比,原接收机的均衡器的电路规模要小得多,所以,即使增加误码校正电路,与32QAM方式相比,8VSB方式的总体电路规模没有增大。因而,由8VSB方式可实现服务区域宽、总体电路规模适当的数字HDTV接收机。
另外,作为具体的错误校正方式的例子将在后面的实施例5等中进行说明,而使用图84和实施例6的图131、图137、图156、图157的收、发送机框图中的ECC744a和格状编码器744b、以及已在图61中说明了的4VSB、8VSB、16VSB的VSB的调制部分749进行发送。接收机方面,使用在图63中所说明了的VSB的解调部分760从4VSB、8VSB或16VSB信号中通过4、8、16值的电平限幅器757再生数字数据,同样地用后面的实施例5等中所说明的图84、实施例6的图131、图137、图156、图157的格状译码器759b和ECC译码器759a进行错误校正后,再用图象译码器402中的图象扩展器再生和输出数字HDTV信号。
如在实施例6中所说明的图160(a)、(b)所示,ECC编码器744a使用里德·所罗门编码器744j和隔行扫描器744k,ECC译码器759a使用了逆隔行扫描器759k和里德·所罗门译码器759j。如前面的实施例所述的那样,通过加入隔行扫描,使区间误差增强。
通过采用图128(a)、(b)、(c)、(d)、(e)、(f)所示的格状编码器能够进一步提高码增益,降低出错率。8VSB的场合如图172所示,比率为2/3的格状编码器744b、译码器759b是能够适用的。
在实施例中,主要应用传送分层型数字TV信号的例子进行了说明。分层型的场合能够理想地播放,但由于图象压缩电路和调制解调器的电路复杂,故在播放初期成本方面不令人满意。如在实施例5开头所述,取4VSB和8VSB的信号点间隔L=L0,即等间隔,进行非分层型的TV传输,就使图137如图157所示那样成为简单的结构,从而实现电路简单的TV播放系统,而且也可以在普及了的阶段转换为8VSB的分层型播放形式。
以上说明了4VSB和8VSB,在图159(a)-(d)中将说明16VSB和32VSB的情况。图159(a)示出16VSB的星座。图159(b)把16个信号点分组为2信号点组722a-722h,由于把它们当作8个信号点,能够按8VSB处理而实现2层的分层型传送。这时用时分复用(Time Division Multiplex),即使间断发送8VSB信号也将实现分层型传送。然而,这种方式中的最大数据率为2/3。图157(c)由于进一步分为4个组723a-723d、按4VSB处理,所以可以再增加1层分层。这种场合,即使用时分复用间断发送4VSB信号,最大数据率虽然下降但仍将实现分层型传送。根据以上所述,将实现3层的分层型VSB。
用这种方式,在16VSB的C/N值恶化时,将实现能够再生8VSB或4VSB的数据的分层型传送。另外,如图159(d)所示,通过取2倍的16VSB的信号点而能够传送32VSB。将来在希望扩大16VSB容量时,用这种方式的效果是在保证互换性的同时又能够得到5bit/symbol的数据容量。
综上所述,就得到了图161的VSB接收机框图所示的接收机和图162的VSB发送机框图所示的发送机的结构。
以上主要用4VSB和8VSB进行了说明,但也可用图159(a)、(b)、(c)那样的16VSB进行传送。在16VSB的情况下,地面播放时用6MHz带宽可以取得40Mbps的传送容量。然而HDTV数字压缩信号的数据率在用MPEG规格时为15-18Mbps,因而传送容量的余量过大。如图169所示,冗余码R16=100%以上,传送1个频道的数字HDTV时冗余度过大,只是电路变得复杂,相对于8VSB,效果不大。而且进行2个频道的HDTV地上播放时,若为16VSB则冗余度仅能和4VSB相同取10b左右,从而不能够加入充分的错误校正码,故服务区域变狭。如前所述,4VSB的冗余码R4=10-20%,由于不能够充分进行误码校正,所以不能扩大服务区域。如从图169所能明确的,8VSB的冗余码R8=50%,从而能够有充分的误码校正编码。误码校正的电路规模没怎么增加,服务范围却能增加。从而,如图169所示可知,在以6-8MHz的带宽限制进行数字HDTV地上播放的条件下,8VSB的效果最好,是最适宜的VSB调制方式。
在实施例3中说明了图30所示的图象译码器401,而图30的框图能够重画成图69的形式。由于内容完全相同,故省略说明。这样,图象译码器401具有次频带滤波器等2个图象分离电路404、404a。把这些作为分离部分794,就如图70所示的分离部分的框图。这样,通过在1个分离电路中按时分通过信号2次能够削减电路。下面说明这一点。在第1个周期,来自输入部403的HDTV和超级HDTV的图象信号由时间轴压缩电路795压缩时间轴再由分离电路404分为HHVH-H、HHVL-H、HLVH-H、HLVL-H等4个成分。这时,开关765、765a、765b、765c处在1的位置,向压缩部分405输出HHVH-H、HHVL-H、HLVH-H等3个信号。而HLVL-H信号从开关765c的输出1输入到时间轴调整电路795的输入2,在第2周期进行时间分割处理的空闲时间送入分离电路404进行分离处理,分成HHVH、HHVL、HLVH、HLVL等4个成分并输出。第2个周期时,开关765、765a、765b、765c变到输出2的位置,故4个成分被输入到压缩部分405。这样,通过按图70的结构进行时间分害处理,就能够削减分离电路。
其次,在进行这样三层的分层型图象传送的接收机的方面需要如实施例3的图33的框图所说明的图象(视频)译码器。重新画出来就成为图71那样的框图。有两个处理能力不同而结构相同的合成器556。
若取图72所示的结构,就能和图70的分离电路的情况一样,用1个合成器来实现。下面说明图72。用5个开关765、765a、765b、765c、765d,首先在定时1,开关765、765a、765b、765c的输入切换到1。于是来自扩展部分522、第2扩展部分522a、第3扩展部分522b、第4扩展部分522c的各HLVL、HLVH、HHVL、HHVH的信号通过开关,进入到合成器556对应的输入部分,合成处理成为1个图象信号。这个图象信号送到开关765d由输出1输出,再送回到开关765c的输入部分2。这个图象信号原本是分割高分辨率图象信号中的HLVL-H成分,在下一个定时2中,开关765、765a、765b、765c被切换到输入2。这样,这次HHVH-H、HHVL-H、HLVH-H及HLVL-H、信号送入合成器556合成处理而能得到1个图象信号。这个图象信号由开关765d的输出2经输出部554输出。
这样,在接收3级的分级的分级型广播时,用时间分割处理可以把2个合成器削减为1个。
这个方式首先在定时1输入HHVH、HHVL、HLVH、HLVL信号,合成HLVL-H信号。其后,在和定时1不同的期间定时2,输入HHVH-H、HHVL-H、HLVH-H和上述的HLVL-H信号,得到最终的图象信号。从而,需要错开2组信号的定时。
原来如果输入信号中上述成分的定时顺序有错或重复时,为了时间分离,就要在开关765、765a、765b、765c中设置存储器,调整时间轴。但通过把发送机的发送信号像图73那样按时间分离成定时1和定时2再发送,则在接收机方面就不需要时间轴调整电路。所以,简化了接收机的结构。
图73的时间配置图示出了按下面方式发送信号时的时间配置。D1表示发送信号的第1数据串。在定时1期间以D1通道发送HLVL、HLVH、HHVL、HHVH信号,在定时2期间以D2通道发送HHVL-H、HLVH-H、HHVH-H信号。这样,通过时间分割发送信号,可以削除接收机编码电路的结构。
其次,接收机扩展部的数量较多。下面说明削减扩展部数量的方法。图74(b)示出了发送信号的数据810、810a、810b、810c的时间配置图。图中,在数据之间发送其它数据811、811a、811b、811c。于是,要发送给接收机的发送数据是间歇式地送出的。这样,图74(a)的框图所示的第2图象译码器422把数据串D1通过第1输入部521和开关812逐个扩展部503。例如,数据810输入完毕后在其它数据811期间进行扩展处理,数据810处理结束后,输入下一个数据810a。由此,以使用和合成器场合同样方法的时间分割,就能够共用扩展部503。这样,能够减少扩展部的总数。
图75是发送HDTV时的时间配置图。例如,把相当于广播节目第1频道NTSC成分的HLVL信号作为HLVL(1),把它按时间配置在D1信号的粗线所表示的数据821的位置。相当于第1频道HDTV附加成分的HLVH、HHVL、HHVH信号配置在D2信号的数据821a、821b、821c的位置。于是,由于第1频道的全部数据之间存在有其它TV节目信息的另外的数据822、822a、822b、822c故可能在这个期间中进行扩展部的扩展处理。于是,能够用1个扩展部处理全部成分。这个方式能适用于扩展器高速处理的场合。
另外,如图76那样对D1信号配置数据821、821a、821b、821c也能够得到同样的效果,这在通常4PSK和4ASK那样用非分级传送的收发场合是有效的。
图77示出了进行分级传送时的时间配置图。这是例如NTSC、HDTV和高分辨率HDTV、或者低分辨率NTSC、NTSC和HDTV这样的3级图象用物理上2级的分级传送方法分级发送的。例如,发送低分辨率NTSC、NTSC和HDTV这3级图象时,相当于D1信号低分辨率NTSC的HLVL信号配置在数据821。另外,NTSC的分离信号HLVH、HHVL、HHVH各成分的信号配置在数据821a、821b、821c的位置HDTV的分离信号HLVH-H、HHVL-H、HHVH-H信号配置在数据823、823a、823b。
这里,如图156和图170的框图所示,根据实施例2中所说明的误码校正能力差别化,在4VSB和8VSB的传送装置中追加了逻辑分层传送。具体地说,使用D1信号中的D1-1通道。D1-1通道如在实施例2中说明的那样采用了校正能力比D1-2通道大幅度提高的误码校正方式。D1-1通道比D12通道冗余度高而再生后的误码率低,故在C/N值比其它数据821a、821b、821c低的条件下也能再生。因此,即使在离天线较远的地区和车内接收条件恶劣的场合也能以低分辨率的NTSCTV品位再生节目。如在实施例2中所说明的,从误码率的观点出发,位于D1信号中D1-1通道的数据821比位于D1-2通道中的其它数据821a、821b、821c在接收干扰方面更强地差别化,逻辑分层不同。如实施例2中所说明的,D1、D2的分层可称为物理分层,由这个误码校正间距差别化的分层构造可称为逻辑分层结构。
D2信号的解调中物理上需要比D1信号高的C/N值。从而,在较远地区C/N值最低的接收条件下,能够再生HLVL信号,即低分辨率NTSC信号。而且,在C/N值比较低的接收条件下能够再生HLVH、HHVL、HHVH与HLVL一起再生NTSC信号。进而,在C/N值高的接收条件下,固能够再生HLVH-H、HHVL-H、HHVH-H,故加上HLVL信号,这样就能够进行3级广播。通过用这样的方式,图53所说明的可能接收区域像图98的接收干扰图所示的那样。从2层扩大到3层,更扩展了节目可能接收区域。
这里,图78示出了图77的时间配置时的第3图象译码器的框图。基本上是在从图72的框图省去D3信号的第3输入部551的结构上添加了图74(a)的框图结构而构成的。
下面说明其动作。在定时1由输入部521输入D1信号,由输入部530输入D2信号。由于按时间被分为HLVH等各个部分,这些成分就由开关812顺次独立地送到扩展部503。把这个顺序用图77的时间配置图进行说明,首先,第1通道的HLVL压缩信号进入扩展部503,进行扩展处理。接着,第1通道的HLVH、HHVL、HHVH也被扩展处理,通过开关812a输入到合成部556所预定的输入部,进行合成处理,首先合成HLVL-H信号。这个信号从开关765a的输出1输入到开关765的输入2,再输入到合成器556的HLVL输入部。
接着,在定时2,如图77的时间配置图所示,D2信号的HLVH-H、HHVL-H、HHVH-H信号被输入并由扩展部503扩展,各信号通过开关812a输入到合成器556所指定的输入端,合成处理输出HDTV信号,这个HDTV雠号经开关765a的输离2通过输出部521输出HDTV信号。如上所述,通过按图77的时间配置发送,可以大幅度削减接收机的扩展部和合成器的数量。还有,图77在时间配置图中使用了D1、D2信号2个阶梯,而用前述的D3信号,再加上高分辨率HDTV就能够进行4级的TV广播。
图79是播放3重分级图象的分级型广播的时间配置图。3个分级用D1、D2、D33级的物理分级。如从图中所明确的,同一TV频道的各个成分在时间上不重复地配置着。另外,图80是在图78的框图所说明的接收机中加入了第3输入部521a的接收机图。通过按图79的时间配置进行的播放,可以用图80的框图所示的简单结构构成接收机。
由于动作和图77的时间配置图、图78框图几乎相同,为此省略说明。另外,还能像图81的时间配置图那样,在D1信号上把全部信号做时间多路化。这时,数据821和其它的数据822这两个数据与数据821a、821b、821c相比,提高了误码校正能力。因眦,比其它的数据分级高。如前所述那样物理上是1级而在逻辑上成为2级的分级传送。还有,在节目频道1的数据之间插入了其它节目频道2的数据。因而,在接收机侧能进行串行处理,就能得到和图79的时间配置同样的效果。
图81的时间配置图的情况成为逻辑分级,而通过把数据821,其它的数据822的传送比特比率降为1/2和1/3,则由于这个数据传送时的误码率下降故也能够进行物理上的分级传送。这时,为3级的物理分级。
图82是仅传送图81的时间配置图那样的数据串D1时图象译码器423的框图,与图80的框图所示的图象译码器相比成为更简单的结构。动作因和图80中所说明的图象译码器相同,故省略说明。
如上述,发送图81的时间配置图那样的发送信号就象图82的框图那样,能大幅度削减扩展器503、合成器556的数量,又由于4个成分被时间分离输入,故根据输入的图象成分连续变更合成器56即图32的图象合成器548的内部电路部件,由此时间分割共用一些部件也能够省去一些电路。
像以上那样,能够以简单的结构构成接收机。
还有,在实施例5中,说明了应用ASK调制的动作,而在实施例5中所说明的众多的方法也能用于实施例1、2、3中所说明的PSK和QAM调制。
还有,以前的实施例也能用于FSK调制。
例如,如图83那样进行f1、f2、f3、f4的多值FSK调制时,进行实施例5的图58的信号点配置那样的分组,通过分开各组信号点的位置能够进行分级型传送。
在图83,把频率f1、f2的频率群841定义为D1=0,把频率f3、f4的频率群842定义为D1=1。而且把f1、f3定义为D2=0,把f2、f4定义为D2=1,于是能像图示那样,进行D1、D2各1比特,合计2比特的分级型传送。例如,C/N高时在t=t3能再生D1=0、D2=1,在t=t4能再生D1=1、D2=0。其次,在低C/N时,在t=t3仅能再生D1=0而在t=t4仅能再生D1=1。
又,也能够把本发明的实施例5应用于图84那样的示于框图的磁记录再生装置。实施例5能够进行ASK的磁记录再生。
实施例6下面,根据实施例6说明本发明的传送、记录方式应用于磁记录再生装置的例子。实施例5中示出了把本发明应用于多值传送的ASK传送方式的情况,而根据同样原理,如图173的框图所示,能够把本发明也应用在多值的ASK记录方式的磁记录再生装置。通过把本发明的C-CDM方式应用于ASK以外的PSK、FCK、QAM,能进行分层型或非分层型的多值的磁记录。
首先,以在16QAM和32QAM的磁记录再生装置上使用本发明的C-CDM方式为例说明分层化的方法。图84示出在16QAM、32QAM、4ASK、8ASK、16ASK、8PSK上应用C-CDM时的框图。以下把C-CDM多路化的QAM信号称为SRQAM。图137和图154示出应用了播放等的通信系统的情况下的框图。
下面说明图84。磁记录再生装置851,用图象编码器401中的第1图象编码器401a和第2图象编码器401b把输入的HDTV等图象信号分离压缩为高频信号和低频信号,在输入部分742中的第1数据串输入部分743中输入HLVL成分等的低频图象信号,在第2数据串输入部分744中输入含HHVH等成分的高频图象信号,再输入到调制解调器852中的调制器749。在第1数据串输入部743中,误码校正码在ECC部743a中被添加上低频信号。另一方面,输入到第2数据串输入部分744的第2数据串在16SRQAM、36SRQAM、64SRQAM时为2比特、3比特、4比特。这个信号由ECC744a进行误码编码后和格状编码器在16SRQAM、32SRQAM、64SRQAM时,各以1/2、2/3、3/4的比率用图128(a)、(b)所示的格状编码器744b进行格状编码。例如,64SRQAM时,第1数据串是2比特,第2数据串为4比特。因此,用如图128(c)所示的格状编码器744b,把3比特数据做成4比特,进行比率为3/4的格状编码。4ASK、8ASK、16ASK的场合,单独进行1/2、2/3、3/4的格状编码。这样,一方面冗余度上升、数据比率下降,但另一方面误码校正能力提高。因而,能够降低同一数据比率的误码率。因此,增加了实质的记录再生系统或传送系统的信息传送量。对于实施例5中所说明了的8VSB通信系统,由于是3比特/字符,所以能够使用图128(b)、(e)所示的比率为2/3的格状编码器744g、744q,总体框图即为图171。但因格状编码器电路复杂,故在实施例6和图84的框图中没有用于误码率原本较低的第1数据串。第2数据串比第1数据串符号间距小,误码率恶化,但通过把第2数据串格状编码,误码率得到改善。根据省略第1数据串格状编码电路的结构,总体电路更简单。调制的动作与实施例5的图64的发送机几乎相同,故省略详细的说明。在调制器749中被调制的信号在记录再生电路853中由偏压发生器856进行AC偏置,经放大器857a放大,最后用磁头854记录在磁带855上。
记录信号的格式如图113的记录信号频率配置图所示,记录了具有频率为fc的载波,例如16SRQAM的主信号859。与此同时,还记录了具有fc2倍的2fc频率的导频fp信号859a。由于根据频率为fB2AS的偏压信号859b加入AC偏压进行磁记录,故记录时的畸变少。由于记录了图113所示3层中的2层,故存在2个能够记录再生的阈值Th-1-2、Th-2。根据记录再生时的C/N电平,如果是信号859,则能记录再生2层全部信号,而如果是信号859c,则只能记录再生D1。
把16SRQAM用于主信号时,信号点配置如图10。又,使用36SRQAM时为图100配置。使用4ASK、8ASK时,为图56、图68(a)、(b)那样的配置。再生这个信号时,从磁头854再生主信号859和导频信号859a,由放大器857b放大。根据这个信号用载波再生电路858的滤波器858a频分出2fo的导频信与fp,经1/2分频器858bf。的载波被再生并送入到解调器760。用这个被再生的载波在解调部中解调出主信号。这时,使用HDTV用等高C/N值磁带855时,因16点的各信号易于辨别,故在解调部760中解调出D1和D2。而且用图象译码器422再生全信号。对于HDTVVTR的情况,能再生15Mbps的HDTV的高比特率的TV信号。成本便宜到和C/N值低的录相带相仿。现在市场上出售的VHS磁带和广播播用的高C/N型磁带有10dB以上的C/N差。使用便宜且C/N值低的录相磁带855时,因C/N值低,完全辨别16值和36值的信号点比较困难。因而能够再生第1数据串D1但不能再生第2数据串D2的2比特或3比特或4比特的数据串,只能再生第1数据串2比特的数据串。记录再生二层分层型的HDTV图象信号时,用低C/N值磁带因不能再生高频图象信号,故输出第1数据串的低比率的低频图象信号,具体例如7Mbps的宽带NTSC的TV信号。
另外,能够以一种产品形式设定图114的框图所示那样的低比特率专用记录再生装置851。其中,省略了第2数据串输出部分759、第2数据串输入部分744和第2图象译码器422a,具有仅调制解调第1数据串D1的变形QPSK等的调制器。该装置仅能进行第1数据串的记录再生,即能够记录再生宽带NTSC级的图象信号。用这个低比特率专用磁记录再生装置再生输出记录了上述HDTV信号等的高比特率信号的高C/N值的录相带855时,仅再生第1数据串的D1信号,输出宽带NTSC信号,不能再生第2数据串。即再生记录了同样分层型的HDTV信号的录相带855时,一方面用复杂结构的记录再生装置能再生HDTV信号,一方面用简单结构的记录再生装置能再生宽带NTSCTV信号。即,对于二层的分层情况,能在具有不同C/N值磁带和具有不同记录再生数据率的机种间实现4种组合的完全的互换性。这时,与HDTV专用机相比,NTSC专用机的结构显著地简单。具体地,例如EDTV的译码器电路规模与HDTV相比为1/6。从而,能够以大幅度降低成本,得到低功能机。这样就能为实现HDTV和EDTV图象质量的记录再生能力不同的2个类型的记录再生装置,在范围广泛的价格带内设定机种。另外,使用者也能根据所要求的画面质量,每次都能够从高价格的高C/N磁带到低价格低C/N的磁带内自由地选择。这样,在完全保证了互换性的同时,还得到了扩展性,同时,还能够保证和将来的互换性。从而有可能实现将来也不过时的记录再生装置。作为其它的记录方法,也能够根据实施例1、3中所说明的相位调制进行分层记录。
也能够根据实施例5中说明的ASK记录。把现在的2值记录多值化,像图59(c)、(d)和图68(a)、(b)所示那样把4值的ASK和8值的ASK信号点分为2个组,便能实现二层、三层的分层化。
对于ASK的情况,其框图和图84相同,如图173。通过格状和ASK的组合而降低出错率。除了实施例中所说明的以外,根据磁带上的多磁道也能进行分层记录。还有,通过改变误码校正能力、使数据差别化,也能够进行逻辑分层记录。
下面,说明和将来规格的互换性。通常设定VTR等记录再生装置的规格时,用现实能得到手的最高C/N的磁带制定规格。磁带的记录特性在日新月异地提高。例如,与10年前的磁带相比,现在的C/N值提高了10dB以上。这时,在10-20年后的将来,立足于磁带性能提高时设定新的规格,则按先有方式,取得和旧规格的互换性非常难。因此,很多场合新旧规格单方面互换或不能互换。
然而,本发明首先按现行的磁带设定了记录再生第1数据串或第2数据串的规格。其次,在将来磁带的C/N大幅度提高时,如果预先采用本发明,追加高品位的数据分级的数据例如第3数据串,则例如记录再生三层64SRQAM和8ASK的超级HDTVVTR,就能在保持和先有规格完全互换的同时得以实现。在将来实现了这个规格时,本发明用仅能记录再生第1、第2数据串的旧标准二层的磁记录再生装置再生以新标准的三层记录到第3数据串的磁带,虽不能再生第3数据串但完全能够再生第1、第2数据串。因而,在保持新标准互换性的同时,还能扩展记录数据量。
这里,返回到图84的再生动作进行说明。再生时,用磁头854和磁再生电路853从磁带855再生出信号送入调制解调部852。解调器由于和实施例1、3、4进行几乎同样的动作故省略说明。由解调器760再生第1数据串D1和第2数据串D2,第2数据中由Vitabi译码器等格状译码器759b做代码级的高误码率校正,降低误码率。D1、D2信号由图象译码器422解调,输出HDTV的图象信号。
以上是具有2个分层的磁记录再生装置的实施例,下面用图131的框图说明在二层的物理分层中加入1层逻辑分层的3层磁记录装置。基本上是和图84相同的结构,但用TDM把第1数据串进而分割成2个子通道构成3层结构。如图131所示,首先,HDTV信号由第1图象译码器401a中的第1-1图象译码器401c和第1-2图象译码器401d分离成中频和低频图象信号的2个数据,D1-1和D1-2,再输入到输入部742的第1数据串输入部。MPEG等级画质的数据串D1-1在ECC Coder743b中进行具有通常代码级的误码校正符号化,D1-2在ECC Coder743b中进行具有通常代码级的误码校正符号化。D1-1和D1-2由TDM部743c进行时间多路化,生成1个数据串D1。D1和D2在C-CDM调制器749被调制,用磁头854在磁带855上进行2级分级记录。
再生时,由磁头854再生的记录信号用和图84所说明的同样的动作,由C-CDM解调部760解调出D1和D2。第1数据串D1在第1数据输出部758中被解调为2个子通道D1-1和D1-2。D1-1由于在代码级高的ECC Decoder758a中进行误码校正,故比D1-2,D1-1在低C/N值也能解调,由第1-1图象译码器402a译码(Decode)输出LDTV。另一方面,D1-2在通常代码级的ECC译码器758b中进行误码校正,与C1-1相比,因具有较高的C/N临界值,故信号电平不大就不能再生。而且,在第1-2图象译码器402d中被解调,与D1-1合成,输出宽带NTSC级的EDTV。
第2数据串D2由格状解调器(Trellis Decoder)759b进行Vitabi解码,由ECC759a进行误码校正,用第2图象译码器402b形成高频图象信号,与D1-1、D1-2合成输出HDTV。这时D2的C/N的阈值设定得比D1-2大,从而,磁带855的C/N值小时,再生D1-1即LDTV,通常的C/N值的磁带855时,再生D1-1、D1-2即EDTV,高C/N值磁带855时,再生D1-1,D1-2、D1-3即HDTV信号。
这样,就能实现3级的分级磁记录再生装置。如前所述,磁带855的C/N值和成本有相关关系。本发明的情况,使用者能够记录再生与3种类型的磁带成本相应的3个等级画面质量的图象信号,故可以拓宽使用者根据想记录的TV节目的内容而选择磁带等级的范围。
下面,说明快速发送时分级记录的效果。如图132的记录磁道图所示的那样,磁带855上记录着方位角A的记录磁道(track)855a和逆方位角B的记录磁道855b。如图示,在记录磁道855a的中央部设置了记录区域855c,把其它的区域作为D1-2记录区域855d。至少在1个地方就各个记录磁道数设置记录区域。其中,记录LDTV的1帧。高频信号的D2信号记录在记录磁道全区域的D2记录区域855e。通常速度的记录再生时,这个记录格式不产生新的效果。顺方向和逆方向的磁带快速传送再生时,方位角A的磁头扫描855f如图示那样和磁道不一致。在图132所示的本发明中,磁带中央部的狭窄区域设置了被设定为D1-1的记录区域855c。因而虽是某种一定的几率,但这个区域准确地被再生。被再生的D1-1信号虽然是与MPEG1并列的LDTV的画面质量,但能够解调同一时间全体画面的图象。这样,在快速传送时就具有1秒钟内再生几枚到几十枚LDTV的完全图象,使用者能够确认快速传送中的图象画面。
另外,返传送再生时,如磁头扫描855g所示那样仅扫描磁道的一部分区域。然而,在这时也应用图132所示的记录再生格式,因D1-1记录区域能够再生,故间歇式地输出LDTV等级画面质量的动画。
这样,本发明由于记录了记录磁道部分狭窄区域中LDTV等级画面质量的图象,故使用者在正反两个方向快速传送时能够以LDTV等级的画面质量再生快速传送的间断的、几乎完全静止的画面,所以在高速检索时,容易确认画面。
下面说明更高速的快进再生的对应方法。如图132的右下角所示的那样,设置D1-1记录区域855c,记录LDTV1帧的同时,进一步把狭窄区域的D1-1·D2记录区域855h设置在D1-1记录区855c上。这个区域中的子通道D1-1上记录着LDTV1帧的部分信息。把LDTV余下的信息重复记录在D1-1·D2记录区域855h的D2记录区域855j。子通道D2具有子通道D1-13-5倍的数据记录量。从而能用D1-1和D2记录1/3-1/5面积的磁带上LDTV的一帧信息。由于磁头特性能够在更窄的区域855h、855j上记录,所以与磁头的扫描时间相比,时间和面积都成为1/3-1/5。从而即使提高快进速度,磁头扫描更倾斜,也提高了扫描这个区域全部的几率。因而和仅是D1-1的情况相比在进一步以3-5倍的高速快进时也间断地再生完整的LDTV图象。
这种方式在2分级VTR的情况,因没有再生D2记录区域855j的功能则在高速快进时不能再生。另一方面,在3分级高功能型VRT与2分级相比,在3-5倍高速快进时也能确认图象。即不仅能实现根据分级数即成本的画面质量,而且能根据成本实现能再生最大快进速度不同的VTR。
还有,在实施例中,使用了分级型调制方式,但是,不言而喻,16QAM等通常的调制方式如果进行分级型图象符号化,也能实现本发明的快进再生。
以往的在高度上压缩图象方式的非分级型数字VTR的记录方式,图象数据均匀地分散,故快进再生时不能够再生各扫描相同时间的画面的全部图象。因而,只能再生偏离画面各段时间轴的图象,然而,本发明的分级型HDTVVTR是LDTV等级,在快进再生时能够再生不偏离画面各段的时间轴的图象。
进行本发明的HDTV3级分级型记录时,在记录再生系统的C/N值高时,能够再生HDTV等高分辨率TV信号。而且,在记录再生系统的C/N低及用低功能磁再生装置再生时,输出宽带NTSC等EDTV等级的TV信号或低分辨率NTSC等LDTV等级的TV信号。
如上,在使用本发明的磁再生装置中,在C/N低和误码率高时,也能以低分辨率或低画面质量再生同一内容图象。
实施例7实施例7是把本发明用于4分级的图象分级传送的例子。通过把实施例2中说明的4分级传送方式与4分级图象数据构造组合就能产生如图91的接收干扰区域图所示的4分级接收区域。如图所示,在最内侧形成第1接收区890a,在其外侧形成第2接收区890b、第3接收区890c和第4接收区890d。下面,说明实现这种4分级的方法。
实现4分级时,存在着由调制得到的4级的物理分级、由误差校正能力的差别化得到的4级的逻辑分级等,前者由于分级之间的C/N差较大,4级上有必要有大的C/N。后者由于能够解调这个前提,分级之间的C/N差取得不大。现实当中,使用2级的物理分级和2级的逻辑分级。这样先描述把图象信号分为4级的方法。
图93是分离电路3的框图,由图象分离电路895和4个压缩电路构成。分离电路404a、404b、404c内部的基本结构和图30的第1图象译码器401中的分离电路404的框图相同,故省略说明。分离电路404a等把图象信号分离为低频成分HLVL、高频成分HHVH和中频成分HHVL、HLVH等4个信号。这时,HLVL的分辨率为原图象信号的一半。
输入的图象信号由图象分离电路404a分割为高频成分和低频成分。由于在垂直和水平方向上分割,故输出4个成分。高频和低频的分割点在本实施例中处在中间点。从而,输入信号是垂直1000条的HDTV信号时,HLVL信号为垂直500条、水平分辨率也为1/2的TV信号。
低频成分的HLVL信号由分离电路404c进一步各2分为水平、垂直方向的频率成分。从而,HLVL的输出,例如就成为垂直250条,水平分辨率成为1/4。把这个定义为LL信号,LL成分由压缩部405a压缩作为D1-1信号输出。
另一方面,HLVL高频成分的3个成分由合成器合成为1个LH信号,由压缩部405b压缩后作为D1-2信号输出。这时,在分离电路404c和合成器772c之间可设立3个压缩部。
高频成分的HHVH、HLVH、HHVL等3个成分由合成器772a形成1个HHVH-H信号。压缩信号在水平、垂直都是1000条时,这个信号在水平、垂直方向具有500-1000条的成分。而且,由分离电路404b分离为4个成分。
从而,作为HLVL输出,分离为水平、垂直方向的500-750条成分。称为HH信号。而且,HHVH、HLVH、HHVL这3个成分具有750-1000条成分,在合成器772b中合成,在压缩部405d中压缩成为HH信号,作为D2-2信号输出。另一方面,HL信号作为D2-1信号输出。从而,LL即D1-1信号具有例如0-250条以下成分,LH即D1-2信号具有250条以上500条以下的频率成分,HL即D2-1信号具有500条以上750条以下、HH即D2-2信号具有750条以上1000条以下的频率成为。使用这个分离电路3,能够产生分级型数据的结构。通过用这个图93的分离电路3替换实施例2中所说明的图87的发送机1中分离电路3,能够进行4级的分级型传送。
这样,把分级型数据结构和分级型传送组合,能够实现伴随C/N的恶化画面质量阶梯形下降的图象传送。这样,播放时可以扩大服务范围。其次,解调再生这个信号的接收机和实施例2中所说明的图88的第2接收机具有相同的结构和动作。从而省略全部动作的说明。只是处理图象信号的合成部37的结构和数据发送不同。这里,详细说明合成部37。
如实施例2中用图88的接收机框图所说明的那样,解调、误码校正接收的信号,形成D1-1、D1-2、D2-1、D2-2等4个信号,输入到合成部37。
这里,图94是合成部33的框图。输入的D1-1、D1-2、、D2-1、D2-2信号在扩张部523a、、523b、523c、523d中被扩展,形成在图93的分离电路中说明过的LL、LH、HL、HH信号。设原来的图象信号水平、垂直方向的频带为1,则这个信号的LL就为1/4、LL+LH为1/2、LL+LH+HL为3/4,LL+LH+HL+HH为1的频带。LH信号由分离器531a分离在图象合成部548a中与LL信号合成输入到图象合成部548c的HLVL端子。关于图象合成部531a的例子的说明已经用图32的图象译码器527说明过了,故省略。另一方面,HH信号由分离器531b分离,输入到图象合成部548b。HL信号在图象合成部548b中和HH信号合成形成HHVH-H信号,经分离器531c分离,在图象合成部548c中和LH、LL的合成信号合成,成为图象信号LL合成部33输出。而且,用图88的第2接收机的输出部36形成TV信号输出。这时,原信号若是垂直1050条,约1000条的HDTV信号,则由图91的接收干扰图所示的4个接收条件4种画面质量的TV信号。
下面详细说明TV信号的画面质量。把图91和图86合在一起,就是图92的传送分级构造图。这样,和C/N提高的同时,在接收区域862d、862c、862b、862a中添加了能够逐次再生D1-1、D1-2、D2-1、D2-2的分级通道,增加的数据量。
如图95传送分级结构图那样,图象信号进行分级传送时,在C/N提高的同时,再生出LL、、LH、HL、HH信号的分级通道。因此,随着至发送天线距离的缩短,画面质量上升。L=Ld时,再生信号,L=Lc时,再生LL+LH信号,L=Lo时,再生LL+LH+HL信号,L=La时,再生LL+LH+HL+HH信号。因此,设原信号的频带为1,就能在各个接收地区分别得到1/4、1/2、3/4、1的频带的画面质量。原信号为垂直扫描线1000条的HDTV时,能得到250条、500条、750条、1000条的TV信号。这样,就能进行画面质量阶梯形恶化时的分级型传送。图96是先有的数字式HDTV广播时的接收干扰图。从图中所指明的那样,先有方式在C/N小于V。时,完全不能再生TV信号。因此,即使在服务范围距离R的内侧,在和其它台的竞争地区、楼房阴影等地如“X”号所示,不能接收。图97是应用本发明的HDTV分级广播的接收状态图。如图97所示,在距离La,C/N=a、在Lb,C/N=b,在Lc,C/N=C、在Ld,C/N=d各个接收区域能够得到250条、500条、750条、1000条的画面质量。在距离La以内,也存在C/N恶化,不能以HDTV画面质量再生的区域。然而,这时,也能够再生画面质量降低的图象。例如楼房阴影的B点以750条、电车内的D点以250条、受重象的F点以750条,汽车内的G点以250条、和其它台竞争地区L点以250条的画面质量,能够再生图象。如上所述,通过应用本发明的分级传送,在先有方式所不能接收再生的地区也能够接收,可以大幅度扩大TV台的服务范围。另外,如图98的分级传送图所示的,以D1-1通道播放和其区域内的模拟广播相同的节目D,用D1-2、D2-2、D2-2通道播放其它的节目C、B、A,便能够在整个区域准确地播放节目D的同时进行联播,并可在联播的同时,收听其它3个节目。
实施例8下面根据图面说明实施例8。实施例8是把本发明的分级型传送方式应用于蜂窝状(colluar)电话系统的收发话时的例子。在图115携带电话机的收发话机的框图中,从麦克风762输入的通话者的声音由压缩部405压缩符号化为前述的分级构造的数据D1、D2、D3,在时间分割部765根据定时时间分割为所定的时间段,在调制器4受前述的SRQAM等分级型调制,载于1个载波上经天线共用器由天线22发送,用后述的基地台接收,发送到其它的基地台或电话局,能和其它的电话通话。
另一方面,来自其它电话的通话信号作为从基地台来的发送电波由天线22接收。这个接收信号在SRQAM等分级型解调器45中作为D1、D2、D3的数据而被解调。从解调信号在定时电路767检测出定时信号,这个定时信号被送入时间分割部765。解调信号D1、D2、D3在扩展部503中被扩展形成声音信号,送到扩音器65成为声音。
其次,像图116的基地台的框图中那样,位于6角形或圆形的3个接收单元(cell)768、769、770各中心部的基地台771、772、773具有多个和图115同样的收发机761a-761j,收发和收发机相同数量通道的数据。连接于各基地台的基地台控制部774经常监视各基地台的通信话务量,,根据话务量进行对各基地台的通道频率的分配和进行各基地台的接收单元尺寸控制等总体系统的控制。
如图117的先有方式通信容量话务分布图所示的那样,QPSK等先有方式的数字通信方式接收单元768、770的Ach的传送容量为把d=A的图所示频率利用率2比特/Hz的数据774d、774b与d=B的图所示数据774c组合起来的数据774d,在每个地点都是同样的2比特/HZ频率利用率。另一方面,实际的都市密集地775a、775b、775c那样高楼集中的地方人口密度大,通话的话务量也像数据774e所示那样呈现峰值。其周围以外的地区通话量少。对于实际的话务量TF的数据774e,先有的单元电话的容量如数据774d所示在整个区域是相同的2比特/HZ的频率效率。即,存在着通话量少的地区也和通话量多的地区使用相同的频率这种效率差的问题。先有的方式在话务量多的地区相应采用增多频率分配、增加通道数或减少接收单元的面积。然而,增加通道数有频谱的限制。另外,先有方式的16QAM、64QAM等的多值化使发送电功率增加。减小接收单元的大小,增加单元数等,导致基地台数量增加,使设施成本增加。
理想的办法是,在话务量多的地区提高频率效率,在话务量少的地区降低可以提高系统总体的效率。通过采用本发明的分级型传送方式就能实现上述要求。下面,用图118的本发明实施例8中通信容量、话务量分布图进行说明。图118的分布图从上至下顺序示出了接收单元770B、768、769、770、770a的A-A’线上的通信容量。接收单元768、770,通道群A接收单元770b、769、770a利用与通道群A不重复的通道群B的频率。这些通道对应各接收单元的话务量,由图116的基地台控制器774自动地减少通道数。118示出了d=A时A通道的通信容量分布,d=B时,B通道的通信容量、d=A+B时全部通道加在一起的通信容量,通信话务量TF、建筑和人口的人布P。接收单元768、769、770由于应用了前面的实施例中所说明的SRQAM等多级的分级传送方式,故像数据776a、776b、776c所示那样,在基地台周围部能够得到QPSK频率利用率2比特/Hz的3倍即6比特/HZ的利用率。随着向周围靠近减少为4 比特/Hz、2比特/Hz。不增加发送功率,就如点线777a、b、c所示,和QPSK接收单元的尺寸相比,2比特/Hz的区域变得狭窄,但通过提高若干基地台的发送功率,能够得到同样的接收单元的大小。对应64SRQAM的子局在距基地台较远的地方,用把SRQAM的移动量定为S=1的变形QPSK收发,在较近的地方以16SRQAM,在更近的地方以64SRQAM收发。从而与QPSK相比,没有增加最大发送功率。还有,把电路简化了的图121的框图所示的4SRQAM收发机也能够保持互换性,和其它电话通话。图122的框图所示的16SRQAM的情况,也是同样的。因此,存在3种调制方式的子机。对于携带电话的情况,小型轻量性是重要的。对于4SRQAM的情况,频率利用率下降,故通话费用高,但因电路简单,满足小型轻量化的要求,适合于使用者。这样,本方式就能对应范围广泛的用途。
像以上那样,能够建立具有图118的d=A+B那样容量不同分布的传送系统。通过把TF的话务量加在一起设置基地台,就能提高综合频率利用效率。特别是单元小的小型单元方式,能够设置很多的子基地台,又能容易在话务量多的地方设置子基地台,故本发明的效果高。
下面,用图119的数据时间配置图说明各时间段的数据配置。图119(a)示出先有方式的时间段,图119(b)示出实施例8的时间段。图119(a)所示的先有方式的收发不同的频率方式在Down侧,即从基地台向子台发送时以频率A用时间段780a发送同步信号S,用时间段780b、780c、780d向各个A、B、C通道送去发送信号。其次在Up侧,即从子机向基地台发送时,以频率B把各个同步信号、a、b、c通道的信号送到时间段781a、781b、781c、781d。
本发明的情况,如图119(b)所示由于应用了前述的64SRQAM等分级型传送方式,故具有D1、D2、D3各2比特/Hz的3个分级数据。A1、A2数据由于用16SRQAM发送,故如时间段782b、782c和783b、783c所示的那样,大约为2倍的数据率。以同一音质发送时,能用一半的时间发送。因此,时间段782b、782c为一半的时间。这样就能在图118的776c的第2分级区域即基地台的近旁得到2倍的传送容量。同样地,在时间段782g、783g能以64SRQAM进行E1数据的收发。由于具有约3倍的传送容量,故在同一个时间段能够确保3倍的E1、E2、E3这3个通道。这样,用同一个频带便能得到最大约3倍的通话。然而,这时,在基地台附近进行这样的通话时,实际比这个数字低。还有,实际的传送效率将下降到90%。为提高本发明的效果,希望话务量的区域分布和本发明的传送容量分布一致。而像图118的TF图所示,在实际的都市以楼房街为中心周围配置着绿地带。在郊外也在住宅地的周围配置着田地和森林,是按接近TF图的分布,因此,应用本发明的效果很高。
图120是TDM方式的时间图,(a)示出先有方式,(b)示出本发明的方式。如图120(a)所示,以同一频带用时间段786a、786b进行向各A、B通道的子机发送,用时间段787a、787b进行来自各A、B通道子机的接收。如图120(b)所示,本发明,对于16SRQAM用时间段788a进行A1通道的接收,用时间段778c进行A1通道的发送。时间段的宽度约为1/2。对于64SRQAM,用时间段788i进行D1通道的接收,用时间段7881进行D1通道的发送。时间段的宽度约为1/3。
特别是,为降低消耗电功率,在时间段778p以1/2的时间段进行16SRQAM的E1的接收,而发送用时间段788r以通常的时间段4SRQAM进行。因此,4SRQAM比16SRQAM消耗电功率少,故可减少发送时的电功率消耗。然而,占有时间长,通话费用高。对于蓄电池较小的小型轻量型携带电话和蓄电池剩余容量少时,效果较高。
如上所述,因能够把实际的话务量分布加起来设定传送容量分布,故能提高实质的传送容量。另外,由于基地台、子局能够选择3个或2个传送容量,故能够自由度较高地降低频率效率、降低电功率消耗或提高效率降低通话费用。另外,利用低传送容量4SRQAM等方式简化电路,还能够设定小型、低成本的子机。这时,如上述实施例所说明的,能取得所有机种间的传送互换性,这是本发明的特征之一。这样,在增大传送容量的同时,能够谋求从超小型机到高功能机范围广泛的机种。
实施例9下面根据图面说明第9实施例。实施例9是把本发明用于OFDM传送方式的例子。给出了图123的OFDM收发机的框图和图124OFDM的动作原理图。FDM种类之一的OFDM通过使相邻的载波正交,比一般的FDM频带的利用率好。另外,由于抗重影等多通道干扰能力强,故正在研究用于数字音乐广播和数字TV广播。如图124OFDM的原理图所示,对于OFDM,用串/并变换部791在频率轴793上把输入信号以1/ts的数据间隔配置。作成子通道794a-e。把这个信号在拥有逆FFT器40的调制器中向时间轴799做逆FFT变换,制作发送信号795。在ts有效记号(symbol)期间中的796期间发送这个被逆FFT变换的信号,在各记号之间设置了tg保护期间797。
下面用图123的OFDM-CCDM混合方式的框图说明收发HDTV信号时实施例9的动作。被输入的HDTV信号由图象译码器401分离为低频D1-1、中-低频D1-2和高-中-低频D23级的分级结构的图象信号,输入到输入部742。在第1数据串输入部743,D1-1信号被进行代码级高的ECC编码,D1-2信号进行通常的代码级ECC符号化。D1-1和D1-2由TDM部743进行时间分割多路化,生成D1信号,输入到调制器852a的D1串/并转换器791a。D1信号为n个并行数据,输入到n个C-CDM调制器4a、4b…的第一输入部。
另一方面,高频成分信号的D2在输入部742第2数据串输入部744内的ECC部744a中进行ECC(Error Correction Code)符号化,在格状编码器744b中格状符号化,输入到调制器852a的D2串/并转换器791b,形成n个并行数据,输入到C-CDM调制器4a、4b…的第2输入部中。由第1输入部的D1数据串和第2输入部的D2数据在各个C-CDM调制器4a、4b、4c…中C-CDM调制为16SRQAM等。这n个C-CDM调制器具有各不相同频率的载波,同时,相邻的载波如图124的794a、794b、794c所示正交并位于频率轴793上。这样,被C-CDM调制的n个调制信号由逆FFT电路40从频率轴范围(dimension)映像到时间轴范围,形成ts的有效符号长度的时间信号796a、796b等。有效符号时间带796a和796b之间为减少多通道干扰设立了Tg秒的保护时间带797a。把这些用时间轴和信号电平表现出来就是图129的时间-信号电平图,保护时间带797a的Tg从多通道的影响时间根据用途来决定。通过把Tg设定为长于TV重象等多通道的影响时间,接收时,来自逆FFT电路40的调制信号由并/串转换器形成1个信号,经发送部5形成RF信号输出发送。
其次,说明接收机43的动作,表示在图124的时间轴符号信号796e上。接收信号输入到图123的输入部24,再输入到调制部852b被数字化,由FFT部40a展开为付立叶系数,从图124所示的时间轴779映射到频率轴793a上。从图124的时间轴符号信号变换为频率轴的信号的载波794a、794b等。由于这些载波相互正交,故能够分离成各个调制信号。图125(b)所示的16SRQAM等被解调,送入到各个C-CDM解调器45a、45b中。而且在C-CDM解调器45的各个C-CDM解调部45a、b中被解调成分级型,D1、D2的子信号被解调,由D1并/串转换器852a和D2并/串转换器852b,形成串行信号,解调出原始的D1、D2信号。这时,由于使用了应用图125(b)所示的C-CDM的分级传送方式,因而在C/N值恶劣的接收条件下仅能解调D1信号,在较好的条件下解调D1和D2信号。解调出的D1信号在输出部757中再次被解调。与D1-2信号相比,D1-1信号误码校正的代码级高,故D1-1信号的误码信号在相当恶劣的接收条件下也能再生。D1-1信号由第1-1图象译码器402C形成LDTV的低频信号,D1-2信号由第1-2图象译码器402d形成EDTV的中频成分而输出。
D2信号被格状解调,由第2图象译码器402b形成HDTV的高频成分输出。上述的低频信号仅输出LDTV信号,通过加上上述的中频成分输出宽带NTSC等级的EDTV信号,进而通过再加入上述高频成分合成出HDTV信号。和前面的实施例相同,能够接收与接收C/N对应的画面质量的TV信号。实施例9,通过把OFDM和C-CDM组合使用,能够实现OFDM不能实现的分级传送。
OFDM为了确实地在保护期间Tg中吸收多通道干扰信号,因而抗TV重像等多通道干扰能力强。从而,能够用于汽车的TV接收机的数字TV广播。然而,由于不是分级型传送,故在某个一定的C/N临界值以下就不能接收。通过和本发明的C-CDM组合,便能实现抗多通道干扰强又能接收适于C/N恶化的图象(GraditionalDegradation)。在汽车内进行TV接收时,不仅有多通道干扰,而且C/N值也恶化。在此,仅是多通道干扰的对策不能扩大TV广播台的服务范围。然而通过和分级型传送的C-CDM组合,即使C/N相当恶化也能够以LDTV等级接收。另一方面,对于汽车用TV的情况,画面尺寸通常是10英寸以下,故用LDTV等级能得到充分的画面,从而可以大幅度扩大汽车TV的LDTV等级的服务范围。把OFDM用于HDTV的整个频带,用现时的半导体技术就要加大DSP的电路规模。因此,示出了用OFDM仅传送低频TV信号的方法。如图138的框图所示那样,把HDTV的中频成分和高频成分的D1-2和D2这2个信号进行本发明的C-CDM多路化,由FDM40以频带A发送。另一方面接收机侧接收到的信号由FDM4 0e分离频率,用本发明的C-CDM解调器4b解调,和图123一样再生HDTV的中频成分和高频成分。这时的图象译码器的动作和实施例1、2、3的相同,故省略。
其次,HDTV的MPEG1等级的低频信号D1-1由串/并转换器791形成并行信号,在OFDM变换器852c中受QPSK和16QAM的调制,由逆FFT器40变换为时间轴的信号,由FDM40d以频带BB发送。
另一方面,接收机43接收到的信号在FDM部40e中被频分,在OFDM解调部852d中由FFT40a形成许多频率轴信号,由各个解调器45a、45b等解调,由并/串转换器852a解调D1-1信号,和图123一样,从接收机输出LDTV等级的D1-1信号。
这样,只是LDTV信号实现了OFDM的分级传送。通过用图138的方法,OFDM的复杂电路可以仅是LDTV信号。和HDTV信号相比,LDTV信号是1/20的比特率,因此OFDM的电路规模为1/20,大幅度地缩小的整体电路规模。
OFDM是抗多通道干扰能力强的传送方式,在携带电视、汽车电视接收时,以及汽车的数字式音乐发送接收时的移动台,以多通道干扰大且变动的用途为主要目的加以应用。在这样的用途中,从4英寸到8英寸的10英寸以下的小画面尺寸是主流。因此,OFDM调制HDTV和EDTV等高分辨率的全部TV信号的方式,花费的费用较高,对于汽车TV的情况以LDTV等级的TV信号接收就足够了。另一方面,家庭用TV那样的固定台,多通道干扰经常是一定的,故易于采取多通道干扰对策。因而,在强重像地区以外,OFDM的效果不高。在HDTV的中高频成分使用OFDM,由于OFDM电路规模大,故不是上策。因此,仅把本发明的示于图138的OFDM用于低频TV信号的方法,具有这样的效果,即在汽车等移动台中,既没有失去大幅度减轻接收到的LDTV的多通道干扰的OFDM的效果,又能大幅度地把OFDM的电路规模削减到1/10。
还有,在图138中,虽然仅对D1-1进行了OFDM解调,但是,也能够对D1-1和D1-2进行OFDM解调。这时,由于D1-1和D1-2能够进行C-CDM2分级传送,在汽车等移动体中也能实现抗多通道干扰强的分级型传送,在移动体中可以产生LDTV和SDTV能接收与接收电平和天线灵敏度画面质量的图象对应的所谓“逐渐变化的分级”(Gradational Graduation)的效果。
这样,就能进行本发明的分级传送,从而,能够得到前述种种效果。对于OFTDM的情况,特别是由于抗多通道干扰能力强,故通过和本发明的分级传送相组合,能够得到抗多通道干扰能力强而且能够得到与接收电平的恶化对应的数据传送等级降低的效果。
本发明的分级型传送方式的特征之一,是频率的利用率提高了,当然对于一部分接收机,电功率的利用率会相当降低。因此,不能够适用于全部通信系统。例如,若是特定接收者间的卫星通信系统,经济性最高的方法是换成那个时期能得到的最高频率利用率和最高电力利用率的机器。这时没有一定使用本发明的必要。
然而,在卫星广播方式和地面广播方式的场合,本发明的分级型传送方式是必要的。因为卫星广播的规格要求有50年以上的持久性。这个期间,虽然广播规格没有变更,但是伴随技术革新卫星的发送电功率会飞速地提高。播放台必须进行无论是数十年后的将来还是现时所制造出的接收机都能视听TV节目的具有互换性的广播。应用本发明,可使现存的NTSC广播和HDTV广播具有互换性,同时,也可使将来的信息传送量具有扩充性。
本发明对频率效率比电功率效率更重视。但在接收机方面,通过设定根据各传送阶段设置了设计接收灵敏度的几种接收机,没有必要过份增加发送机的电功率。另外,在将来发送功率增大时,由于也能够用同一规格传送,故能够得到将来的扩充性、新旧接收机间的互换性。如以上所述,本发明用于卫星广播规则时能得到显著的效果。
还有,把本发明的分级型传送方式用于地面广播时,完全没有必要考虑电功率利用效率,故比卫星广播容易实施本发明。如前述那样,可以使先前的数字HDTV广播方式中所存在的服务范围内不能接收的区域大幅度减少,可使前述的NTSC和HDTV接收机或电视机具有兼容性。另外,实质上也扩大了TV节目的广告的服务范围。另外,虽然实施例以应用QPSK、16QAM和32QAM调制方式的例子进行了说明,但是也能够适用于64QAM、128QAM和256QAM等等。当然也能适用于如用图说明的多值PSK、ASK和FSK。上面,说明了把本发明和TDM组合传送的实施例,但是,也能够把FDM、CDMA和扩散通信方式进行组合传送。
权利要求
1.一种信号传输装置,用于发射第一数据流和第二数据流,所述信号传输装置包括调制器,用于将所述第一数据流和所述第二数据流中每一个分配给向量空间图中相应星座,以生成调制信号,其中所述第一数据流的星座的信号点数量不同于所述第二数据流的星座的信号点数量;快速傅立叶反变化器(IFFT),用于根据正交频分复用将所述调制信号转换为具有有效符号部分和保护间隔的IFFT转换信号;以及发射器,用于发射所述IFFT转换信号;其中所述第一数据流具有表示所述保护间隔的间隔数据。
全文摘要
一种由发送机发送信号、由接收机传送图象的通信系统,其发送机具有输入装置、图象压缩装置、误码校正编码器、调制器和发送装置;其接收机具有接收装置、解调器、误码校正装置、图象扩展部以及输出装置。其发送侧把输入信号分割为第一和第二数据流(低、高频带成分),而接收侧可根据其能力将接收信号重建低、高频带成分或只重建低频带成分。此外,将基于OFDM系统的通信系统用于数据通信的多个子通道。
文档编号H04N7/24GK1913407SQ20061010142
公开日2007年2月14日 申请日期1994年3月25日 优先权日1993年3月25日
发明者大嶋光昭 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1