一种单边带偏振复用直接检测方法与系统与流程

文档序号:12375190阅读:354来源:国知局
一种单边带偏振复用直接检测方法与系统与流程
本发明涉及光传输
技术领域
,特别是指一种单边带偏振复用直接检测方法与系统。
背景技术
:近年来,由于相干检测技术和数字信号处理(digitalsignalprocessing,DSP)的出现,长距离光传输网络已经实现了Terabit(太比特)数量级的传输。随着,诸如数据中心互联等短距离光应用对流量需求的不断增长,短距离光传输系统也需要提高其传输容量。不同于长距离光传输网络的成本可以被大量的用户群体所分担,短距离光通信则需要考虑收发器成本和操作复杂度问题。因此,在短距离光传输系统中,出于系统成本、复杂度等的考虑,一般采用直接检测(directdetection,DD)技术,同时利用多电平先进调制技术实现高速率传输,多电平调制技术主要包括脉冲幅度调制(pulseamplitudemodulation,PAM)、正交频分复用(orthogonalfrequencydivisionmultiplexing,OFDM)、无载波幅度相位(carrierlessamplitudephase,CAP)调制等。然而在直接检测系统中,由于接收端光电检测器(photodetector,PD)的平方律特性,会使接收信号受到信号间拍打噪声(signal-to-signalbeatinginterference,SSBI)的干扰,最终影响系统性能。另外,光偏振复用(polarizationmultiplexing,PM)技术可以在采用相同调制方式和相同器件条件下,实现一倍的系统传输速率提升。为了进一步提高系统传输容量,偏振复用与直接检测DD相结合的技术得到了广泛研究。现有技术,在单偏振态单边带直接检测(SSB-DD)系统中,为了避免信号受到SSBI的影响,通常在信号与光载波之间分配一个保护间隔,而这个保护间隔的宽度通常等于信号的带宽。这样SSBI将落入保护间隔内,再通过滤波器很容易将其滤除,从而使系统性能得到提升,但是这会使系统接收端频谱利用率降低1/2,单偏振态单边带直接检测(SSB-DD)系统的频谱示意图如图1(a)-(b)所示。技术实现要素:本发明要解决的技术问题是提供一种单边带偏振复用直接检测方法与系统,以解决现有技术所存在的系统接收端频谱利用率低的问题。为解决上述技术问题,本发明实施例提供一种单边带偏振复用直接检测方法,包括:在发送端,获取第一路电信号和第二路电信号;将获取的所述第一路电信号和第二路电信号分别在一个激光器的两个正交偏振态上进行单边带调制;将单边带调制后的两个正交偏振态上的光信号合成偏振复用信号并向接收端发送合成的所述偏振复用信号;在所述接收端根据接收到的所述偏振复用信号恢复出发送端发送的信号。进一步地,所述将获取的所述第一路电信号和第二路电信号分别在一个激光器的两个正交偏振态上进行单边带调制包括:将一个激光器发出的光束分成两个正交的偏振态,所述两个正交的偏振态包括:第一偏振态和第二偏振态;将获取的所述第一路电信号在所述第一偏振态上进行单边带调制,单边带调制后得到的光信号Ex(t)表示为:Ex(t)=(Ax+sx(t)ej2πfbt)ej2πf0t=Axej2πf0t+sx(t)ej2π(f0+fb)t]]>将获取的所述第二路电信号在所述第二偏振态上进行单边带调制,单边带调制后得到的光信号Ey(t)表示为:Ey(t)=(Ay+sy(t)ej2πf2bt)ej2πf0t=Ayej2πf0t+sy(t)ej2π(f0+f2b)t]]>其中,Ax、Ay分别表示第一偏振态、第二偏振态上光载波的幅度,sx(t)、sy(t)分别表示第一路电信号、第二路电信号,f0表示光载波的中心频率,f0+fb表示sx(t)在第一偏振态上单边带调制后得到的单边带信号的中心频率,f0+f2b表示sy(t)在第二偏振态上单边带调制后得到的单边带信号的中心频率。进一步地,所述在所述接收端根据接收到的所述偏振复用信号恢复出发送端发送的信号包括:在所述接收端,通过光电检测器将接收到所述偏振复用信号转换成电信号,其中,所述光电检测器的数量为1;利用频率分布特性对转换成的所述电信号进行处理,分离出第一偏振态上的电信号和第二偏振态上的电信号;对分离后的第一偏振态上的电信号和第二偏振态上的电信号分别进行信号恢复处理,得到发送端发送的信号。进一步地,所述利用频率分布特性对转换成的所述电信号进行处理,分离出第一偏振态上的电信号和第二偏振态上的电信号之前,所述方法还包括:对转换成的所述电信号进行下变频处理。本发明实施例还提供一种单边带偏振复用直接检测系统,包括:获取模块,用于在发送端,获取第一路电信号和第二路电信号;调制模块,用于将获取的所述第一路电信号和第二路电信号分别在一个激光器的两个正交偏振态上进行单边带调制;偏振合束器,用于将单边带调制后的两个正交偏振态上的光信号合成偏振复用信号并向接收端发送合成的所述偏振复用信号;接收机,用于在所述接收端根据接收到的所述偏振复用信号恢复出发送端发送的信号。进一步地,所述调制模块包括:偏振分束器,用于将一个激光器发出的光束分成两个正交的偏振态,所述两个正交的偏振态包括:第一偏振态和第二偏振态;第一单边带调制器,用于将获取的所述第一路电信号在所述第一偏振态上进行单边带调制,单边带调制后得到的光信号Ex(t)表示为:Ex(t)=(Ax+sx(t)ej2πfbt)ej2πf0t=Axej2πf0t+sx(t)ej2π(f0+fb)t]]>第二单边带调制器,用于将获取的所述第二路电信号在所述第二偏振态上进行单边带调制,单边带调制后得到的光信号Ey(t)表示为:Ey(t)=(Ay+sy(t)ej2πf2bt)ej2πf0t=Ayej2πf0t+sy(t)ej2π(f0+f2b)t]]>其中,Ax、Ay分别表示第一偏振态、第二偏振态上光载波的幅度,sx(t)、sy(t)分别表示第一路电信号、第二路电信号,f0表示光载波的中心频率,f0+fb表示sx(t)在第一偏振态上单边带调制后得到的单边带信号的中心频率,f0+f2b表示sy(t)在第二偏振态上单边带调制后得到的单边带信号的中心频率。进一步地,所述接收机包括:光电检测器、分离模块及恢复模块,其中,所述光电检测器的数量为1;所述光电检测器,用于将接收到所述偏振复用信号转换成电信号;所述分离模块,用于利用频率分布特性将模数转换处理后的两个正交偏振态上信号进行分离;所述恢复模块,用于对分离后的第一偏振态上的电信号和第二偏振态上的电信号分别进行信号恢复处理,得到发送端发送的信号。进一步地,所述接收机还包括:下变频器;所述下变频器,用于对转换成的所述电信号进行下变频处理。本发明的上述技术方案的有益效果如下:上述方案中,在发送端,通过获取第一路电信号和第二路电信号;将获取的所述第一路电信号和第二路电信号分别在一个激光器的两个正交偏振态上进行单边带调制;将单边带调制后的两个正交偏振态上的光信号合成偏振复用信号并向接收端发送合成的所述偏振复用信号;在所述接收端根据接收到的所述偏振复用信号恢复出发送端发送的信号。这样,通过对两个正交偏振态分别进行SSB调制,与现有的单偏振态SSB-DD系统相比,能够提高接收端频谱的利用率。附图说明图1(a)为传统的单偏振态SSB-DD系统发送端的频谱示意图;图1(b)为传统的单偏振态SSB-DD系统经光电检测后的电信号频谱示意图;图2为本发明实施例提供的单边带偏振复用直接检测方法的流程示意图;图3为本发明实施例提供的单边带偏振复用直接检测方法的原理示意图;图4(a)为本发明实施例提供的sx(t)在第一偏振态上单边带调制后得到的单边带信号的频谱示意图;图4(b)为本发明实施例提供的sy(t)在第二偏振态上单边带调制后得到的单边带信号的频谱示意图;图4(c)为本发明实施例提供的偏振复用信号的频谱示意图;图4(d)为本发明实施例提供的光电检测后的电信号频谱示意图;图5为本发明实施例提供的接收端DSP处理流程;图6为本发明实施例提供的单边带偏振复用直接检测系统的结构示意图。具体实施方式为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。本发明针对现有系统接收端频谱利用率低的问题,提供一种单边带偏振复用直接检测方法与系统。实施例一参看图2所示,本发明实施例提供的单边带偏振复用直接检测方法,包括:步骤101,在发送端,获取第一路电信号和第二路电信号;步骤102,将获取的所述第一路电信号和第二路电信号分别在一个激光器的两个正交偏振态上进行单边带调制;步骤103,将单边带调制后的两个正交偏振态上的光信号合成偏振复用信号并向接收端发送合成的所述偏振复用信号;步骤104,在所述接收端根据接收到的所述偏振复用信号恢复出发送端发送的信号。本发明实施例所述的单边带偏振复用直接检测方法,在发送端,通过获取第一路电信号和第二路电信号;将获取的所述第一路电信号和第二路电信号分别在一个激光器的两个正交偏振态上进行单边带调制;将单边带调制后的两个正交偏振态上的光信号合成偏振复用信号并向接收端发送合成的所述偏振复用信号;在所述接收端根据接收到的所述偏振复用信号恢复出发送端发送的信号。这样,通过对两个正交偏振态分别进行SSB调制,与现有的单偏振态SSB-DD系统相比,能够提高接收端频谱的利用率。本实施例中,在相同的信号带宽下,与现有的单偏振态SSB-DD系统相比,接收端频率利用率可由1/2提升至2/3。本实施例中,为了获取第一路电信号和第二路电信号,在发送端,可以先将原始的两路比特流信息进行调制,调制之后的信号分别经过数模转换器(digital-to-analogconverter,DAC)生成所述第一路电信号和第二路电信号。在前述单边带偏振复用直接检测方法的具体实施方式中,进一步地,所述将获取的所述第一路电信号和第二路电信号分别在一个激光器的两个正交偏振态上进行单边带调制包括:将一个激光器发出的光束分成两个正交的偏振态,所述两个正交的偏振态包括:第一偏振态和第二偏振态;将获取的所述第一路电信号在所述第一偏振态上进行单边带调制,单边带调制后得到的光信号Ex(t)表示为:Ex(t)=(Ax+sx(t)ej2πfbt)ej2πf0t=Axej2πf0t+sx(t)ej2π(f0+fb)t]]>将获取的所述第二路电信号在所述第二偏振态上进行单边带调制,单边带调制后得到的光信号Ey(t)表示为:Ey(t)=(Ay+sy(t)ej2πf2bt)ej2πf0t=Ayej2πf0t+sy(t)ej2π(f0+f2b)t]]>其中,Ax、Ay分别表示第一偏振态、第二偏振态上光载波的幅度,sx(t)、sy(t)分别表示第一路电信号、第二路电信号,f0表示光载波的中心频率,f0+fb表示sx(t)在第一偏振态上单边带调制后得到的单边带信号的中心频率,f0+f2b表示sy(t)在第二偏振态上单边带调制后得到的单边带信号的中心频率。本实施例中,如图3所示,通过偏振分束器(polarizationbeamsplitter,PBS)将一个激光器发出的光束分成两个正交的偏振态,其中,所述两个正交的偏振态包括:第一偏振态和第二偏振态;然后,再分别在所述激光器的两个正交偏振态上进行单边带调制;具体的,将获取的所述第一路电信号在所述第一偏振态上进行单边带调制,单边带调制后得到的光信号Ex(t)表示为:Ex(t)=(Ax+sx(t)ej2πfbt)ej2πf0t=Axej2πf0t+sx(t)ej2π(f0+fb)t]]>将获取的所述第二路电信号在所述第二偏振态上进行单边带调制,单边带调制后得到的光信号Ey(t)表示为:Ey(t)=(Ay+sy(t)ej2πf2bt)ej2πf0t=Ayej2πf0t+sy(t)ej2π(f0+f2b)t]]>其中,Ax、Ay分别表示第一偏振态、第二偏振态上光载波的幅度,sx(t)、sy(t)分别表示第一路电信号、第二路电信号,f0表示光载波的中心频率;f0+fb表示sx(t)在第一偏振态上单边带调制后得到的单边带信号的中心频率,sx(t)在第一偏振态上单边带调制后得到的单边带信号的频谱示意图如图4(a)所示;f0+f2b表示sy(t)在第二偏振态上单边带调制后得到的单边带信号的中心频率,sy(t)在第二偏振态上单边带调制后得到的单边带信号的频谱示意图如图4(b)所示。本实施例中,信号sx(t)与光载波之间的保护频带间隔与信号sx(t)的带宽大小一致;信号sy(t)与光载波之间的保护频带间隔为sy(t)信号带宽的两倍。本实施例中,单边带调制后的两个正交偏振态上的光信号经过偏振合束器(polarizationbeamcombiner,PBC)合成之后,利用光纤进行传输,图4(c)为传输的偏振复用信号的频谱示意图。本实施例中,具体的,合成的所述偏振复用信号可以通过标准单模光纤(standardsinglemodefiber,SSMF)进行传输,如图3所示。在前述单边带偏振复用直接检测方法的具体实施方式中,进一步地,所述在所述接收端根据接收到的所述偏振复用信号恢复出发送端发送的信号包括:在所述接收端,通过光电检测器将接收到所述偏振复用信号转换成电信号,其中,所述光电检测器的数量为1;利用频率分布特性对转换成的所述电信号进行处理,分离出第一偏振态上的电信号和第二偏振态上的电信号;对分离后的第一偏振态上的电信号和第二偏振态上的电信号分别进行信号恢复处理,得到发送端发送的信号。本实施例中,在接收端,首先直接采用一个光电检测器(PD)对接收到所述偏振复用信号进行光电检测,将光信号转换成电信号,图4(d)为光电检测之后电信号频谱示意图;接着,利用频率分布特性对转换成的所述电信号进行处理,分离出第一偏振态上的电信号和第二偏振态上的电信号;对分离后的第一偏振态上的电信号和第二偏振态上的电信号分别进行信号恢复处理,得到发送端发送的信号。这样,在接收端只采用1个PD接收所述偏振复用信号,在有效避免接收端偏振解复用出现奇异性问题的同时,还能使系统结构简单化,同时降低系统成本。本实施例中,在接收端,将光信号转换成电信号后,还可以利用下变频器(downconverter)对转换成的所述电信号进行下变频处理,将其下变频至一定的频率以降低模数转换器(analog-to-digitalconverter,ADC)的采样率,接着通过低通滤波器(LowPassFilter,LPF)、ADC采样之后,通过数字信号处理器(DSP)利用频率分布特性对转换成的所述电信号进行处理,分离出第一偏振态上的电信号和第二偏振态上的电信号,并对分离后的第一偏振态上的电信号和第二偏振态上的电信号分别进行信号恢复处理,得到发送端发送的信号,如图3所示。本实施例中,作为一可选实施例,所述利用频率分布特性对转换成的所述电信号进行处理,分离出第一偏振态上的电信号和第二偏振态上的电信号之前,所述方法还包括:对转换成的所述电信号进行下变频处理。为了更好地理解本实施例,结合具体的例子对本实施例所述的单边带偏振复用直接检测方法进行说明,所述方法具体可以包括:A11,在发送端,可以先将原始的两路比特流信息进行OFDM调制,OFDM调制之后,生成两路OFDM数字信号,生成的两路OFDM数字信号分别经数模转换器(digital-to-analogconverter,DAC)转换之后生成第一路电信号sx(t)和第二路电信号sy(t);A12,用X偏振态表示第一偏振态、Y偏振态表示第二偏振态,对X偏振态和Y偏振态上的OFDM信号分别进行SSB调制,其中,X偏振态上的OFDM信号经过SSB调制后的光信号可以表示为:Ex(t)=(Ax+sx(t)ej2πfbt)ej2πf0t=Axej2πf0t+sx(t)ej2π(f0+fb)t]]>Y偏振态上的OFDM信号经过SSB调制后的光信号可以表示为:Ey(t)=(Ay+sy(t)ej2πf2bt)ej2πf0t=Ayej2πf0t+sy(t)ej2π(f0+f2b)t]]>其中,Ax(y)(Ax、Ay的简称)为X(Y)偏振态上光载波的幅度,f0是光载波的中心频率,f0+fb表示sx(t)在X偏振态上单边带调制后得到的单边带信号的中心频率,f0+f2b表示sy(t)在Y偏振态上单边带调制后得到的单边带信号的中心频率。A13,单边带调制后的两个正交偏振态上的光信号经过PBC合成之后,通过光纤传输;A14,在接收端只采用1个PD接收所述偏振复用信号,在短距离光传输中,两个偏振态可以看作独立的信道,采用PD检测后,X、Y偏振态不会相互产生拍频效应,则X偏振态上的信号经过PD检测之后得到:Y偏振态上的信号经过PD检测之后得到:其中,hf(t)表示光信道的脉冲响应,*表示复共轭。本实施例中,由式(1)、(2)可以看到,经过光电检测之后,X、Y偏振态上的信号间拍打噪声(SSBI)会落入同一个保护间隔中,如图4(d)所示;接下来,利用下变频器将光电检测后的电信号下变频至一定的频率以降低ADC采样率,接着通过LPF、ADC采样之后,通过DSP利用频率分布特性(高频、低频分布特性)将X与Y偏振态上的单边带(SSB)信号进行分离提取出来,接着,即可采用传统的SSB信号处理方式分别对两路分离后的信号进行恢复处理,得到发送端发送的信号,接收端DSP处理流程如图5所示。本实施例所述的单边带偏振复用直接检测方法,通过对两个正交偏振态分别进行SSB调制,与现有的单偏振态SSB-DD系统相比,能够提高接收端频谱的利用率,具体的,在相同的信号带宽下,与单偏振态SSB-DD系统相比,接收端频谱利用率由1/2提升至2/3;接收端只需要采用1个PD实现光电转换,在有效避免接收端偏振解复用出现奇异性问题的同时,使系统成本降低。本实施例所述的单边带偏振复用直接检测方法,有望成为未来短距离光传输系统单波长信道比特率提升的高效且低成本的实施方案。实施例二本发明还提供一种单边带偏振复用直接检测系统的具体实施方式,由于本发明提供的单边带偏振复用直接检测系统与前述单边带偏振复用直接检测方法的具体实施方式相对应,该单边带偏振复用直接检测系统可以通过执行上述方法具体实施方式中的流程步骤来实现本发明的目的,因此上述单边带偏振复用直接检测方法具体实施方式中的解释说明,也适用于本发明提供的单边带偏振复用直接检测系统的具体实施方式,在本发明以下的具体实施方式中将不再赘述。参看图6所示,本发明实施例还提供一种单边带偏振复用直接检测系统,包括:获取模块11,用于在发送端,获取第一路电信号和第二路电信号;调制模块12,用于将获取的所述第一路电信号和第二路电信号分别在一个激光器的两个正交偏振态上进行单边带调制;偏振合束器13,用于将单边带调制后的两个正交偏振态上的光信号合成偏振复用信号并向接收端发送合成的所述偏振复用信号;接收机14,用于在所述接收端根据接收到的所述偏振复用信号恢复出发送端发送的信号。本发明实施例所述的单边带偏振复用直接检测系统,在发送端,通过获取模块获取第一路电信号和第二路电信号;通过调制模块将获取的所述第一路电信号和第二路电信号分别在一个激光器的两个正交偏振态上进行单边带调制;通过偏振合束器将单边带调制后的两个正交偏振态上的光信号合成偏振复用信号并向接收端发送合成的所述偏振复用信号;在接收端,通过接收机根据接收到的所述偏振复用信号恢复出发送端发送的信号。这样,通过对两个正交偏振态分别进行SSB调制,与现有的单偏振态SSB-DD系统相比,能够提高接收端频谱的利用率。在前述单边带偏振复用直接检测系统的具体实施方式中,进一步地,所述调制模块包括:偏振分束器,用于将一个激光器发出的光束分成两个正交的偏振态,所述两个正交的偏振态包括:第一偏振态和第二偏振态;第一单边带调制器,用于将获取的所述第一路电信号在所述第一偏振态上进行单边带调制,单边带调制后得到的光信号Ex(t)表示为:Ex(t)=(Ax+sx(t)ej2πfbt)ej2πf0t=Axej2πf0t+sx(t)ej2π(f0+fb)t]]>第二单边带调制器,用于将获取的所述第二路电信号在所述第二偏振态上进行单边带调制,单边带调制后得到的光信号Ey(t)表示为:Ey(t)=(Ay+sy(t)ej2πf2bt)ej2πf0t=Ayej2πf0t+sy(t)ej2π(f0+f2b)t]]>其中,Ax、Ay分别表示第一偏振态、第二偏振态上光载波的幅度,sx(t)、sy(t)分别表示第一路电信号、第二路电信号,f0表示光载波的中心频率,f0+fb表示sx(t)在第一偏振态上单边带调制后得到的单边带信号的中心频率,f0+f2b表示sy(t)在第二偏振态上单边带调制后得到的单边带信号的中心频率。在前述单边带偏振复用直接检测系统的具体实施方式中,进一步地,所述接收机包括:光电检测器、分离模块及恢复模块,其中,所述光电检测器的数量为1;所述光电检测器,用于将接收到所述偏振复用信号转换成电信号;所述分离模块,用于利用频率分布特性将模数转换处理后的两个正交偏振态上信号进行分离;所述恢复模块,用于对分离后的第一偏振态上的电信号和第二偏振态上的电信号分别进行信号恢复处理,得到发送端发送的信号。在前述单边带偏振复用直接检测系统的具体实施方式中,进一步地,所述接收机还包括:下变频器;所述下变频器,用于对转换成的所述电信号进行下变频处理。以上所述是本发明的优选实施方式,应当指出,对于本
技术领域
的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1