摄像装置及滤光器的制造方法

文档序号:7992022阅读:321来源:国知局
摄像装置及滤光器的制造方法
【专利摘要】本发明涉及能够同时检测红外光(或紫外光)和可见光的摄像装置及设置有该摄像装置的滤光器。摄像装置1A包括透镜系统20和摄像单元10,穿过所述透镜系统20的光入射到所述摄像单元10上,其中,所述摄像单元10包括多个第一摄像元件11和多个第二摄像元件12,所述第一摄像元件11用于接收第一波段中的光,且所述第二摄像元件12用于接收与所述第一波段不同的第二波段中的光,且其中所述透镜系统20或摄像单元10设置有光学元件30A,使得具有比所述第二波段中的光的光通量小的光通量的所述第一波段中的光到达所述摄像单元。
【专利说明】摄像装置及滤光器
【技术领域】
[0001 ] 本发明涉及摄像装置及滤光器。
【背景技术】
[0002]诸如(XD图像传感器和CMOS图像传感器等单板式(single-plate)彩色固态摄像装置具有由光电转换元件和彩色滤光器构成的摄像元件,彩色滤光器布置在光电转换元件上方并用于使红色、绿色或蓝色穿过。为了获得关于彩色视频图像的信息,穿过彩色滤光器并被光电转换元件接收的可见光被光电转换元件作为信号输出。另一方面,近年来,已开发出用于检测除可见光之外的成分即红外光的单板式彩色固态摄像装置(例如,参见日本专利文献JP2008-091753A)。目前正在关注不能仅通过检测可见光就能实现的新应用。更具体地,例如,同时检测可见光和红外光,且基于所检测到的红外光的信息来提高灵敏度或减轻泄露到用于检测可见光的光电转换元件中的红外光的影响,或者通过检测该红外光来检测人的移动。
[0003]引用文献列表
[0004]专利文献
[0005]专利文献I JP2OO8-O9I753A
[0006]专利文献2:JP4-110803A
[0007]专利文献3 JP61-OlM9IA

【发明内容】

[0008]本发明所要解决的问题
[0009]然而,如图8所示,在普通摄像装置中,由于用于构成光电转换元件的材料的特性的原因,用于检测红外光的光电转换元件的灵敏度低于用于检测可见光的光电转换元件的灵敏度。在图8中,横轴表示入射到光电转换元件上的光的波长,且纵轴表示光电转换元件的光学灵敏度。因此,当要充分地检测红外光时,存在着用于检测可见光的光电转换元件饱和且图像质量下降的问题。在上述JP2008-091753A中,用于检测红外光的光电转换元件的构造和结构被设置成不同于用于检测可见光的光电转换元件的构造和结构,使得用于红外光的光电转换元件的灵敏度得到提高。在JP2008-091753A中提出的光电转换元件的构造和结构能够有效地使用于检测可见光的光电转换元件的灵敏度与用于检测红外光的光电转换元件的灵敏度相同。然而,从摄像装置的制造工艺的角度来看,用于检测红外光的光电转换元件的构造和结构与用于检测可见光的光电转换元件的构造和结构最好是相同的。
[0010]例如,如JP4-110803A所述,使红外光穿过而不使可见光穿过的滤光器是众所周知的,但当将这类滤光器安装到摄像装置时,光电转换元件不能检测可见光。例如,如JP61-015491A所述,用于向光电转换元件引入比红色光和绿色光更多的蓝色光的光谱/滤光器装置是众所周知的。即使当将这类光谱/滤光器装置安装到具有用于检测可见光和红外光的光电转换元件的摄像装置时,这些光电转换元件不能够以相同等级的灵敏度来检测可见光和红外光。应当注意的是,对于紫外光和可见光之间的关系,也存在与上述问题相同的问题。更具体地,存在着不能够以相同等级的灵敏度来检测紫外光和可见光的问题。
[0011]因此,本发明的目的在于提供一种能够以相同的方式检测红外光(或紫外光)和可见光的摄像装置以及提供一种适用于这类摄像装置的滤光器。
[0012]问题的解决方案
[0013]根据本发明的用于实现上述目的的摄像装置包括透镜系统和摄像单元,穿过所述透镜系统的光入射到所述摄像单元上,其中,所述摄像单元包括多个第一摄像元件和多个第二摄像元件,所述第一摄像元件用于接收第一波段中的光,且第二摄像元件用于接收与所述第一波段不同的第二波段中的光,且光学元件被设置成使得具有比所述第二波段中的光的光通量小的光通量的所述第一波段中的光到达所述摄像单元。
[0014]根据本发明的模式I的用于实现上述目的的滤光器包括具有圆形或正多边形的外形的第一区域和具有环绕所述第一区域的环形的第二区域,其中,所述第一区域使第一波段中的光和与所述第一波段不同的第二波段中的光穿过,且在所述第二区域中,所述第一波段中的光透射率低于所述第二波段中的光透射率。
[0015]根据本发明的模式2的用于实现上述目的的滤光器使所述第一波段中的光和与所述第一波段不同的所述第二波段中的光穿过,且所述第一波段中的光透射率低于所述第二波段中的光透射率。
[0016]本发明的效果
[0017]根据本发明的摄像装置设置有光学器件,使得具有比所述第二波段中的光的光通量小的光通量的所述第一波段中的光。依照根据本发明的模式I的滤光器,在所述第二区域中,所述第一波段中的光的光通量小于所述第二波段中的光的光通量。此外,在根据本发明模式2的滤光器中,所述第一波段中的光的光通量小于所述第二波段中的光的光通量。因此,对于整个光学元件,或对于整个滤光器,到达所述摄像单元的所述第二波段中的光较多,且到达所述摄像单元的所述第一波段中的光较少。因此,所述摄像单元能够以相同等级的灵敏度检测所述第一波段中的光和所述第二波段中的光。应当注意的是,摄像单元通常设置有用于截止具有不期望波长的红外光的红外截止(IR-CUt)滤光器,但是根据本发明模式2的滤光器,能够按照构造、结构和布置来替换红外截止滤光器,且在此情况下,不需要极大地改变摄像装置的设计或极大地改变摄像装置的制造步骤。
【专利附图】

【附图说明】
[0018]图1(A)和图1(B)分别是示出了根据示例I的摄像装置的示意图和示出了根据示例I的滤光器的示意截面图,且图1C是示出了根据示例2的滤光器的示意截面图。
[0019]图2(A)和图2(B)分别是示意性地示出了根据示例I的摄像装置的摄像单元中的摄像元件的布置的图和示出了第一摄像元件的部分示意截面图。
[0020]图3(A)和图3(B)分别是示出了用于说明根据示例3的摄像装置的概念图的示意图和示出了根据示例3的滤光器的示意截面图。
[0021]图4 (A)、图4 (B)和图4 (C)分别是示出了根据示例5的摄像装置的示意图、示出了根据示例5的滤光器的示意截面图和根据示例5的滤光器的示意正视图,且图4(D)是示出了根据示例6的滤光器的示意截面图。[0022]图5是示出了根据示例8的摄像装置的示意图。
[0023]图6 (A)、图6 (B)和6 (C)分别示意性地示出了根据示例I的滤光器的光透射率、红外截止滤光器的光透射率以及红外截止滤光器与根据示例I的滤光器的组合的光透射率。
[0024]图7 (A)、图7 (B)和图7 (C)分别示意性地示出了根据示例4的滤光器的光透射率、紫外截止(UV-cut)滤光器的光透射率以及紫外截止滤光器与根据图4的滤光器的组合的光透射率。
[0025]图8是表明用于检测红外光的光电转换元件的灵敏度低于用于检测可见光的光电转换元件的灵敏度的示意图。
【具体实施方式】
[0026]在下文中,将参考附图并基于示例对本发明进行说明,但是本发明不限于这些示例。数值和材料在这些示例中仅仅是示例。将按照下列顺序进行说明。
[0027]1.根据本发明的摄像装置以及根据本发明的模式I和模式2的滤光器的整体说明
[0028]2.示例I (根据本发明的摄像装置和根据本发明的模式I的滤光器)
[0029]3.示例2 (示例I的变形例)
[0030]4.示例3 (示例I的另一变形例)
[0031]5.示例4(示例I的又一变形例)
[0032]6.示例5 (根据本发明的摄像装置和根据本发明的模式2的滤光器)
[0033]7.示例6 (示例5的变形例)
[0034]8.示例7 (示例5的另一变形例)
[0035]9.示例8 (示例I至示例7的变形例)
[0036]10.示例9 (示例I至示例8的变形例),以及其它
[0037]根据本发明的摄像装置以及根据本发明的模式I和模式2的滤光器的整体说明
[0038]在根据本发明的摄像装置中的光学元件由滤光器构成的时,或者在根据本发明的模式I或模式2的滤光器的情况下,滤光器可由滤光器基材和形成在滤光器基材上的滤光器材料层构成,或者滤光器材料可以例如被揉和到或者分散在滤光器基材中。在前者的情况下,“滤光器的材料”是指用于构成滤光器材料层的材料(滤光器材料)。在后者的情况下,“滤光器的材料”是指被揉和到或者被分散在滤光器基材中的材料(滤光器材料)。或者,滤光器可由滤光器基材和形成在滤光器基材上的滤光器结构层(例如,电介质多层膜)构成。
[0039]在根据本发明的摄像装置中,第一波段中的峰值波长可被配置成短于第二波段中的峰值波长。或者,第一波段中的峰值波长可被配置成长于第二波段中的峰值波长。在前者的情况下,第一波段对应于可见光波段,且第二波段对应于红外光波段。另一方面,在后者的情况下,第一波段对应于可见光波段,且第二波段对应于紫外光波段。
[0040]在根据本发明的摄像装置的这些优选方式中,光学元件可由滤光器形成,且在滤光器中,第一波段中的光的光透射率可被配置成低于第二波段中的光的光透射率。应当注意的是,在适当地选择用于构成滤光器的材料时,即当滤光器由用于使第一波段中的光的光透射率小于第二波段中的光的光透射率的材料构成时,第一波段中的光的光透射率能够被配置成低于第二波段中的光的光透射率。应当注意的是,为方便起见,在某些情况下可将这类构造的摄像装置称为“根据本发明的摄像装置A-1”。或者,滤光器可由电介质多层膜构成,使得第一波段中的光的光透射率能够被配置成低于第二波段中的光的光透射率。应当注意的是,为方便起见,可将这类构造的摄像装置称为“根据本发明的摄像装置A-2”。在根据本发明的摄像装置A-2中,它可以是用于截止第二波段中的不期望波长的光的滤光器。为方便起见,可将根据本发明的摄像装置A-1和根据本发明的摄像装置A-2统称为“根据本发明的摄像装置A”。
[0041]在根据本发明的模式2的滤光器中,第一波段中的光的光透射率低于第二波段中的光的光透射率,但是根据本发明的模式2的滤光器还具有如下形式:在适当地选择用于构成滤光器的材料时,即当滤光器由用于使第一波段中的光的光透射率低于第二波段中的光的光透射率的材料构成时,第一波段中的光的光透射率能够被配置成低于第二波段中的光的光透射率。为方便起见,在某些情况下可将具有这类构造的滤光器称为“根据本发明的模式2-1的滤光器”。或者,滤光器可由电介质多层膜构成,使得第一波段中的光的光透射率能够被配置成低于第二波段中的光的光透射率。应当注意的是,为方便起见,可将具有这类构造的滤光器称为“根据本发明的模式2-2的滤光器”。在根据本发明的模式2-2的滤光器中,它可以是用于截止第二波段中的不期望波长的光的滤光器。
[0042]在此情况下,在根据本发明的摄像装置A或根据本发明的模式2的滤光器中,第一波段中的400nm以上且小于650nm的波长的平均光透射率可大于0%且为80%以下,且第二波段中的平均光透射率可为80%以上。例如,第二波段中的波长为650nm至1200nm,或小于400nm。在包括这类优选构造的根据本发明的摄像装置A-1或根据本发明的模式2_1的滤光器中,滤光器可通过堆叠用于传输红色的红色透射层和用于传输蓝色的蓝色透射层来形成。应当注意的是,在此情况下,滤光器具有类洋红色(magenta)的光谱特性。或者,滤光器可通过堆叠用于传输红色的红色透射层、用于传输绿色的绿色透射层和用于传输蓝色的蓝色透射层来形成。更具体地,红色透射层可由与设置在用于构成摄像装置的光电转换元件上方并用于传输红色的彩色滤光器相同的材料(红色滤光器材料)构成,且绿色透射层可由与设置在用于构成摄像装置的光电转换元件上方并用于传输绿色的彩色滤光器相同的材料(绿色滤光器材料)构成,且蓝色透射层可由与设置在用于构成摄像装置的光电转换元件上方并用于传输蓝色的彩色滤光器相同的材料(蓝色滤光器材料)构成。在具有通过堆叠红色透射层和绿色透射层形成的结构或者通过堆叠红色透射层、绿色透射层和蓝色透射层形成的结构的滤光器中,能够通过适当地选择红色透射层、绿色透射层和蓝色透射层的材料(彩色滤光器材料)和层厚度来实现使第一波段中的光的光透射率低于第二波段中的光的光透射率的滤光器。在具有这类构造的滤光器中,红色透射层、绿色透射层和蓝色透射层不是由通过堆叠薄膜而制成的多层膜干涉滤光器(mult1-layer film interferencefilter)构成的,且因此能够减轻对光入射到滤光器上的入射角的依赖。其上形成有堆叠层结构(包括红色透射层、绿色透射层和蓝色透射层)的滤光器基材的构成材料包括光学玻璃和透明树脂。或者,滤光器可以由使滤光器基材还充当滤光器材料的材料构成。或者,在具有上述优选构造的根据本发明的摄像装置A-1或根据本发明的模式2-1的滤光器中,滤光器可由夹在两个透明电极或石墨烯电极之间的电致变色材料层(electrochromicmaterial layer)构成。或者,滤光器可由夹在两个透明电极或石墨烯电极之间的液晶材料层构成。在这类构造的情况下,能够通过控制施加至电极的电压来控制穿过电致变色材料层或液晶材料层的光的光透射率。或者,在具有上述优选构造的根据本发明的摄像装置A-2或根据本发明的模式2-2的滤光器中,如先前所说明的滤光器可由电介质多层膜构成。在此情况下,高折射率材料的示例包括Ti02、Ta2O5, Nb2O5和Si3N4等,且低折射率材料的示例包括SiO2和MgF2等。
[0043]另外,在具有上述各种优选构造的根据本发明的摄像装置A-1或根据本发明的模式2-1的滤光器中,滤光器可被安装到透镜系统的前表面部分。滤光器可基于诸如与透镜筒的前表面部分螺丝接合(screwing)等众所周知的方法安装到透镜系统的前表面部分。然而,滤光器与透镜系统的安装不限于这些方法。或者,滤光器可布置成与设置在透镜系统中的光圈(diaphragm)单元相邻。在这类情况下,在摄像单元中,优选地布置有用于截止具有不期望波长的红外光的红外截止滤光器。另一方面,具有上面所说明的各种优选构造的根据本发明的摄像装置A-2或根据本发明的模式2-2的滤光器可布置在透镜系统的任何部分中。例如,具有上面所说明的各种优选构造的根据本发明的摄像装置A-2或根据本发明的模式2-2的滤光器可安装到透镜系统的前表面部分或布置成与设置在透镜系统中的光圈单元相邻,或者当滤光器由用于截止具有不期望波长的红外光的电介质多层膜构成,且此外滤光器布置在摄像装置中时,不需要用于截止具有不期望波长的红外光的常规红外截止滤光器。
[0044]或者,在上述优选方式中,光学元件可由滤光器制成,且滤光器可包括具有诸如圆形和正多边形等外形的第一区域和具有环绕第一区域的环形的第二区域,其中,第一区域使第一波段和第二波段中的光穿过,且在第二区域中,第一波段中的光的光透射率可被配置成低于第二波段中的光的光透射率。应当注意的是,为方便起见,将如上所述地配置的摄像装置称为“根据本发明的摄像装置B”。
[0045]在根据本发明的摄像装置B或根据本发明的模式I的滤光器中,第一波段中的光的光透射率可被配置成从第二区域的位于第一区域和第二区域之间边界处的部分至第二区域的外周逐渐减小。在这类构造中,能够减轻光在第一区域和第二区域之间的边界处的衍射,且能够防止透镜系统的第一波段中的调制传递函数(Modulation TransferFunction, MTF)的下降。应当注意的是,能够例如通过高斯函数(Gaussian function)来表示第一波段中的光透射率的逐渐减小。
[0046]在具有上述优选构造的根据本发明的摄像装置B或根据本发明的模式I的滤光器中,滤光器可由变迹(apodization)滤光器构成。应当注意的是,变迹滤光器的构造可以是众所周知的构造。或者,变迹滤光器可以是如下构造:第二区域是通过堆叠用于传输红色的红色透射层和用于传输蓝色的蓝色透射层而形成的,且红色透射层的厚度和蓝色透射层的厚度从第二区域的位于第一区域和第二区域之间边界处的部分至第二区域的外周逐渐变厚。或者,变迹滤光器可以是如下构造:第二区域是通过堆叠用于传输红色的红色透射层、用于传输绿色的绿色透射层和用于传输蓝色的蓝色透射层而形成的,且红色透射层的厚度、绿色透射层的厚度和蓝色透射层的厚度从第二区域的位于第一区域和第二区域之间边界处的部分至第二区域的外周逐渐变厚。更具体地,红色透射层、绿色透射层和蓝色透射层可由上面所说明的彩色滤光器材料构成,且用于构成滤光器基材的材料可由上面所说明的材料构成。
[0047]此外,在具有上述优选构造的根据本发明的摄像装置B或根据本发明的模式I的滤光器中,第一区域的大小可被配置成是可变的。为了使第一区域的大小是可变的,例如,滤光器可具有与所谓的光圈叶片(diaphragm blade)相同的结构,且在此情况下,用于构成滤光器的光圈叶片可例如由上面所说明的用于构成滤光器基材的材料制造。应当注意的是,滤光器材料层可形成在用于构成滤光器的光圈叶片的一个表面上。或者,滤光器可以由使滤光器基材还充当滤光器材料的材料构成。此外,当滤光器具有第一区域的大小是可变的这类构造时,能够在第一波段中加深视野深度(depth of field) o或者,在根据本发明的摄像装置B或根据本发明的模式I的滤光器中,滤光器可由夹在两个透明电极或石墨烯电极之间的电致变色材料层构成或可由夹在两个透明电极或石墨烯电极之间的液晶材料层构成,且在这类构造中,能够控制穿过电致变色材料层或液晶材料层的光的光透射率。或者,在根据本发明的摄像装置B或根据本发明的模式I的滤光器中,滤光器能够以与上述方式相同的方式由电介质多层膜构成。
[0048]此外,在具有上述优选构造的根据本发明的摄像装置B或根据本发明的模式I的滤光器中,滤光器可布置成与设置在透镜系统中的光圈单元相邻。在此情况下,可将用于截止具有不期望波长的红外线的红外截止滤光器优选地布置在摄像单元中。
[0049]另外,在包括上面所说明的优选构造的根据本发明的摄像装置B或根据本发明的摄像装置A中,滤光器可以布置成可以从透镜系统拆卸。在此情况下,为了将滤光器布置成可以从透镜系统拆卸,例如,可使用如下构造和结构:可将在透镜系统中既具有滤光器又具有开口(aperture)的元件安装到旋转轴使得它能够绕着平行于透镜系统的光轴的旋转轴旋转,从而该元件绕着旋转轴旋转,由此穿过透镜系统的光线穿过孔或穿过滤光器。或者,可使用如下构造和结构:在透镜系统中,例如,将既具有滤光器又具有开口的元件安装到透镜系统使得它能够沿垂直于透镜系统的光轴的方向自由地滑动,从而该元件进行滑动,由此穿过透镜系统的光线穿过孔或穿过滤光器。在此情况下,既具有滤光器又具有开口的元件可由一个元件构成或可由多个元件构成。可将红外光吸收滤光器设置在开口上。或者,当从透镜系统拆卸滤光器时,例如,必要时,可将红外光吸收滤光器以螺丝的方式接合至透镜筒的前表面部分,使得可以截止入射到摄像单元上的红外光。
[0050]此外,在包括根据本发明的摄像装置A或摄像装置B (其包括上面所说明的优选构造和方式)的根据本发明的摄像装置中,为了使用摄像装置获得彩色图像,第一摄像元件可具有由包括红色摄像元件、绿色摄像元件和蓝色摄像元件的摄像元件单元构成的方式,且在此情况下,一个像素可由一个摄像元件单元和一个第二摄像元件构成,即,一个像素可由四个摄像元件构成。应当注意的是,第二摄像元件由用于检测红外光的红外光摄像元件构成。或者,应当注意的是,第二摄像元件由用于检测紫外光的紫外光摄像元件构成。在一个像素由一个摄像元件单元和一个第二摄像元件构成的情况下,摄像元件的布置方式的示例包括拜耳(Bayer)布置。在此情况下,为方便起见,将由四个摄像元件构成的一个像素称为“红外光/紫外光光敏摄像元件单元”。为方便起见,将具有拜耳布置并由一个红色摄像元件、两个绿色摄像元件和一个蓝色摄像元件构成的像素称为“可见光光敏摄像元件单元”。摄像单元可由布置成二维矩阵形式的红外光/紫外光光敏摄像元件单元构成。或者,可采用如下构造:可布置一行红外光/紫外光光敏摄像元件单元,且可布置与此行相邻的方式布置一行或多行可见光光敏摄像元件单元。或者,可采用如下构造:可将红外光/紫外光光敏摄像元件单元布置成网格形式(平行十字架的形状),且可在剩余的区域中布置可见光光敏摄像元件单元。或者,可采用如下构造:可将红外光/紫外光光敏摄像元件单元布置在网格的交叉点上,且可在剩余的区域中布置可见光光敏摄像元件单元。摄像元件的布置的方式不限于拜耳布置。或者,摄像元件的布置的示例包括行间(interline)布置、G条纹RB交替(G stripe RB checkered)布置、G条纹RB完全交替(Gstripe RB complete checkered)布置、交替补色(checkered complementary color)布置、条纹(stripe)布置、斜条纹(diagonal stripe)布置、基色色差(primary color colordifference)布置、场色差顺序(field color difference sequential)布置、巾贞色差顺序(frame color difference sequential)布置、MOS型布置、改进MOS型布置、巾贞交错布置(frame interleave)布置和场交错(field interleave)布置等。
[0051 ] 或者,在包括根据本发明的摄像装置A或摄像装置B (其包括上面所说明的优选构造和方式)的根据本发明的摄像装置中,为了使用摄像装置获得黑/白(灰色)图像,一个像素可被配置成由一个摄像元件单元和一个第二摄像元件构成。
[0052]此外,在包括根据本发明的摄像装置A或摄像装置B (其包括上面所说明的优选构造和方式)的根据本发明的摄像装置中,摄像装置可进一步设置有用于发出第二波段中的光的照明装置,且在此情况下,照明装置发出的第二波段中的光可包括一个或多个峰值波长。在照明装置发出的第二波段中的光可包括多个峰值波长(例如,N个峰值波长)的情况下,用于构成照明装置的光源可以是N种类型的光源,例如是具有彼此不同的发光峰值波长的N种类型的LED。使照明装置发出光N次,且使用第二波段中的具有不同的峰值波长的光来执行N次摄像处理,或者虽然取决于滤光器的光透射率特性,但使照明装置发光一次,从而使N种类型的LED同时发光,且使用第二波段中的具有不同峰值波长的光执行一次摄像处理,使得第二摄像元件能够获得N种类型的图像数据,且能够通过对这N种类型的图像数据进行分析来获得各种信息。可根据光源对光学元件的第二波段中的光的光透射率进行优化。更具体地,根据N种类型的光源,可对光学元件中的第二波段中的光的光透射率进行优化,可对N种类型的光源的光的光透射率的比值进行优化,且可对光谱进行优化。多个光源可以全部都是发出红外光的光源,或多个光源可以全部都是发出紫外光的光源,或者以混合的方式包括用于发出红外光的光源和用于发出紫外光的光源这二者。应当注意的是,尽管取决于照明装置的发光强度,但使第一波段中的光的光透射率低于第二波段中的光的光透射率的光学元件可以是优选的,或者使第一波段中的光的光透射率高于第二波段中的光的光透射率的光学元件可以是优选的。可在使用照明装置的情况下和在不使用照明装置的情况下更换光学元件,或可视情况使用多个光学元件。
[0053]在根据本发明的摄像装置的滤光器中,使第一波段中的光到达摄像单元,且因此在滤光器处,第一波段中的光的光透射率的值大于0%。根据本发明的模式2的滤光器使第一波段中的光穿过,且因此,第一波段中的光的光透射率的值大于0%。
[0054]在根据本发明的摄像装置A或根据本发明模式2的滤光器中,将第一波段中的光的光折减系数(light reduction coefficient)定义为V,将第二摄像元件的灵敏度最大值定义为D2,且将在与第二摄像元件的灵敏度最大值D2相对应的光通量入射到第一摄像元件上时第一摄像元件的饱和度定义为X1 (单位:lux)。在此情况下,光折减系数V可被设定成满足V SX1ZlV当对于第一摄像元件的饱和电平X1,摄像装置的自动曝光机构的AE目标设定值是1/%时,AE目标设定值可被配置成(V/%)以下,且“V”的下限值取决于摄像装置的动态范围设定。
[0055]在根据本发明的摄像装置B或根据本发明的模式I的滤光器中,当第一区域的外形是正多边形时,正多边形的示例包括正五边形、正六边形、正七边形及正八边形。应当注意的是,正多边形包括准正多边形(quas1-regular polygonal shape)(即,具有由曲线构成的每条边的正多边形、具有圆形顶点的多边形)。此外,第二区域中的第一波段中光的光透射率低于第二区域中的第二波段中光的光透射率,但是第二区域中的第一波段中光的光透射率还包括0%。第一区域可由开口部构成。第二区域可由上面所说明的包括红色透射层和蓝色透射层的堆叠结构、包括红色透射层、绿色透射层和蓝色透射层的堆叠结构、电介质多层膜以及众所周知的用于截止可见光的市售滤光器材料构成。另外,当第二波段是红外光时,可将紫外截止滤光器布置在第二区域中,且当第二波段是紫外光时,可将红外截止滤光器布置在第二区域中。其上形成有第二区域的滤光器基材的构成材料包括上面所说明的那些材料,或者滤光器可以由使滤光器基材还充当滤光器材料的材料构成。
[0056]根据本发明的摄像装置可包括图像处理单元,且此图像处理单元可包括用于调节第一摄像元件的输出的第一增益调节单元和用于调节第二摄像元件的输出的第二增益调节单元。这能够容易地实现由第一摄像元件获得的图像和由第二摄像元件获得的图像的亮度调节。在此情况下,在第一增益调节单元对第一摄像元件的输出进行调节的调节系数是Gn1,且第二增益调节单元对第二摄像元件的输出进行调节的调节系数是Gn2的情况下,优选地满足Gn1Ain2≤I。(Gn1Ain2)的值可例如具体地为2、4、和8等。在此方式下,当到达第一摄像元件的第一波段中的光的光通量减小,且其与到达第二摄像元件的第二波段中的光的光通量的差发生极大变化时,这能够减小由第一摄像元件获得的图像和由第二摄像元件获得的图像之间的亮度差。在到达第一摄像元件的第一波段中的光的光通量减小时,根据其与到达第二摄像元件的第二波段中的光的光通量的差,能够自动地或手动地改变调节系数。例如,第一增益调节单元对红色摄像元件、绿色摄像元件和蓝色摄像元件的输出进行的调节可以是相同的,且在某些情况下,第一增益调节单元对红色摄像元件、绿色摄像元件和蓝色摄像元件的输出进行的调节可以是不同的。
`[0057]为了不使除第一波段中的光和第二波段中的光之外的光到达第一摄像元件和第二摄像元件,摄像单元以如下方式进行配置:为了防止出现光的颜色的混合并排除不期望的环境光等,可将用于截止除第一波段中的光和第二波段中的光之外的光的滤光器布置在透镜系统中,或必要时布置在第一摄像元件和第二摄像元件中。当第二波段是红外光时,可将紫外截止滤光器布置在透镜系统中,且当第二波段是紫外光时,可将红外截止滤光器布置在透镜系统中。或者,如上所述,可将用于截止具有不期望波长的红外光的红外截止滤光器布置在透镜系统或摄像单元中。可基于设置有用于构成摄像元件的光电转换元件的半导体基板或半导体层中的第一波段中的光和第二波段中的光之间的灵敏度的比值来确定第一波段中的光的光透射率和第二波段中的光的光透射率。例如,当第一摄像元件和第二摄像元件之间的灵敏度的比值是a:1时,光学元件中的第一波段中的光的光透射率和第二波段中的光的光透射率的比值可以是(l/a):l,但是比值不限于此比值。在透镜系统中设置有此光学元件的情况下,具有比第二波段中的光的光通量小的光通量的第一波段中的光到达摄像单元。换句话说,可以设定光学元件的光透射率并且/或者可以控制调节系数Gn1和Gn2,使得第一摄像元件的输出值大约与第二摄像元件的输出值相等(更具体地,虽然不限于此,但是[第一摄像元件的输出值/第二摄像元件的输出值]的比值例如变成0.5至2)。当入射到摄像单元上的光的光通量不充足,且必须增加曝光的时间(曝光时间)时,从不在被采集以作为图像的物体图像中引起模糊的角度看,优选地控制调节系数Gn1和Gn2,而不是增加曝光时间。曝光的时间(曝光时间)优选地例如为0.1秒以下。光学元件在第一波段中的光谱不一定是平的。可制备具有不同特性的多个光学元件(例如,具有不同的光透射率的光学元件),并例如将它们用于根据摄像环境来增大动态范围。
[0058]在包括根据本发明的摄像装置A或摄像装置B (其包括上面所说明的优选构造和方式)的根据本发明的摄像装置中,属于第一波段的光的波长可例如为400nm以上且小于650nm,且属于第二波段的光的波长可例如大于属于第一波段的光的波长(650nm以上)或小于属于第一波段的光的波长(例如,小于400nm)。第一摄像兀件可例如至少由形成在半导体基板或半导体层中的光电转换元件和形成在该光电转换元件上方的彩色滤光器构成。如上所述,彩色滤光器可具有如下形式:红色摄像元件由红色滤光器材料构成,绿色摄像元件由绿色滤光器材料构成,且蓝色摄像元件由蓝色滤光器材料构成。然而,滤光器不限于这些滤光器,且在某些情况下,滤光器可由传输诸如青色、洋红色和黄色等特定波长的彩色滤光器构成。第二摄像元件可由例如形成在至少半导体基板或半导体层上的光电转换元件构成。在第二摄像元件中,滤光器可被布置成不使第一波段中的光入射到第二摄像元件上,或滤光器可被布置成用于防止除第二波段中的光之外的光入射到第二摄像元件上。透镜系统可以是单焦距透镜,或所谓的变焦透镜,且可基于透镜系统所需的规格来确定透镜和透镜系统的构造和结构。摄像元件的示例包括CXD图像传感器、CMOS图像传感器及电荷调制器件(Charge Modulation Device, CMD)型信号放大式图像传感器。摄像装置的示例包括诸如前侧照明型或背侧照明型固态摄像装置等的固态摄像装置。根据本发明的摄像装置可例如用于构成数码相机、便携式摄像机和所谓的带摄像头的手机。根据本发明的摄像装置能够用于例如装备在监控摄像机和游戏机中的照相机以及相应的应用领域,这些应用领域包括目标检测、监控摄像机、医疗设备、医疗保健和运动捕捉。
[0059]示例 I
[0060]示例I涉及根据本发明的摄像装置,且更具体地,示例I涉及根据本发明的摄像装置A和根据本发明的模式2的滤光器。图1(A)是根据示例I的摄像装置的示意图。图1(B)是示出了根据示例I的滤光器的示意截面图(光学元件)。此外,图2 (A)示意性地示出了摄像单元中的摄像元件的布置。图2(B)是示出了第一摄像元件的示意部分截面图。
[0061]根据示例I的摄像装置IA或稍后说明的根据示例2至示例9的摄像装置包括透镜系统20和摄像单元(摄像元件阵列单元)10,其中已穿过透镜系统20的光入射到摄像单元10上。摄像单元(摄像元件阵列单元)10包括用于接收第一波段中的光的多个第一摄像元件11和用于接收第二波段中的光的多个第二摄像元件12。通过摄像单元10将由透镜系统20聚集的光转换成电信号。此外,摄像装置(即,透镜系统20或摄像单元10)包括光学元件,通过该光学元件,具有比第二波段中的光的光通量小的光通量的第一波段中的光到达摄像单元10。
[0062]通过光学元件(更具体地,滤光器30A、30B、30C、30E和30F),具有比第二波段中的光的光通量小的光通量的第一波段中的光到达摄像单元10,且第一波段中的光的光透射率小于第二波段中的光的光透射率。在示例I中,第一波段中的峰值波长小于第二波段的峰值波长。具体地,第一波段对应于可见光带,且第二波段对应于红外光带。应当注意的是,摄像单元10设置有用于截止紫外光的紫外截止滤光器(图中没有示出)。
[0063]在此情况下,根据示例1、示例2和示例3的滤光器30A、30B和30C是被配置成使第一波段中的光和与第一波段不同的第二波段中的光穿过的滤光器。更具体地,根据示例
1、示例2和示例3的滤光器30A、30B和30C是被配置成使具有比第二波段中的光的波长短的波长的第一波段中的光穿过。在示例I中,滤光器30A由使第一波段中的光的光透射率比第二波段中的光的光透射率小的材料(滤光器材料)构成,且滤光器材料层是单层构造。更具体地,滤光器30A由滤光器基材31和滤光器材料层32构成,其中滤光器基材31由光学玻璃和透明树脂构成,且滤光器材料层32由形成在滤光器基材31上的滤光器材料构成。根据示例I和示例2的滤光器30A和30B被安装到透镜系统20的前表面部分。更具体地,将滤光器30A和30B以螺丝的方式接合到透镜筒(图中没有示出)的前表面部分。应当注意的是,滤光器30A可由使滤光器基材31还充当滤光器材料的材料构成。
[0064]或者,根据示例I的滤光器可由通过堆叠多个层(即高折射率材料层和低折射率材料层)而制成的电介质多层膜构成。在此构造下,具有比第二波段中的光(红外光)的光通量小的光通量的第一波段中的光(可见光)能够到达摄像单元10。
[0065]将红外截止滤光器13在摄像单元10中布置成位于摄像单元10的光入射侧,其中红外截止滤光器13具有用于截止具有不期望波长的红外光的众所周知的构造和结构。
[0066]在根据示例I的滤光器30A中,第一波段中的波长(400nm以上且小于650nm)的平均光透射率大于0%且为80%以下。第二波段中的波长(650nm至1200nm)的平均光透射率为80%以上。更具体地,第二波段中的波长(650nm至1200nm)的平均光透射率几乎为100%o图6(A)示意性地示出了根据示例I的滤光器30A的光透射率。图6(B)示意性地示出了红外截止滤光器13的光透射率。图6 (C)示意性地示出了红外截止滤光器13与根据示例I的滤光器30A的组合的光透射率。在如图6(C)所示的示例中,根据摄像装置的目的,例如,截止了具有范围为650nm至850nm的不期望波长的近红外光。或者,根据摄像装置的目的,例如,这截止了具有范围为650nm至SOOnm的不期望波长的近红外光,且截止了具有范围为650nm至900nm的不期望波长的近红外光。此外,例如,当要截止具有范围为650nm至800nm的不期望波长的近红外光时,优选地截止具有例如范围为900nm至1200nm的不期望波长的近红外光。然而,将被截止的红外光的波长范围不限于上述波长范围。
[0067]在透镜系统20中,摄像透镜21、光圈单元22和图像聚集透镜23被容纳在透镜筒中,且它们充当变焦透镜。摄像透镜21用于聚集从物体入射的光。摄像透镜21包括用于调节焦点的聚集透镜和用于放大物体的变焦透镜等,且其通常是通过组合多个透镜来实现的,以便校正色差(chromatic aberration)等。光圈单元22具有缩小的功能以调节聚集的光量,且它通常由多个片状的光圈叶片的组合构成。来自物体的点的光至少在光圈单元22的位置处变成平行光。图像聚集透镜23将光聚集到摄像单元10。摄像单元10布置在相机主体单元2的内侧。摄像装置例如用于构成数码相机、摄影机和便携式摄像机。相机主体单元2不仅包括摄像单元10,还例如包括图像处理装置3和图像存储单元4。然后,基于由摄像单元10转换的电信号来形成图像数据。图像处理装置3将从摄像单元10输出的电信号转换成图像数据,并将该图像数据记录至图像存储单元4。应当注意的是,例如,可对从摄像元件获得的电信号执行已知的去马赛克(demosaic)处理。[0068]摄像元件11和12可以是CXD图像传感器和CMOS图像传感器,且在如附图所示的示例中,它们为前侧照明型传感器。第一摄像元件11由如下摄像元件单元构成,该摄像元件单元由红色摄像元件llr、绿色摄像元件Ilg和蓝色摄像元件Ilb构成,且第二摄像元件12由用于检测红外光的红外光摄像元件构成。一个像素由一个摄像元件单元和一个红外光摄像元件构成。摄像元件的布置方式为拜耳布置,且在摄像单元10中,由四个摄像元件构成的一个像素(红外光/紫外光光敏摄像元件单元)布置成二维矩阵形式。
[0069]如示出了示意部分截面图的图2(B)所示,例如以如下方式堆叠第一摄像元件11:将光电转换元件41设置在硅半导体基板40上,且在光电转换元件41上堆叠第一平坦化膜42、彩色滤光器43、片上透镜44和第二平坦化膜45。除了第一摄像元件11设置有彩色滤光器43之外,第二摄像元件12具有与第一摄像元件11相同的构造和结构。然而,这不限于此构造和结构。或者,第二摄像元件12可设置有用于截止第一波段中的光的滤光器。应当注意的是,附图标记46A表示光屏蔽层,且附图标记46B表示配线层。
[0070]如上所述,在根据示例I的摄像装置IA中,透镜系统20使具有比第二波段中的光的光通量小的光通量的第一波段中的光到达摄像单元10,且此外设置有如下光学元件(滤光器30A),在该光学元件中,第一波段中的光的光透射率低于第二波段中的光的光透射率。在根据示例I的滤光器30A中,第一波段中的光的光透射率低于第二波段中的光的光透射率。更具体地,在示例I中,滤光器30A由使第一波段中的光的光透射率小于第二波段中的光的光透射率的材料构成。因此,对于整个滤光器30A,到达摄像单元10的第二波段中的光较多,且到达摄像单元10的第一波段中的光较少。因此,摄像单元10能够以相同等级的灵敏度检测第一波段中的光和第二波段中的光。
[0071]示例2
[0072]示例2是示例I的变形例。在示例I中,滤光器材料层32由单层构成。另一方面,在示例2中,如示出了示意截面图的图1(C)所示,滤光器30B是通过堆叠用于传输红色的红色透射层32r和用于传输蓝色的蓝色透射层32b而制成的。更具体地,红色透射层32r由与用于传输红色且设置在摄像元件的光电转换元件上方的彩色滤光器相同的红色滤光器材料构成。蓝色透射层32b由与用于传输蓝色并设置在摄像元件的光电转换元件上方的彩色滤光器相同的蓝色滤光器材料构成。可基于红色透射层的厚度与光透射率之间的关系、蓝色透射层的厚度与光透射率之间的关系以及目标光透射率来确定红色透射层32r和蓝色透射层32b的厚度。
[0073]除了上述特征之外,根据示例2的滤光器和摄像装置的构造和结构与在示例I中说明的滤光器和摄像装置的构造和结构相同,且因此,将省略关于根据示例2的滤光器和摄像装置的构造和结构的详细说明。示例2的滤光器可以是通过堆叠用于传输红色的红色透射层、用于传输绿色的绿色透射层和用于传输蓝色的蓝色透射层而制成的。应当注意的是,绿色透射层由与用于传输绿色并设置在摄像元件的光电转换元件上方的彩色滤光器相同的绿色滤光器材料构成。可以基于红色透射层的厚度与光透射率之间的关系、绿色透射层的厚度与光透射率之间的关系、蓝色透射层的厚度与光透射率之间的关系以及目标光透射率来确定红色透射层、绿色透射层和蓝色透射层的厚度。
[0074]示例3
[0075]示例3也是示例I的变形例,但是示例3涉及根据本发明的摄像装置A-2和根据本发明的模式2-2的滤光器。图3(A)和图3(B)分别示出了根据示例3的摄像装置IC的概念图和根据示例3的滤光器的示意截面图。在示例3中,滤光器30C由电介质多层膜32C构成。换句话说,滤光器30C由通过交替地堆叠多个层(即高折射率材料层和低折射率材料层)而制成的电介质多层膜32C构成。在此构造的情况下,具有比第二波段中的光(红外光)的光通量小的光通量的第一波段中的光(可见光)能够到达摄像单元10。此外,在示例3中,滤光器30C具有如图6(C)所示的光透射率特性。换句话说,示例3的滤光器30C由用于截止具有不期望波长的红外光的电介质多层膜构成,且它具有中性密度(ND)滤光器的功能和红外截止滤光器的功能。另外,滤光器30C布置在摄像单元10的内侧。更具体地,滤光器30C处于摄像单元10的光入射侧。此构造不需要用于截止具有不期望波长的红外光的常规红外截止滤光器13。当滤光器由电介质多层膜构成时,可能存在着对光入射到滤光器上的入射角的依赖性,且因此,优选地以此方式将滤光器布置在摄像单元10的内侦U。除了上述特性之外,示例3的滤光器和摄像装置IC的构造和结构能够与在示例I中说明的滤光器和摄像装置IA的构造和结构相同,且因此,省略了关于示例3的滤光器和摄像装置IC的构造和结构的详细说明。应当注意的是,在某些情况下,可将滤光器30C布置在透镜系统20中。
[0076]示例 4
[0077]示例4也是示例I至示例3的变形例。然而,在示例4中,第一波段中的峰值波长长于第二波段中的峰值波长。更具体地,第一波段对应于可见光带,且第二波段对应于紫外光带。在摄像单元10中,设置有用于截止红外光的红外截止滤光器(图中没有示出)。更具体地,示例4的光学元件(滤光器)用于使波长比第一波段中的光的波长短的第二波段中的光穿过,并由通过交替地堆叠多个层(即高折射率材料层和低折射率材料层)制成的电介质多层膜构成。在示例4中,第一波段(400nm以上且小于650nm)中的波长的平均光透射率大于0%且为80%以下,且更具体地,第一波段(400nm以上且小于650nm)中的波长的平均光透射率例如为约50%(或者,约25%,且或者,约12.5%)。第二波段(小于400nm)中的波长的平均光透射率为80%,且更具体地,第二波段(小于400nm)中的波长的平均光透射率为约100%。除了根据示例I和示例2的摄像单元10设置有用于截止紫外光的紫外截止滤光器而不是用于截止红外光的红外截止滤光器之外,根据示例4的摄像装置的构造和结构可以与根据示例I和示例2的摄像装置的构造和结构相同,或与根据示例3的摄像装置的构造和结构相同,且因此,省略了关于根据示例4的摄像装置的构造和结构的详细说明。图7 (A)、图7 (B)和图7 (C)示意性地示出了根据示例4的滤光器的光透射率、紫外截止滤光器的光透射率以及紫外截止滤光器与根据示例4的滤光器的组合的光透射率。
[0078]示例5
[0079]示例5涉及根据本发明的摄像装置。更具体地,示例5涉及根据本发明的摄像装置B和根据本发明的模式I的滤光器。图4(A)示出了根据示例5的摄像装置IE的示意图。图4(B)示出了示例5的滤光器30E的示意截面图。图4(C)示出了示例5的滤光器30E的示意正视图。
[0080]如同示例1,示例5被配置成使得第一波段中的峰值波长短于第二波段中的峰值波长。具体地,第一波段对应于可见光带,且第二波段对应于红外光带。如同示例1,应当注意的是,摄像单元10设置有用于截止紫外光的紫外截止滤光器(图中没有示出)。根据示例5的光学元件(滤光器30E)或根据示例6的光学元件(滤光器30F)由具有圆形或正多边形(更具体地,规则八边形)的外形的第一区域33和具有环绕第一区域33的环形的第二区域34构成,且第一区域33使第一波段中的光和与第一波段不同的第二波段中的光穿过(更具体地,第一区域33使具有比第一波段中的光的波长长的波长的第二波段中的光穿过),且在第二区域34中,第一波段中的光的光透射率低于第二波段中的光的光透射率。
[0081]在此情况下,滤光器30E和30F中的第一区域33的大小是可变的。滤光器30E和30F例如具有与光圈叶片相同的结构。用于构成滤光器30E和30F的滤光器基材35由光学玻璃和透明树脂构成。在滤光器基材35上形成滤光器材料层36,滤光器材料层36由市售的众所周知的用于截止红外光的滤光器材料构成。滤光器基材35和滤光器材料层36构成第二区域34,且第一区域33由具有与光圈叶片相同的结构的滤光器30E和30F中的开口部构成。在图4(B)的示出了滤光器30E的示意截面图中,没有示出光圈叶片结构的重叠。在示例5中,滤光器材料层36的层厚是固定的。用于改变第一区域33的大小的机构可以是与用于控制光圈单元的光圈状态的机构是相同机构。滤光器30E和30F布置成与设置在透镜系统20中的光圈单元22相邻。或者,将滤光器30E和30F布置在透镜系统20的处于使入射到透镜系统20上的光一旦变成平行光时的平行光的状态的部分中,且最后,光被聚集到摄像元件11和12上(图像聚集)。应当注意的是,滤光器30E可由使滤光器基材35还充当滤光器材料的材料构成。滤光器30E和30F可由在示例I中说明的电介质多层膜构成。
[0082]如上所述,在根据示例5的摄像装置IE中,透镜系统20使具有比第二波段中的光的光通量小的光通量的第一波段中的光到达摄像单元10,且此外,设置有滤光器30E,在滤光器30E中,第一波段中的光的光透射率低于第二波段中的光的光透射率。在示例5中的滤光器30E中,在第二区域34中,第一波段中的光的光透射率低于第二波段中的光的光透射率。因此,在整个滤光器30E中,到达摄像单元10的第二波段中的光较多,且到达摄像单元10的第一波段中的光较少。因此,能够以相同等级的灵敏度检测第一波段中的光和第二波段中的光。
[0083]应当注意的是,第一区域33的大小被配置成小于光圈单元22的开口部的大小,使得入射到摄像单元10上的可见光基本上被第一区域33缩小。穿过光圈单元22的开口部的红外光经过第一区域33和第二区域34并到达摄像单元10。如附图所示,光圈单元22和滤光器30E可以具有如下位置关系:滤光器30E可位于摄像单元侧,或者相反地光圈单元22可位于摄像单元侧。
[0084]示例 6
[0085]示例6是示例5的变形例。如示出了示意截面图的图4(D)所示,在根据示例6的滤光器30F中,第一波段中的光的光透射率从第二区域37的位于第一区域33和第二区域37之间边界处的部分至第二区域37的外周逐渐减小。或者,滤光器30F由变迹滤光器构成。
[0086]具体地,根据示例6的滤光器30F的第二区域37是通过堆叠用于传输红色的红色透射层38r和用于传输蓝色的蓝色透射层38b制成的,红色透射层38r的厚度和蓝色透射层38b的厚度从第二区域37的位于第一区域33和第二区域37之间边界处的部分至第二区域37的外周增加。红色透射层38r和蓝色透射层38b由在示例2中说明的滤光器材料构成。
[0087]更具体地,在红色透射层38r和蓝色透射层38b中,第二区域37的位于第一区域33和第二区域37之间边界处的部分处的厚度为0 y m,且第二区域37的外周处的厚度是基于红色透射层的厚度与光透射率之间的关系、蓝色透射层的厚度与光透射率之间的关系及目标光透射率确定的。厚度依照高斯函数增大。
[0088]除了上述特征之外,根据示例6的摄像装置和滤光器的构造和结构能够与在示例5中说明的摄像装置和滤光器的构造和结构相同,且因此,省略了关于根据示例6的摄像装置和滤光器的构造和结构的详细说明。应当注意的是,能够例如基于JP2003-155556A中披露的膜厚度倾斜(楔)沉积法或楔形膜的制造方法来形成红色透射层38r和蓝色透射层38b。滤光器的第二区域是通过堆叠用于传输红色的红色透射层、用于传输绿色的绿色透射层和用于传输蓝色的蓝色透射层制成的,并可被配置成使得红色透射层的厚度、绿色透射层的厚度和蓝色透射层的厚度从第二区域的位于第一区域和第二区域之间边界处的部分至第二区域的外周变厚。滤光器30E和30F可由在示例I中说明的电介质多层膜构成。
[0089]示例7
[0090]示例7也是示例5或示例6的变形例。然而,如同示例4,示例7被配置成使第一波段中的峰值波长长于第二波段中的峰值波长。更具体地,第一波段对应于可见光带,且第二波段对应于紫外光带。摄像单元10设置有用于截止紫外光的紫外截止滤光器(图中没有示出)。更具体地,根据示例7的光学元件(滤光器)用于使波长比第一波段中的光的波长短的第二波段中的光穿过。在示例7中,第一波段(400nm以上且小于650nm)的波长的平均光透射率大于0%且为80%以下。更具体地,第一波段(400nm以上且小于650nm)的波长的平均光透射率例如为约50% (或约25%,或12.5%),且第二波段(小于400nm)中的波长的平均光透射率为80%以上,且更具体地,约100%。除了摄像单元10设置有用于截止紫外光的紫外截止滤光器而不是设置有红外截止滤光器之外,根据示例7的摄像装置的构造和结构能够与根据示例5或示例6的摄像装置的构造和结构相同,且省略了关于根据示例7的摄像装置的构造和结构的详细说明。
[0091]示例8
[0092]示例8是示例I至示例7的变形例。如示出了根据示例8的摄像装置的示意图的图5所示,示例8的摄像装置IH还包括用于发出第二波段中的光的照明装置14。照明装置14是某种类型的闪光灯(strobe)发光装置。在此情况下,在示例8中,照明装置14发出的第二波段中的光包括多个峰值波长(更具体地,在示例8中,照明装置14发出的第二波段中的光包括两个峰值波长)。在此情况下,例如,峰值波长可以是850nm和940nm。用于构成照明装置14的光源由N种类型的光源构成(更具体地,用于构成照明装置14的光源由两种类型的LED构成,这些LED包括用于发射具有850nm峰值波长的红外光的LED和用于发射具有940nm峰值波长的红外光的LED)。
[0093]在示例8中,使照明装置14发光N次(更具体地,在示例8中,使照明装置14发光两次),且在具有不同峰值波长的第二波段中的光中执行N次摄像(更具体地,执行两次摄像),使得第二摄像元件12获得N种类型的图像数据(更具体地,第二摄像元件12获得两种类型的图像数据)。或者,取决于滤光器的光透射率特性,使整个照明装置14发光一次,且在具有不同峰值波长的第二波段中的光中执行一次摄像,使得第二摄像元件12能够获得N种类型的图像数据。然后,通过分析这N种类型的图像数据,能够获得各种类型的信息。应当注意的是,可根据光源来优化光学元件的第二波段中的光的光透射率。更具体地,根据N种类型的光源,可优化光学元件的第二波段中的光的光透射率,且可优化N种类型的光源的光的光透射率的比值,且可优化光谱。
[0094]除了上述特征之外,根据示例8的摄像装置的构造和结构能够具有与示例I至示例2和示例5至示例6中说明的摄像装置的构造和结构相同的构造和结构,且因此,省略了关于根据示例8的摄像装置的构造和结构的详细说明。应当注意的是,当照明装置14发出的第二波段中的光是紫外光时,根据示例8的摄像装置的构造和结构能够具有与在示例4和示例7中说明的摄像装置的构造和结构相同的构造和结构。
[0095]示例9
[0096]示例9是示例I至示例8的变形例。在根据示例9的摄像装置中,图像处理装置3设置有图像处理单元。此图像处理单元包括用于调节第一摄像元件11的输出的第一增益调节单元和用于调节第二摄像元件12的输出的第二增益调节单元。在第一增益调节单元对第一摄像元件的输出进行调节的调节系数用Gn1表示,且第二增益调节单元对第二摄像元件的输出进行调节的调节系数用Gn2表示时,满足Gn1Ain2 > I。具体地,(Gn1Ain2)的值可例如为2、4和8等。因此,当摄像环境发生变化时,到达第一摄像元件11的第一波段中的光(可见光)的光通量减小,且其与到达第二摄像元件12的第二波段中的光(红外光或紫外光)的光通量的差发生极大变化。即使在此情况下,也能够减小由第一摄像元件11获得的图像与由第二摄像元件12获得的图像之间的亮度差。
[0097]除了上述特征之外,根据示例9的摄像装置的构造和结构能够具有与在示例I至示例8中说明的摄像装置的构造和结构相同的构造和结构,且因此,省略了关于根据示例9的摄像装置的构造和结构的详细说明。应当注意的是,到达第一摄像元件11的第一波段中的光的光通量减小,且根据其与到达第二摄像元件12的第二波段中的光的光通量的差,可自动地或手动地改变调节系数Gn1和Gn2。
[0098]在上文中,已基于优选示例对本发明进行了说明。然而,本发明不限于这些示例。示例所说明的摄像装置、摄像元件、光学元件和滤光器的构造和结构仅作为示例示出,并必要时能够进行改变。摄像元件可以是如附图所示的前侧照明型摄像元件,或可以是没有示出的背侧照明型摄像元件。在摄像单元中,例如,可布置一行红外光/紫外光光敏摄像元件单元,且可以与此行相邻的方式布置(2n-l)行可见光光敏摄像元件单元(这里n例如是I以上且5以下的正整数)。
[0099]在示例5至示例7中,能够将滤光器30E和30F布置成可以从透镜系统20拆卸。更具体地,例如,在透镜系统20中,能够以如下方式将既具有滤光器30又具有开口的元件安装到旋转轴使得该元件能够绕平行于透镜系统的光轴的旋转轴旋转,从而该元件绕旋转轴旋转,由此穿过透镜系统20的光线穿过孔,或穿过滤光器30。或者,在透镜系统20中,例如将既具有滤光器30又具有开口部的元件安装到透镜系统20使得该元件能够沿与透镜系统20的光轴垂直的方向滑动,从而当这类元件进行滑动时,穿过透镜系统20的光线穿过开口部,或穿过滤光器30。
[0100]为了使用摄像装置来获得黑白(灰色)图像,一个像素可被配置成由一个摄像元件单元和一个第二摄像元件构成。在示例中,光电转换元件设置在硅半导体基板上,但是所使用的基板不限于硅半导体基板。例如,可使用硅-锗基板、锗基板、例如由铜、铟、镓、铝、硒、硫构成的黄铜矿基板(例如,铜-铟-镓-硒基板)和砷化镓基板等。在此情况下,能够扩大或改变光电转换元件的接收光学敏感波段。
[0101]根据本发明的摄像装置的使用领域和应用领域的示例包括监控摄像机、医疗设备、医疗保健和运动捕捉。更具体地,当将根据本发明的摄像装置应用至监控摄像机时,下列的昼/夜监控摄像机能够作为示例示出:监控摄像机在白天以普通的方式捕捉图像,且在晚上,几乎没有作为第一波段的可见光成分,且因此,使用由包括第二波段的LED光源构成的照明装置来捕捉图像。在此情况下,将红外光假定为第二波段。当将根据本发明的摄像装置应用至医疗设备和医疗保健时,使用可见光来完成普通摄像过程,且同时,使用由包括第二波段的LED光源构成的照明装置来获得摄像目标的第二波段中的反射/吸收特性,例如,使得能够测量血液中的氧饱和浓度,且根据本发明的摄像装置能够用于患者的健康状态的诊断。当将根据本发明的摄像装置应用至运动捕捉时,使用可见光来完成普通摄像过程,且近红外光用作第二波段,并且获得了正常摄像状态中的距离信息和运动信息,且通过对使用作为第一波段的可见光而获得的图像进行重新组合,能够一次获得普通图像和距离/运动信息。
[0102]以与上面所说明的根据本发明的滤光器一起或各自的方式进行如下设置:在第一摄像元件的光入射侧处形成第一开口区,且在第二摄像元件的光入射侧处形成第二开口区,且该第一开口区可被配置成小于该第二开口区。在这类构造中,第二摄像元件接收到的光通量可小于第一摄像元件接收到的光通量。能够通过在光电转换元件的光入射侧处形成的光屏蔽层中形成具有期望大小,即期望开口大小的开口区来获得开口区。开口区的平面形状的示例包括圆形,或正多边形(例如,正五边形、正六边形、正七边形和正八边形)。应当注意的是,正多边形包括准正多边形(即具有由曲线构成的各个边的正多边形、具有圆形顶点的正多边形)。
[0103]应当注意的是,本发明可进行如下配置。
[0104][I] 一种摄像装置,所述摄像装置包括透镜系统和摄像单元,穿过所述透镜系统的光入射到所述摄像单元上,其中,
[0105]所述摄像单元包括多个第一摄像元件和多个第二摄像元件,所述第一摄像元件用于接收第一波段中的光,且所述第二摄像元件用于接收与所述第一波段不同的第二波段中的光,以及
[0106]光学元件被设置成使得具有比所述第二波段中的光的光通量小的光通量的所述第一波段中的光到达所述摄像单元。
[0107][2]如项[I]所述的摄像装置,其中,所述第一波段中的峰值波长短于所述第二波段中的峰值波长。
[0108][3]如项[I]所述的摄像装置,其中,所述第一波段中的峰值波长长于所述第二波段中的峰值波长。
[0109][4]如项[2]或[3]所述的摄像装置,其中,
[0110]在所述光学元件中,所述第一波段中的400nm以上且小于650nm的波长的平均光透射率大于0%且为80%以下,且
[0111]在所述光学元件中,所述第二波段中的平均光透射率为80%以上。[0112][5]如项[2]至[4]中任一项所述的摄像装置,其中,
[0113]所述光学元件由滤光器构成,且
[0114]在所述滤光器中,所述第一波段中的光的光透射率低于所述第二波段中的光的光透射率。
[0115][6]如项[5]所述的摄像装置,其中,所述滤光器由使所述第一波段中的光的光透射率低于所述第二波段中的光的光透射率的材料构成。
[0116][7]如项[6]所述的摄像装置,其中,所述光学元件是通过堆叠用于传输红色的红色透射层和用于传输蓝色的蓝色透射层而制成的。
[0117][8]如项[5]所述的摄像装置,其中,所述滤光器由电介质多层膜构成。
[0118][9]如项[2]至[8]中任一项所述的摄像装置,其中,所述光学元件被安装到所述透镜系统。
[0119][10]如项[8]所述的摄像装置,其中,所述光学元件布置在所述摄像单元中。
[0120][11]如项[2]至[4]中任一项所述的摄像装置,其中,
[0121]所述光学元件由滤光器构成,且
[0122]所述滤光器包括具有圆形或正多边形的外形的第一区域及具有环绕所述第一区域的环形的第二区域,且
[0123]所述第一区域使所述第一波段和所述第二波段中的光穿过,且
[0124]在所述第二区域中,所述第一波段中的光的光透射率低于所述第二波段中的光的光透射率。
[0125][12]如项[11]所述的摄像装置,其中,所述第一波段中的光的光透射率从所述第二区域的位于所述第一区域和所述第二区域之间边界处的部分至所述第二区域的外周逐渐减小。
[0126][13]如项[11]所述的摄像装置,其中,所述滤光器由变迹滤光器构成。
[0127][14]如项[11]至[13]中任一项所述的摄像装置,其中,所述第一区域的大小是可变的。
[0128][15]如项[11]至[14]中任一项所述的摄像装置,其中,所述光学元件布置成与设置在所述透镜系统中的光圈单元相邻。
[0129][16]如项[11]至[15]中任一项所述的摄像装置,其中,所述光学元件以能够从所述透镜系统拆卸的方式布置。
[0130][17]如项[I]至[16]中任一项所述的摄像装置,其中,所述第一摄像元件由包括红色摄像元件、绿色摄像元件和蓝色摄像元件的摄像元件单元构成。
[0131][18]如项[17]所述的摄像装置,其中,一个所述摄像元件单元和一个所述第二摄像元件构成一个像素。
[0132][19]如项[I]至[16]中任一项所述的摄像装置,其中,一个摄像单元和一个所述第二摄像元件构成一个像素。
[0133][20]如项[I]至[19]中任一项所述的摄像装置,其中,
[0134]在所述第一摄像元件的光入射侧处形成第一开口区域,
[0135]在所述第二摄像元件的光入射侧处形成第二开口区域,且
[0136]所述第一开口区域小于所述第二开口区域。[0137][21]如项[I]至[20]中任一项所述的摄像装置,其还包括用于发出所述第二波段中的光的照明装置。
[0138][22]如项[21]所述的摄像装置,其中,所述照明装置发出的所述第二波段中的光包括多个峰值波长。
[0139][23] 一种滤光器(模式I),其包括具有圆形或正多边形的外形的第一区域及具有环绕所述第一区域的环形的第二区域,其中,
[0140]所述第一区域使第一波段中的光和与所述第一波段不同的第二波段中的光穿过,且
[0141]在所述第二区域中,所述第一波段中的光的光透射率低于所述第二波段中的光的光透射率。
[0142][24]如项[23]所述的滤光器,其中,所述第一波段中的光的光透射率从所述第二区域的位于所述第一区域和所述第二区域之间边界处的部分至所述第二区域的外周逐渐减小。
[0143][25]如项[23]或[24]所述的滤光器,其由变迹滤光器构成。
[0144][26]如项[23]至[25]中任一项所述的滤光器,其中,所述第一区域的大小是可变的。
[0145][27] 一种滤光器(模式2),其用于使第一波段中的光和与所述第一波段不同的第二波段中的光穿过,其中,
[0146]所述第一波段中的光的光透射率低于所述第二波段中的光的光透射率。
[0147][28]如项[27]所述的滤光器,其中,
[0148]所述第一波段中的400nm以上且小于650nm的波长的平均光透射率大于0%且为80%以下,且
[0149]所述第二波段中的平均光透射率为80%以上。
[0150][29]如项[27]或[28]所述的滤光器,其由使所述第一波段中的光的光透射率低于所述第二波段中的光的光透射率的材料构成。
[0151][30]如项[29]所述的滤光器,其是通过堆叠用于传输红色的红色透射层和用于传输蓝色的蓝色透射层而制成的。
[0152][31]如项[27]或[28]所述的滤光器,其由电介质多层膜构成。
[0153]附图标记列表
[0154]1A、1D、1E 和 IH 摄像装置
[0155]2相机主体单元
[0156]3图像处理装置
[0157]4图像存储单元
[0158]10摄像单元(摄像元件阵列单元)
[0159]11第一摄像元件
[0160]Ilr红色摄像元件
[0161]Hg绿色摄像元件
[0162]Ilb蓝色摄像元件
[0163]12第二摄像元件[0164]13红外截止滤光器
[0165]14照明装置
[0166]20透镜系统
[0167]21摄像透镜
[0168]22光圈单元
[0169]23图像聚集透镜
[0170]30A、30B、30C、30E 和 3OF 滤光器(光学元件)
[0171]31滤光器基材
[0172]32滤光器材料层
[0173]32r和38r红色透射层
[0174]32b和38b蓝色透射层
[0175]32C电介质多层膜
[0176]33第一区域
[0177]34,37 第二区域
[0178]35滤光器基材
[0179]36滤光器材料层
[0180]40硅半导体基板
[0181]41光电转换元件
[0182]42第一平坦化膜
[0183]43彩色滤光器
[0184]44片上透镜
[0185]45第二平坦化膜
[0186]46A、46B 配线层
【权利要求】
1.一种摄像装置,所述摄像装置包括透镜系统和摄像单元,穿过所述透镜系统的光入射到所述摄像单元上,其中, 所述摄像单元包括多个第一摄像元件和多个第二摄像元件,所述第一摄像元件用于接收第一波段中的光,且所述第二摄像元件用于接收与所述第一波段不同的第二波段中的光,以及 光学元件被设置成使得具有比所述第二波段中的光的光通量小的光通量的所述第一波段中的光到达所述摄像单元。
2.如权利要求1所述的摄像装置,其中,所述第一波段中的峰值波长短于所述第二波段中的峰值波长。
3.如权利要求1所述的摄像装置,其中,所述第一波段中的峰值波长长于所述第二波段中的峰值波长。
4.如权利要求2或3所述的摄像装置,其中, 所述光学元件由滤光器构成,且 在所述滤光器中,所述第一波段中的光的光透射率低于所述第二波段中的光的光透射率。
5.如权利要求2或3所述的摄像装置,其中, 所述光学元件由滤光器构成,且 所述滤光器包括具有圆形或正多边形的外形的第一区域和具有环绕所述第一区域的环形的第二区域,且 所述第一区域使所述第一波段中的光和所述第二波段中的光穿过,且 在所述第二区域中,所述第一波段中的光的光透射率低于所述第二波段中的光的光透射率。
6.如权利要求5所述的摄像装置,其中,所述第一波段中的光的光透射率从所述第二区域的位于所述第一区域和所述第二区域之间边界处的部分至所述第二区域的外周逐渐减小。
7.如权利要求5所述的摄像装置,其中,所述滤光器由变迹滤光器组成。
8.如权利要求5所述的摄像装置,其中,所述第一区域的大小是可变的。
9.如权利要求1所述的摄像装置,其中,所述第一摄像元件由包括红色摄像元件、绿色摄像元件和蓝色摄像元件的摄像元件单元构成。
10.如权利要求9所述的摄像装置,其中,一个所述摄像元件单元和一个所述第二摄像元件构成一个像素。
11.如权利要求1所述的摄像装置,其中,一个摄像元件单元和一个所述第二摄像元件构成一个像素。
12.如权利要求1所述的摄像装置,其还包括用于发出所述第二波段中的光的照明装置。
13.如权利要求12所述的摄像装置,其中,所述照明装置发出的所述第二波段中的光包括多个峰值波长。
14.一种滤光器,所述滤光器包括具有圆形或正多边形的外形的第一区域和具有环绕所述第一区域的环形的第二区域,其中,所述第一区域使第一波段中的光和与所述第一波段不同的第二波段中的光穿过,且 在所述第二区域中,所述第一波段中的光的光透射率低于所述第二波段中的光的光透射率。
15.如权利要求14所述的滤光器,其中,所述第一波段中的光的光透射率从所述第二区域的位于所述第一区域和所述第二区域之间边界处的部分至所述第二区域的外周逐渐减小。
16.如权利要求14所述的滤光器,其中,所述滤光器由变迹滤光器构成。
17.如权利要求14所述的滤光器,其中,所述第一区域的大小是可变的。
18.—种滤光器,所述滤光器用于使第一波段中的光和与所述第一波段不同的第二波段中的光穿过,其中, 所述第一波段中的光的光透射率低于所述第二波段中的光的光透射率。
19.如权利要求18所述的滤光器,其中, 所述第一波段中的400nm以上且小于650nm的波长的平均光透射率大于0%且为80%以下,且 所述第二波段中的平均光透射率为80%以上。
20.如权利要求18所述的滤光器,其中,所述滤光器是通过堆叠用于传输红色的红色透射层和用于传输蓝色的蓝色透射层而制成的。
【文档编号】H04N9/07GK103814571SQ201280045183
【公开日】2014年5月21日 申请日期:2012年9月3日 优先权日:2011年9月26日
【发明者】东堤良仁, 茂木英昭, 小泽谦, 岩间纯 申请人:索尼公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1