在噪音消除个人音频设备中次级路径适应性响应的基于频率塑形噪音调适的制作方法

文档序号:12143678阅读:388来源:国知局
在噪音消除个人音频设备中次级路径适应性响应的基于频率塑形噪音调适的制作方法与工艺

本发明总体上涉及个人音频设备例如包括适应性噪音消除(ANC)的无线电话,并且更具体地,涉及其使用具有次级路径估计的基于频率塑形噪音的注入噪音来控制在个人音频设备中的ANC。



背景技术:

无线电话例如移动电话/蜂窝式电话、头戴耳机及其他应用广泛的消费性语音设备。可通过使用麦克风测量周围声事件及随后使用信号处理将抗噪音信号插入至设备的输出中以消除周围声事件,来提供噪音消除从而改进这些设备在清晰度方面的性能。

通过使用误差麦克风测量设备在变换器处的变换器输出以确定噪音消除效率来改进噪音消除操作。变换器的所测量输出理想地是源音频,例如提供给头戴耳机用于重现的音频,或者在电话中的下行链路音频和/或在专用音频播放器或电话中的回播音频,因为噪音消除信号理想地被在变换器位置处的周围噪音抵消。为了从误差麦克风信号去除源音频,从变换器通过误差麦克风的次级路径可以被估计和用来过滤源音频到正确的相位和用于从误差麦克风信号减去相应幅度。然而,当源音频不存在或者幅度很小时,通常不能更新次级路径估计。

因此,期望提供一种个人音频设备,包括无线电话,其利用次级路径估计提供噪音消除以测量变换器的输出,并且可以独立于是否存在足够幅度的源音频连续调适次级路径估计。



技术实现要素:

提供设置包括可以不管是否存在足够幅度的源音频被连续调适的次级路径估计的噪音消除的个人音频设备的上述目的,在包括噪音消除电话的一种噪音消除个人音频设备、一种操作方法及一种集成电路中实现。

个人音频设备包括壳体,其中变换器安装在壳体上用于重现音频信号,其包括用于提供给听者的源音频和用于抵抗周围音频声音在变换器的声输出中的作用的抗噪音信号两者。参考麦克风安装在壳体上用于提供指示周围音频声音的参考麦克风信号。个人音频设备还包括在壳体内的适应性噪音消除(ANC)处理电路,用于从参考麦克风信号适应性地产生抗噪音信号以便抗噪音信号使周围音频声音基本上消除。包括误差麦克风用于控制抗噪音信号的调适以消除周围音频声音并且用于校正通过变换器从处理电路的输出的电声路径。当源音频例如在电话中的下行链路音频和/或在媒体播放器或电话中的回播音频处于较低水平以致于次级路径估计适应性滤波器不能正确地连续调适时,ANC处理电路注入噪音。可控滤波器与次级路径估计的至少一个参数一致地频率塑形该噪音,以便减少由变换器输出的噪音的可听度,同时提供足够幅度的噪音用于调适次级路径响应。

如附图所示,可更具体地从本发明的较佳实施例的下列描述中了解本发明的上述及其他目的、特征及优点。

附图说明

图1A为联接到一对耳塞EB1和EB2的无线电话10的视图,其是本文公开的技术可以在其中实施的个人音频系统的示例。

图1B为在图1A中的电和声信号路径的视图。

图2为在无线电话10内的电路的方框图。

图3为描述在图2的CODEC集成电路20的ANC电路30内的信号处理电路和功能模块的方框图。

图4为描述图3的频率塑形噪音产生器40的细节的方框图。

图5-图7为表示在图3的频率塑形噪音产生器40的操作中执行的计算的流程图。

图8为表示图3的频率塑形噪音产生器40的操作的其他细节的流程图。

图9为表示图3的频率塑形噪音产生器40的操作的进一步细节的流程图。

图10为表示在图3的频率塑形噪音产生器40的操作中执行的其他计算的流程图。

图11为描述在实施如本文公开的ANC系统的集成电路内的信号处理电路和功能模块的方框图。

具体最佳实施方式

本公开揭露噪音消除技术和电路,其电路可以实施在个人音频设备例如无线头戴耳机或无线电话中。个人音频设备包括适应性噪音消除(ANC)电路,其测量周围声环境并且产生被注入到扬声器(或其他变换器)输出以消除周围声事件的一信号。设置参考麦克风来测量周围声环境,并且包括误差麦克风来测量周围音频和在变换器处的变换器输出,从而给出噪音消除效果的指示。使用次级路径估计适应性滤波器来从误差麦克风信号去除回播音频,以便产生误差信号。然而,取决于由个人音频设备重现的音频信号,例如在电话会话期间的下行链路音频或来自媒体文件/连接的回播音频的存在(和水平),次级路径适应性滤波器可能不会继续调适来估计次级路径。本文公开的电路和方法使用注入音频来给次级路径估计适应性滤波器提供足够的能量以继续调适,同时保持在听者几乎注意不到或不能注意到的水平。

注入噪音的频谱通过调适噪音塑形滤波器来改变,噪音塑形滤波器与误差信号的频率含量一致地塑形噪音的频率频谱,误差信号表示如由听者听到的变换器的输出,其中去除了回播音频(并且因此还有注入噪音)。注入噪音还被与次级路径响应的至少一个参数例如次级路径响应的增益和/或高阶系数一致地进行控制。结果是注入噪音的幅度将跟踪如由听者在不同频带中听到的残余周围噪音,以便可以高效地训练次级路径估计适应性滤波器,同时保持注入噪音在极细微的水平。

图1A表示无线电话10和一对耳塞EB1和EB2,每个附接到听者的相应耳朵5A、5B。图示无线电话10是本文技术可以在其中实施的一示例设备,但应该理解不是所有在无线电话10中或者在后续图解说明中描述的电路中的元件或配置都是必需的。无线电话10通过有线或无线连接例如BLUETOOTHTM连接(BLUETOOTHTM是Bluetooth SIG有限公司的商标)连接到耳塞EB1和EB2。耳塞EB1和EB2每个具有相应的变换器,例如扬声器SPKR1、SPKR2,其重现源音频,包括从无线电话10接收的远端语言,铃声,存储的音频程序材料,以及注入的近端语言(即无线电话10的用户的语言)。源音频还包括要求无线电话10重现的任何其他音频,例如来自由无线电话10接收的网页或其他网络通信的源音频,以及音频指示,例如电量不足和其他系统事件通知。参考麦克风R1、R2设置在相应耳塞EB1和EB2的壳体的表面上用于测量周围声环境。设置另一对麦克风,误差麦克风E1、E2,以便当耳塞EB1、EB2插入到耳朵5A、5B的外部时,通过提供与由靠近耳朵5A、5B的相应扬声器SPKR1、SPKR2重现的音频组合在一起的周围音频的测量来进一步改进ANC操作。

无线电话10包括适应性噪音消除(ANC)电路和特征,其将抗噪音信号注入到扬声器SPKR1、SPKR2中以提高由扬声器SPKR1、SPKR2重现的远端语言和其他音频的清晰度。在无线电话10内的示例性电路14包括音频集成电路20,其从参考麦克风R1、R2,近端语言麦克风NS,以及误差麦克风E1、E2接收信号,并且与其他集成电路例如包含无线电话收发器的RF集成电路12对接。在其他实施例中,本文公开的电路和技术可以结合在包含用于实施整个个人音频设备的控制电路和其他功能性的单个集成电路中,例如MP3播放器片上集成电路。替代地,ANC电路可以包括在耳塞EB1、EB2的壳体内或者包括在沿着在无线电话10与耳塞EB1、EB2之间的有线连接布置的模块中。在其他实施例中,无线电话10包括参考麦克风,误差麦克风和扬声器并且由在无线电话10内的集成电路执行噪音消除。为了图解说明之目的,ANC电路将描述为设置在无线电话10内,但上述变形是本领域的技术人员可以理解的,并且可以容易地为这些变形确定在耳塞EB1、EB2,无线电话10以及如果必要第三模块之间的结果信号。近端语言麦克风NS设置在无线电话10的壳体处以捕捉从无线电话10传送给其他通话参与者的近端语言。替代地,近端语言麦克风NS可以设置在耳塞EB1、EB2其中一个的壳体的外表面上,在附接到耳塞EB1、EB2其中一个的话筒上,或者在设置于无线电话10与耳塞EB1、EB2任意一个或两个之间的挂件上。

图1B表示音频集成电路20A、20B的简化示意图,音频集成电路20A、20B包括设置在相应耳塞EB1和EB2内的ANC处理,其在联接到参考麦克风R1、R2时提供由在音频集成电路20A、20B内的ANC处理电路滤波的周围音频声音Ambient1、Ambient2的测量值。音频集成电路20A、20B可以替代地组合到单个集成电路中例如在无线电话10内的集成电路20。音频集成电路20A、20B给它们相应的通道产生输出,其由放大器A1、A2的相关一个放大并且其被提供给扬声器SPKR1、SPKR2的相应一个。音频集成电路20A、20B(取决于具体的配置为有线地或无线地)从参考麦克风R1、R2,近端语言麦克风NS,以及误差麦克风E1、E2接收信号。音频集成电路20A、20B还与其他集成电路例如包含如图1A所示的无线电话收发器的RF集成电路12对接。在其他配置中,本文公开的电路和技术可以结合在包含用于实施整个个人音频设备的控制电路和其他功能性的单个集成电路中,例如MP3播放器片上集成电路。替代地,可以使用多个集成电路,例如,当从每个耳塞EB1、EB2到无线电话10设置有无线连接时和/或当在耳塞EB1、EB2内或者沿着将无线电话10连接到耳塞EB1、EB2的线缆布置的模块内执行一些或所有ANC处理时。

一般而言,本文描述的ANC技术测量冲击参考麦克风R1、R2的周围声事件(与扬声器SPKR1、SPKR2和/或近端语言的输出相对)并且还测量冲击在误差麦克风E1、E2上的相同周围声事件。集成电路20A、20B的ANC处理电路单独地调适从相应参考麦克风R1、R2的输出产生的抗噪音信号以具有使在相应误差麦克风E1、E2处的周围声事件的幅度最小的特征。因为声路径P1(z)从参考麦克风R1延伸到误差麦克风E1,所以在音频集成电路20A中的ANC电路主要结合去除电声路径S1(z)的作用来估计声路径P1(z),其表示音频集成电路20A的音频输出电路和扬声器SPKR1的声/电传输函数的响应。估计的响应包括在特定声环境中在扬声器SPKR1与误差麦克风E1之间的耦合,其受到耳朵5A和其他可能靠近耳塞EB1的物体和人体头部结构的影响。相似地,音频集成电路20B结合去除电声路径S2(z)的作用来估计声路径P2(z),其表示音频集成电路20B的音频输出电路的响应和扬声器SPKR2的声/电传输函数。

现在参考图2,在耳塞EB1、EB2和无线电话10内的电路表示在方框图中。如图2所示的电路还应用到上面所述的其他配置中,除了当音频集成电路20A、20B设置在无线电话10外部例如在相应耳塞EB1、EB2内时,在CODEC集成电路20与在无线电话10内的其他单元之间发信号由线缆或无线连接来提供。在该配置中,当音频集成电路20设置在无线电话10内时,在执行集成电路20A-20B的单个集成电路20与误差麦克风E1、E2,参考麦克风R1、R2,以及扬声器SPKR1、SPKR2之间的发信号由有线连接或无线连接来提供。在图示的示例中,音频集成电路20A、20B示出为独立的并且是基本上相同的电路,所以下面将仅详细描述音频集成电路20A。

音频集成电路20A包括用于从参考麦克风R1接收参考麦克风信号并且产生参考麦克风信号的数字表示ref的模数转换器(ADC)21A。音频集成电路20A还包括用于从误差麦克风E1接收误差麦克风信号并且产生误差麦克风信号的数字表示err的ADC 21B,以及用于从近端语言麦克风NS接收近端语言麦克风信号并且产生近端语言麦克风信号的数字表示ns的ADC 21C。(音频集成电路20B经由上面所述的无线连接或有线连接从音频集成电路20A接收近端语言麦克风信号的数字表示ns。)音频集成电路20A从放大器A1产生用于驱动扬声器SPKR1的输出,放大器A1放大数模转换器(DAC)23的输出,DAC 23接收组合器26的输出。组合器26将来自内部音频源24的音频信号ia和由ANC电路30产生的抗噪音信号anti-noise组合,它们通过变换具有与在参考麦克风信号ref中的噪音相同的极性,并且因此由组合器26相减。组合器26还组合近端语言信号ns的衰减部分,即侧音信息st,以便无线电话10的用户以正比关系与从射频(RF)集成电路22接收的下行链路语言ds听到它们自己的声音。近端语言信号ns还提供给RF集成电路22并且作为上行链路语言经由天线ANT发送给服务提供者。

现在参考图3,示出了在图2的音频集成电路20A和20B内的示例性ANC电路30。适应性滤波器32接收参考麦克风信号ref并且在理想的情况下,将它的传递函数W(z)调适为P(z)/S(z)以产生抗噪音信号anti-noise,其被提供给如由图2的组合器26示例的输出组合器,输出组合器将抗噪音信号与准备由扬声器SPKR重现的音频组合。适应性滤波器32的系数由W系数控制模块31控制,W系数控制模块31使用两个信号的相关性来确定适应性滤波器32的响应,其总体上在最小均方意义上使参考麦克风信号ref存在于误差麦克风信号err中的那些分量之间的误差最小。由W系数控制模块31处理的信号是由滤波器34B提供的路径S(z)的响应的估计的拷贝塑形的参考麦克风信号ref和包括误差麦克风信号err的另一个信号。通过用路径S(z)的响应的估计的拷贝,响应SECOPY(z),变换参考麦克风信号ref,并且在去除误差麦克风信号err归因于源音频的回播的分量之后使误差麦克风信号err最小,适应性滤波器32调适为P(z)/S(z)的期望响应。除误差麦克风信号err以外,通过W系数控制模块31与滤波器34B的输出一起处理的其他信号包括相反数量的源音频,其包括由滤波器响应SE(z)处理的下行链路语音信号ds和内部音频ia,响应SE(z)的响应SECOPY(z)是一拷贝。通过注入相反数量的源音频,防止适应性滤波器32调适为存在于误差麦克风信号err中的相对大量源音频,并且通过用路径S(z)的响应的估计变换下行链路语音信号ds和内部音频ia的反拷贝,在处理之前从误差麦克风信号err去除的源音频应与在误差麦克风信号err处重现的下行链路语音信号ds和内部音频ia的预期版本匹配,因为S(z)的电路径及声路径为下行链路语音信号ds和内部音频ia到达误差麦克风E处所采用的路径。滤波器34B本质上不是适应性滤波器,但具有可调响应,其被调适到匹配适应性滤波器34A的响应,以便滤波器34B的响应追踪适应性滤波器34A的调适。

为了实施上面所述,适应性滤波器34A具有由SE系数控制模块33控制的系数,适应性滤波器34A在由组合器36A去除上述已滤波下行链路语音信号ds和内部音频ia之后,处理源音频(ds+ia)和误差麦克风信号err,其已经由适应性滤波器34A滤波来表示被递送到误差麦克风E的期望源音频。适应性滤波器34A由此被调适来从下行链路语音信号ds和内部音频ia产生一信号,其在从误差麦克风信号err减除时,包含误差麦克风信号err非归因于源音频(ds+ia)的含量。然而,如果下行链路语音信号ds和内部音频ia都不存在,或者具有非常小的幅度,那么SE系数控制模块33将不具有足够的输入以估计声路径S(z)。因此,在ANC电路30中,源音频检测器35检测是否有足够的源音频(ds+ia)存在,并且如果有足够的源音频(ds+ia)存在,更新次级路径估计。源音频检测器35可以由语言存在信号代替,如果该信号可以从下行链路语音信号ds的数字源获得,或者由从媒体回播控制电路提供的回播有源信号代替。如果源音频(ds+ia)不存在或者幅度较小,选择器38选择频率塑形噪音产生器40的输出,其提供输出(ds+ia)/noise给图2的组合器26,并且提供输入到次级路径适应性滤波器34A和SE系数控制模块33,允许ANC电路30保持估计声路径S(z)。替代地,选择器38可以用将噪音信号叠加到源音频(ds+ia)的组合器代替。

当源音频(ds+ia)不存在,图1的扬声器SPKR将实际上重现从频率塑形噪音产生器40注入的噪音,并且因此不期望地使设备的用户听到注入噪音。因此,频率塑形噪音产生器40通过观察从次级路径适应性滤波器34A的输出产生的误差信号塑形所产生噪音信号的频率频谱。误差信号提供周围噪音的匹配的良好估计,其影响用户实际上听到的注入噪音的量。听者听到的注入噪音由路径S(z)变换。因此,频率塑形噪音产生器40使用在由SE系数控制模块33产生时次级路径滤波器响应SE(z)的系数的至少一部分,以确定被应用到由频率塑形噪音产生器40产生的注入噪音的适应性噪音塑形滤波器响应。

现在参考图4,示出频率塑形噪音产生器40的细节。快速傅立叶变换(FFT)模块41确定误差信号e的频率含量,并且提供信息给系数控制模块42。系数控制模块42也接收由SE系数控制模块33产生的至少一些系数信息,其在一些实施例中仅为次级路径滤波器响应SE(z)的增益,并且在其他实施例中为整个次级路径滤波器响应SE(z)。系数控制42的输出适应性地控制噪音塑形滤波器43,其滤波器噪音产生器45的输出,该输出总体上具有均匀频谱例如白噪声。一般而言,噪音塑形滤波器43被调适为与误差信号e具有相同的功率谱密度(PSD)。增益控制模块46根据控制值noise level控制噪音信号在提供给噪音塑形滤波器43时的幅度。选择器44根据控制信号shaping enable在噪音塑形滤波器43的输出与增益控制模块46的输出之间进行选择,控制信号shaping enable根据个人音频设备的操作模式进行设置或复位。下面描述频率塑形噪音产生器40的操作的进一步细节。

现在参考图5,图解说明了用于确定噪音塑形滤波器43的期望频率响应的流程,如可以由图4的系数控制模块42执行。误差信号e的功率谱密度(PSD)由FFT模块41在步骤50-步骤51中确定。最终PSD系数在时间域中(步骤52)通过平滑算法平滑,其中上升时间由控制值PSD_ATTACK确定,并且下降时间由控制值PSD_DECAY确定。可以使用来执行步骤52的时间域平滑的示例平滑算法由下式给出:

P(k,n)=atP(k,n-1)+(1-at)|e(k)|2

其中P(k,n)是误差信号e的已计算PSD,at是时间域平滑系数,并且k是对应于FFT系数的频率仓标号。时间域平滑PSD在频率域中(步骤53)通过由控制值PSD_SMOOTH控制频率平滑算法进行平滑。示例频率平滑算法可以从最低频率仓平滑PSD频谱并且前进到最高频率仓,如在下面等式中,

P'(k+1)=afP'(k)+(1-af)P(k+1)

其中P是在时间域平滑之后误差信号的PSD,P'是在频率域平滑之后误差信号的PSD,k表示频率仓,并且af是频率域平滑系数。在频率域中通过增加频率仓进行平滑之后,误差信号e的PSD从最高频率仓开始平滑并且在最低频率仓结束,如由下面等式示例:

P"(k-1)=afP"(k)+(1-af)P'(k-1)

其中P"(k)是仓k的最终频率平滑PSD结果。在步骤52-步骤53中执行的平滑确保从最终已处理PSD去除归因于存在于误差信号e中的窄带信号的变突并且窄带频率波峰。

一旦频率平滑完成,时间平滑和频率平滑PSD被根据如由图3的次级路径适应性滤波器34A的系数确定的估计次级路径响应的至少一个系数改变,其可以是由控制值SE_GAIN_COMPENSATION确定的增益调整,或者建模估计次级响应SE_INV_EQ的反量的频率相关响应(步骤54)。在一个示例中,误差信号e的平滑PSD,P"(k),在对应于仓k的频带中由响应SE(z)的反量CSE_inv变换,

响应SE(z)的增益也通过SE补偿PSD乘以增益因子GSE_gain_inv来补偿:

接下来根据控制值EQ_0_EQ_8应用预定参数方程(步骤55),其可以简化使用来实施噪音塑形滤波器43的有限脉冲响应(FIR)滤波器的设计,并且应用压缩到均衡化噪音以便根据控制值DYNAMIC_RANGE限制最终PSD的动态范围(步骤56)。误差信号e的最终已处理PSD使用为用于噪音塑形滤波器43的目标频率响应,其在所描述实施例中为由系数控制42根据FFT模块41的输出控制的FIR滤波器(步骤57)。使用来实施噪音塑形滤波器43的FIR滤波器的频率响应的幅度由下式给出:

现在参考图6,图解说明了用于确定响应SE(z)的标准化反量的流程。首先,计算响应SE(z)的FFT(步骤60),并且计算响应SE(z)的PSD(步骤61),以及在时间和频率域中根据上升时间控制值SE_COMP_ATTACK和下降时间控制值SE_COMP_DECAY进行平滑(步骤62)。然后,为在截止频率例如6kHz之下的每个仓找到FFE的最大分量(步骤63)并且反相每个频率分量(步骤64)。每个仓的最大值的一半叠加到最终响应(步骤65)并且对每个频带k在范围[SE_COMP_MIN(k):SE_COMP_MAX(k)]内应用极限来限制已计算SE(z)响应的反量(步骤66),提供对应于SE(z)的反量的最终均衡化值(步骤67)。

现在参考图7,示出用于标准化SE(z)的反量的增益的流程。首先,从图6的步骤60找回响应SE(z)的已计算FFT(步骤70),并且对具体频率仓SE_GAIN_BINS计算FFT的能量(步骤61),并且在时间域中根据上升时间值SE_GAIN_ATTACK和下降时间值SE_GAIN_DECAY进行平滑(步骤71)。将最终增益值与预设增益值进行比较(步骤72),并且根据从SE_GAIN_LIMIT_MIN到SE_GAIN_LIMIT_MAX的边界范围进行限制(步骤73)。

现在参考图8,在流程图中示出用于确定什么时候通过维持图4的控制信号shaping enable来激活噪音塑形的流程。首先,计算噪音水平(步骤80)并且与掉电阈值比较(判定82)。如果噪音水平小于掉电阈值(判定82),那么噪音塑形停止(步骤81)。并且如果ANC监督系统指示无声或者其他错误情况(判定83),那么噪音塑形停止(步骤81)。ANC系统的监督更详细地描述在名称为“OVERSIGHT CONTROL OF AN ADAPTIVE NOISE CANCELER IN A PERSONAL AUDIO DEVICE(在个人音频设备中适应性噪音消除的监督控制)”的已公开US专利申请US20120140943A1中,其公开通过参考并入本文。最后,如果回播音频信号具有足够的幅度(判定84),那么噪音塑形停止(步骤81)。如果没有上述情况适用于停止噪音塑形,那么激活噪音塑形(步骤85)。直到程序结束或者系统断电(判定86),重复步骤80-步骤85。

现在参考图9,在流程图中示出用于抑制实施噪音塑形滤波器43的FIR滤波器的设计的过程的流程。如果噪音塑形停止(判定110),那么如图5所示的设计过程暂停(步骤111)。如果噪音塑形有效(判定110),那么设备在耳旁(判定112),并且如果响应W(z)被冻结(即图3的W系数控制模块31有效地更新图3的适应性滤波器32的响应W(z))(判定113),那么,如图5所示的设计过程也暂停(步骤111)。否则,如果噪音塑形有效并且设备不在耳旁(判定112),或者设备在耳旁(判定112)并且响应W(z)没有被冻结,那么根据图5的流程更新滤波器设计(步骤114)。直到程序结束,或者系统断电(判定115),重复步骤110-步骤114。

现在参考图10,示出用于确定用于实施由图5的过程确定的响应的FIR滤波器系数的流程。确定期望的频率相关幅度响应(步骤120),例如通过执行图5的流程。构造相位信息(步骤121),并且确定响应的实部和虚部(步骤122)。计算反向FFT(步骤123),并且应用窗口函数(步骤124)。然后将滤波器设计截短为64抽头FIR滤波器(步骤125)并且从已截短滤波器设计应用FIR滤波器系数(步骤126)。

现在参考图11,ANC系统的方框图示出用于实施如图3所描述的ANC技术,并且具有如可以实施在图2的音频集成电路20A、20B内的处理电路140,其图示为组合在一个电路内,但也可以实施为两个或更多个互相通信的处理电路。处理电路140包括联接到存储器144的处理器核142,在存储器144中存贮了包括可以执行上述ANC技术的一些或全部以及其他信号处理的计算机程序产品的程序指令。可选地,专用数字信号处理(DSP)逻辑146可以设置来执行由处理电路140提供的ANC信号处理的一部分或替代地全部。处理电路140还包括ADC 21A-21E,用于分别从参考麦克风R1、误差麦克风E1、近端语言麦克风NS、参考麦克风R2和误差麦克风E2接收输入。在参考麦克风R1、误差麦克风E1、近端语言麦克风NS、参考麦克风R2和误差麦克风E2的其中一个或多个具有数字输出或者被从远程ADC发送数字信号的替代实施例中,可以省略相应的ADC 21A-21E,并且数字麦克风信号直接对接到处理电路140。DAC 23A和放大器A1也由处理电路140提供,用于提供扬声器输出信号给扬声器SPKR1,包括如上所述的抗噪音。相似地,DAC 23B和放大器A2提供另一个扬声器输出信号给扬声器SPKR2。扬声器输出信号可以是数字输出信号,用于提供给声学重现数字输出信号的模块。

虽然以参照优选实施例展示来特别详细描述本发明,但是本领域的技术人员可以理解,可在不脱离本发明的精神及范围的情况下在其中作出上述及其他形式及细节的改变。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1