用于高疲劳寿命无铅焊料的结构及方法

文档序号:8136106阅读:456来源:国知局
专利名称:用于高疲劳寿命无铅焊料的结构及方法
技术领域
本发明涉及一种可用于可焊接地耦合电子模块(例如,陶瓷或塑料球栅阵列模块)至电路板的方法及结构。
电子模块(例如,陶瓷或塑料球栅阵列模块)典型上通过含铅焊料互联而耦合至电路卡。不幸,铅有毒且对环境有害。于是,需要一种无铅焊料互联结构,用于可靠地耦合电子模块至电路卡。
本发明,在第一方面,提供一种用于形成电子结构之方法,包括下列步骤提供一基片;及在不使用连结焊料完成焊接的情况下将无铅焊料构件焊接至基片,其中焊料构件包括锡-锑合金,该合金包含约3%至约15%重量的锑。
优选,锡-锑合金包含约5%至约10%重量的锑。
优选,焊接步骤包括焊料构件的再流。
优选,焊接步骤将焊料构件的高度减少在约25%至约30%之间。
优选,基片包括陶瓷球栅阵列(CBGA)模块或塑料球栅阵列(PBGA)模块。
优选,基片包括半导体芯片。
本发明合适地提供一种用于形成电子结构的方法,优选包括下列步骤提供一第一基片与一第二基片;在不使用连结焊料完成焊接的情况下将无铅焊料构件焊接至第一基片,其中焊料构件包括锡-锑合金,其包含约3%至约15%重量的锑;及以无铅的连结焊料将焊料构件焊接至第二基片。
优选,锡-锑合金包含约5%至约10%重量的锑。
优选,焊接焊料构件到第二基片的步骤包括在连结焊料的液相线温度之上且在不损伤电子结构的任何部分的最高温度之下的温度再流连结焊料。
优选,焊接焊料构件到第二基片的步骤包括在连结焊料的液相线温度之上且在低于约250℃的温度再流连结焊料。
优选,焊接焊料构件到第二基片的步骤包括在连结焊料的液相线温度之上且在不损伤电子结构的任何部分的最高温度之下的温度再流连结焊料。
优选,连结焊料包括锡-银-铜合金,该合金包含约95.5-96.0%重量的锡,约3.5-4.0%重量的银,和约0.5-1.0%重量的铜。
优选,焊接焊料构件到第二基片的步骤包括在230℃和约250℃之间的温度再流连结焊料。
优选,焊接焊料构件到第二基片的步骤包括熔化焊料构件。
优选,焊接焊料构件到第二基片的步骤包括将锡-锑合金与连结焊料混合。
优选,焊接焊料构件到第二基片的步骤不包括熔化焊料构件。
优选,焊接焊料构件到第二基片的步骤不包括将锡-锑合金与连结焊料混合。
优选,第一基片包含陶瓷球栅阵列(CBGA)模块或塑料球栅阵列(PBGA)模块。
优选,第一基片包括半导体芯片。
本发明,在第二方面,提供一种电子结构,包括一基片;一无铅焊料构件,其焊接至基片,而焊料构件与基片之间无连结焊料,其中焊料构件包括锡-锑合金,其包含约3%至约15%重量的锑。
优选,锡-锑合金包含约5%至约10%重量的锑。
优选,基片包含陶瓷球栅阵列(CBGA)模块或塑料球栅阵列(PBGA)模块。
优选,基片包括半导体芯片。
本发明合适地提供一种电子结构,优选包括一第一基片;一第二基片;及一无铅焊料构件,其焊接至第一基片,而焊料构件与第一基片之间无连结焊料,其中焊料构件包括锡-锑合金,其包含约3%至约15%重量的锑,且其中用无铅的连结焊料将焊料构件焊接至第二基片。
优选,锡-锑合金包含约5%至约10%重量的锑。
优选,锡-锑合金与连结焊料混合。
优选,锡-锑合金不与连结焊料混合。
优选,连结焊料包括锡-银-铜合金,该合金包含约95.5-96.0%重量的锡,约3.5-4.0%重量的银,和约0.5-1.0%重量的铜。
优选,第一基片包含陶瓷球栅阵列(CBGA)模块或塑料球栅阵列(PBGA)模块。
优选,第一基片包括半导体芯片。
本发明合适地提供一种无铅焊料互联结构,用于可靠地耦合电子模块至电路卡。
现在将参照附图仅借助实例说明本发明的优选实施例,其中

图1绘示一依据本发明之实施例的电子结构前剖视图,其包含一在电子模块上的焊料球。
图2绘示在焊料球已焊接至电子模块以后的图1。
图3绘示在电子模块已耦合至一电路卡以后的图1,耦合系使用连结焊料将焊料球焊接至电路卡。
图4绘示图3之焊料球材料与图3之连结焊料材料混合之图像。
图1绘示一依据本发明之实施例的电子结构10的前剖视图,其包含一在电子模块12上的无铅焊料球16。电子模块12可以包含一芯片载体,诸如陶瓷球栅阵列(CBGA)模块或塑料球栅阵列(PBGA)模块。无铅焊料球16包括锡-锑(Sn/Sb)合金,其包含约3%至约15%重量的锑。焊料球16在存在于电子模块12上的导电垫座32处焊接至电子模块12。焊料球16焊接至电子模块12是通过使焊料球16于一再流温度再流进行的,该再流温度超过焊料球16中之锡-锑合金的液相线温度。焊料球16的再流可以通过本领域技术人员已知的任何方法完成,诸如通过在再流炉中加热。焊料球16于焊接至电子模块12之前在方向26具有初始高度H0,而于焊接至电子模块12以后高度减少为H1(即,H1<H0),原因在于当焊料球16再流的时候,焊料球16材料扩展于导电垫座32上。
下表1显示各种锡-锑合金(即,Sn/Sb合金)的液相线温度与固相线温度。由定义,焊料的固相线温度系一温度,低于该温度则焊料全为固体。焊料的液相线温度系一温度,高于该温度则焊料全为液体。如果焊料包含一合金,其在一有限的温度范围熔化,则焊料的固相线温度小于液相线温度。参考表1,具有3%、5%、10%或15%重量的锑之锡-锑合金的液相线温度分别为238、240、246或280℃。
表1 焊料系统的固态温度(TS)与液态温度(TL)
应注意,三氧化锑有毒。于是,如果制造电子结构10时有形成三氧化锑的倾向,则锑存在于焊料球16中使用的锡-锑合金将影响健康。但是,锑在小于约550℃的温度不会氧化形成三氧化锑。在最坏的状况,使用具有15%重量的锑之锡-锑合金,即使再流发生于比液相线温度280℃高20℃时,焊料球16中的锡-锑合金再流所需要的温度也不需要超过300℃。于是,在将焊料球16焊接至电子模块12期间,使用在焊料球16的锡-锑合金中的锑基本上没有形成三氧化锑的风险。
参考图1,焊料球16焊接至电子模块12,而无连结焊料(例如,焊料膏)介入焊料球16与电子模块12之间。焊料球16的焊接至电子模块12之前可以是助熔剂处理,其系本领域技术人员已知的。助熔剂处理从导电垫座32的表面33移除表面氧化物及表面污物,且防止当导电垫座32于再流以前加热时表面33的再氧化。于是,助熔剂处理促进与液体焊料球16在再流温度的湿润。见E.G.,D.P.Seraphim等人在1989年McGraw-Hill公司之“电子封装的原则(Principles ofElectronic Packaging)”第591-594页对于助熔剂处理的讨论。图1显示一液体助熔剂20以及焊料球16至电子模块12的焊接。可以使用本领域技术人员已知的任何适当液体助熔剂20,包含低黏度及膏状的助熔剂、高黏度的助熔剂与半固体助熔剂。由于前述焊接的结果,焊料球16在图2中显示为被焊接至电子模块12。
产生图2的结构的图1之焊料球16的熔化与焊接促使焊料球16的焊料分布于导电垫座32上,且如上述,由于再流的结果,焊料球16的初始高度H0减少至较小的高度H1。例如,图1之起初系35密尔直径的球形焊料球16(即,H0=35密尔)于焊接时系截头球形(如图2的焊料球16的焊料块形),高度减少至H1。对于H0=35密尔的特殊状况,已测出H1系约25.5密尔,H1大体上系一设计参数,其依球形焊料球16的初始直径及导电垫座32的表面积而定。高度自35密尔减少至25.5密尔约为高度自H0至H1减少27%。自H0至H1的代表性高度减少系约25%-30%的范围。
本发明的方法-将焊料球16焊接至电子模块12而不使用介于其间的连结焊料-偏离用于CBGA模块之相关技艺的方法。如果使用相关的方法,则通过使一配置于导电垫座32上之低熔化连结焊料的再流,35密尔直径球形焊料球16将耦合至CBGA模块。通过相关技艺的方法,低熔化连结焊料将在使焊料球16不熔化的温度再流,且与焊料球16相关之所得的焊料块的高度(于焊料球16已焊接至CBGA模块以后)将保持在初始的35密尔高度(即,通过相关技艺的方法,H1=H0)。虽然相关技艺的方法具有的优点系焊料块的高度H1高于本发明的优选实施例的方法,但本发明的方法具有较不复杂的优点。
图3绘示在电子模块12已耦合至一电路卡30以后的图2,耦合系使用(例如,再流)一无铅连结焊料22将焊料球16焊接至电路卡30上的导电垫座34。连结焊料22可以包含任何无铅焊料。此外,测试(待后述)示范使用含有95.5锡/3.8银/0.7铜(即,以重量计,95.5%锡(Sn)、3.8%银(Ag)与0.7%铜(Cu))的连结焊料22。因此,可包含于连结焊料22中的合金类是锡-银-铜合金,其显示于表1;即,以重量计,包含大约95.5-96.0%锡、大约3.5-4.0%银与大约0.5-1.0%铜的锡-银-铜合金。表1显示用于特定锡-银-铜合金的固相线与液相线温度,且对于如此列示之全部锡-银-铜合金展示大约217℃的液相线温度。
使连结焊料22再流以将焊料球16焊接至电路卡30可以在大于连结焊料22的液相线温度(TL,JOINER)的再流温度(TREFLOW)完成;即,TREFLOW>TL,JOINER。为免在再流温度的空间分布的不确定性与不均匀,并因为连结焊料22中的空间不均质性,可保守地选择温度界限ΔT以用于再流温度TREFLOW;即,TREFLOW=TL,J0INER+ΔT。虽然可以选择任何ΔT,但10至25℃的ΔT是代表性范围。任何所欲的界限ΔT是在本发明的范畴内。对于下述特定锡-银-铜合金类,表1显示TL,JOINER为约217℃。因此,对于前述锡-银-铜合金类而言,TREFLOW可以低至恰在217℃以上,但可以保守地选择为至少约230℃、235℃等。
再流温度TREFLOW的选择可以考虑焊料球16的熔化性质,原因在于如果TREFLOW低于焊料球16的固相线温度TS,BALL,则焊料球16于连结焊料22再流期间将不熔化。如果焊料球16于连结焊料22再流期间熔化,则焊料球16于连结焊料22再流期间的熔化将导致在连结焊料22的再流之后,焊料球16的高度H1在电子模块12与电路卡30之间的在方向26进一步减少(ΔH1)。高度的进一步减少ΔH1是由于电子模块12的重量作用于熔化的焊料球16所致。总之,在焊接接合至电路卡30以后,焊料球16的最后高度H系H1-ΔH1,其中如果TREFLOW<TS,BALL,则ΔH1=0,而如果TREFLOW≥TS,BALL,则ΔH1>0。
在热瞬态期间,诸如热测试期间或场操作期间,焊料球16的高度相对于它的初始高度H0之任何减少(例如,H0-H1、ΔH1或H0-H1+ΔH1)使焊料球16上的剪应变增加。成比例于1/H的剪应变是电子模块12与电路卡30之间的热膨胀系数(CTE)不匹配的结果。例如,电路卡30可能具有在约14至22ppm/℃之范围的热膨胀系数,而包含一陶瓷芯片载体的电子模块12可能具有在约6至11ppm/℃之范围的热膨胀系数。包含一有机芯片载体的电子模块12可能具有在约6至24ppm/℃之范围的热膨胀系数。当剪应变增加,焊料球16之接合至导电垫座34的热疲劳寿命(TFL)减少。热疲劳寿命成比例于(1/剪应变)2,或等效地,热疲劳寿命成比例于H2。结果,如果焊料球16于连结焊料22再流期间不熔化,则热疲劳寿命潜在性地大于焊料球16于连结焊料22再流期间熔化的情况。注意,即使焊料球16在连结焊料22再流期间熔化,则ΔH1大体上小于H0-H1。例如,如果H0=35密尔,则H1系约25.5密尔,且ΔH1系约在2.0密尔至3.5密尔,依电子模块12的重量而定(根据分别相关使用下表2的1.5mm与2.9mm陶瓷球栅阵列模块厚度的剖面测量)。于是,希望限制再流温度为低于焊料球16的固相线温度。此外,足够高的温度可能损害电子结构10的一部分,诸如损害电子装置或电路卡30的部件。于是,再流温度可以保持低于一最高温度,该最高温度不会损害电子结构10的任何部分。不会损害电子结构10的任何部分之该最高温度系依状况而定,尤其可,特别是约250℃。于是,再流温度有用的范围可包括,特别是约230℃至约250℃。
表1显示,对于锡-锑(Sn/Sb)合金而言,以重量计,在3至15%锑的范围内,TS,BALL系在233-246℃的范围内。于是,在锡-锑合金中,对于锑的重量百分比分别为3%、5%、10%或15%而言,如果TREFLOW低于233、234、245或246℃,则焊料球16在连结焊料22再流期间将不熔化。注意,10%锑具有TS,BALL值(245℃),其只比15%锑的TS,BALL值246℃低1℃。但是,当锡/锑比增加时(即,当锑的重量百分比减少时),结构性质(例如,脆性)变成更有利。于是,更佳者为,在焊料球16的锡-锑合金中使用10%锑而非15%锑。结果,锡-锑合金中所欲的锑重量百分比范围可能系约5至10%,或约3至10%。
下表2列示各种焊料熔化结构的热疲劳寿命测试结果。该测试通过焊料球16的材料及连结焊料22的材料之各实施例,如事例#1、#2、#3与#4所示,确认一电子结构-其类似于图3的电子结构10-之热疲劳寿命。事例#1、#2涉及含铅焊料,于是不在本发明的范畴内。事例#1充当参考事例,事例#2、#3与#4就热疲劳寿命而与之比较。事例#2只用于就热疲劳寿命而与#1、#3、#4比较。电路卡30支持六个电子模块12。六个电子模块12中的每一模块-其包含一陶瓷球栅极阵列(CBGA)模块,模块具有25×25焊料球16-与连结焊料22(即,焊料膏)连结,连结焊料22系在电路卡30上的相应的25×25导电垫座34处。于是,电路卡30上的焊料连结之总数为3750(即,6×25×25)。测试陶瓷球栅极阵列模块的两个厚度,即,1.5mm与2.9mm。
对于表2列示的全部测试而言,焊料球16于焊接至电子模块12以前具有35密尔的厚度(即,对于全部测试而言,H0=35密尔)。关于事例#1,在用焊料膏焊接至电子模块12而不熔化以后,以及在用63锡/37铅焊料膏耦合至电路卡30以后,焊料球16保持球形且保持它的35密尔直径(即,H=H1-H0)。事例#2、#3与#4各涉及在将焊料球16焊接至电子模块12的期间使焊料球16熔化,使H1≈25.5密尔。而且在事例#2、#3与#4中,于焊料球16焊接至电路卡30期间,焊料球16熔化,使当使用1.5mm厚陶瓷球栅极阵列模块时,ΔH1≈2.0密尔,而当使用2.9mm厚陶瓷球栅极阵列模块时,ΔH1≈3.5密尔。
表2 焊料熔化结构的热疲劳寿命(TFL)测试
总结于表2的测试包含连续热循环,而每一热循环的持续时间为30分钟于15分钟内自0℃转变至100℃;及于15分钟内自100℃转变至0℃。自0℃转变至100℃包含12分钟自0℃至约100℃,接著2分钟渐渐或缓慢接近100℃。自100℃转变至0℃包含12分钟自100℃至约0℃,接著2分钟渐渐或缓慢接近0℃。
对于每一事例#1、#2、#3与#4,测试开始于3电路卡及每一电路卡6模块,共有18模块。对于任一给定的事例(即,#1、#2、#3或#4)而言,30分钟之每一测试循环使18模块承受0至100℃或100至0℃的热循环,如上述。每一模块具有从一径向中心(“中性点”)成环形分布的625焊料连结,使每一环中的焊料连结位于约与中性点相同距离处(″DNP″)。每一环中的焊料连结以针线图案连接在一起。二点电阻测量是就最外的7环中之每一环于最初及每100、200或300循环以后执行。如果模块中的至少一环测量后电阻增加至少100欧姆,则该模块视为已失败。在每一电阻测量以后,以NFAILED/NTOTAL计算失败机率,其中NTOTAL是测试模块的总数(即,18),NFAILED是由电阻测量判断为失败的模块数目。然后,将NFAILED/NTOTAL与log10NCYCLES的对照画成图和/或列表,以产生“失败曲线”,其中NCVCLES是做最后电阻测量的循环数目。将失败曲线(即,NFAILED/NTOTAL与log10NCYCLES的对照)模型化为对数-正态分布,计算N50,其中N50系50%或更多模块已失败的循环数目。以该方式,从失败曲线以统计方式导出N50。在根据表2的分析中,N50用作热疲劳寿命的测量。注意,表2中的热疲劳寿命以归一化形式表示,使就事例#1而言,热疲劳寿命取为1.0。于是,事例#1充当参考,而事例#2、#3与#4与之比较。
表2中,事例#1在焊料球16中使用熔点约为310℃的高熔化90铅/10锡合金,及在连结焊料22中使用熔点约为183℃的低熔化共晶63锡/37铅合金。于是,有很宽的温度窗,用于选择使连结焊料22再流而不使焊料球16熔化的再流温度。因此,事例#1具有可接受的热疲劳寿命(TFL1),且已归一化为1.0,以充当参考事例,而事例#2、#3与#4可以与之比较。事例#1示范为双熔化的事例,其中焊料球16与连结焊料22在不同的温度熔化。平均峰再流温度(<TPK>)对于事例#1与#2而言系215℃,对于事例#3与#4而言系240℃。于是,根据表1中的固相线与液相线温度,对于事例#2、#3与#4而言,焊料球16于连结焊料22再流期间熔化。因此,连结焊料22的再流导致对于2.9mm厚陶瓷球栅阵列模块而言,焊料球16的高度自25.5密尔减少至约22密尔(表示自35密尔的初始高度减少37%),而对于1.5mm陶瓷球栅阵列模块而言,则自25.5密尔减少至约23.5密尔(表示自35密尔的初始高度减少33%)。
事例#2、#3系单熔化事例,其中焊料球16与连结焊料22在相同的温度熔化,原因为就每一事例#2、#3而言,焊料球16与连结焊料22含有相同的合金。事例#2使用熔化温度183℃的共晶63锡/37铅合金,事例#3使用熔化温度217℃的95.5锡/3.8银/.7铜合金。事例#2的电子结构10所具有的热疲劳寿命(TFL2)仅分别为用于陶瓷球栅阵列模块厚度1.5mm与2.9mm之参考TFL1的38%与35%。事例#3的电子结构10所具有的热疲劳寿命(TFL3)仅分别为用于陶瓷球栅阵列模块厚度1.5mm与2.9mm之参考TFL1的76%与69%。相对于陶瓷球栅阵列模块厚度的前述TFL2与TFL3的变化纯系统计,而无实质的意义。
事例#4系双熔化事例,其中焊料球16包含95锡/5锑,而连结焊料22包含液相线温度217℃的95.5锡/3.8银/.7铜合金。与事例#2及#3成为鲜明的对比,事例#4的热疲劳寿命(TFL4)分别为用于陶瓷球栅阵列模块厚度1.5mm与2.9mm之参考TFL1的90%与93%。如同事例#2及#3,相对于陶瓷球栅阵列模块厚度之前述TFL4的变化纯系统计,而无实质的意义。事例#4将热疲劳寿命TFL4显示成为几乎等于参考值TFL1,即使焊料球16在陶瓷球栅阵列模块制造(见图2)及电路卡组装(见图3)期间皆熔化导致总高度自35密尔的初始高度H0减少至在约22密尔到23.5密尔范围内的最后高度H。如果对于事例#4而言,焊料球16未第二次熔化(即,在连结焊料22再流期间),诸如通过使连结焊料22在低于234℃再流,或通过其他技术,诸如在焊料球16中使用90锡/10锑合金而连结焊料22的再流发生于245℃以下,则预期TFL4将超过前述0.90-0.93之值。但是,事例#4的TFL4结果-其系本发明之实施例的示范-是可接受的,与焊料球16在连结焊料22再流期间是否熔化无关;即,参考热疲劳寿命TFL1的至少90-93%于事例#4中保留。鉴于总高度自焊料球16的初始高度35密尔减少33%-37%,此系未预期的有利结果。
如果热疲劳寿命以绝对项(即,以至电子结构10失败的循环数目)而非归一化表示,则2.9密尔较厚的陶瓷球栅阵列模块厚度将显示比1.5密尔较薄的陶瓷球栅阵列模块厚度更低的热疲劳寿命,原因为比起较薄、更柔性的陶瓷球栅阵列模块,较高的陶瓷球栅阵列模块厚度使模块较硬,因而较无法抗拒剪应力。不过,表2显示,当以归一化格式表示的时候,热疲劳寿命对于陶瓷球栅阵列模块厚度不敏感。因此,与其他焊料组成成为对比,事例#4之有利地用于本发明的实施例并不依赖于陶瓷球栅阵列模块厚度。
如上述,如果再流温度低于焊料球16的固相线温度,则焊料球16于连结焊料22再流期间不熔化。如果再流温度超过焊料球16的固相线温度,但小于焊料球16的液相线温度,则于再流期间,将发生焊料球16的部分熔化。如果再流温度超过焊料球16的液相线温度,则于再流期间,焊料球16将完全熔化,额外地,焊料球16的液化材料可能与连结焊料22的材料混合,如图4所示。
图4显示图3之焊料球16的材料与用于表2之事例#4的图3之连结焊料22的材料混合之图像40。图像40为在电路板30的导电垫座34上。在图4的图像40中,焊料球16材料与连结焊料22材料无视觉差异,其展示焊料球16材料与连结焊料22材料的混合。此混合通过在连结焊料22再流期间焊料球16的熔化而成为可行。相反地,如果焊料球16于连结焊料22再流期间未熔化,则焊料球16材料与连结焊料22材料未混合。
此揭示已展示本发明之无铅焊料球16与无铅连结焊料22的用途。虽然无铅焊料球16在此描述为包括锡-锑合金,但无铅焊料球16也可以包含小量或微量的其他金属,诸如,尤其是铜、铋、锌、银与镍。
虽然本发明的实施例已在此说明以便阐释,但很多修改和改变系本领域技术人员显而易知的。
虽然图1-3显示的焊料球16标示为焊料球,但焊料球16可以具有任何几何形状,该形状可焊接耦合焊料球16至电子模块12及至电路卡30,如此处所述。于是,焊料球16大体上包含一焊料构件,其系-尤其是-焊料球形(即,约为球形)、焊料柱(即,约为圆柱形)形状等。
虽然图1-3显示的电子模块12与电路卡30分别标示为电子模块与电路卡,但电子模块12大体上系第一基片(例如-尤其是-电子模块,诸如陶瓷球栅极阵列或塑料球栅阵列模块、半导体芯片等),且电路卡30大体上系第二基片(例如-尤其是-电路卡、陶瓷多芯片基片等)。
权利要求
1.一种用于形成电子结构的方法,包括下列步骤提供一基片;及在不使用连结焊料完成焊接的情况下将无铅焊料构件焊接至基片,其中焊料构件包括锡-锑合金,其包含约3%至约15%重量的锑。
2.如权利要求1的方法,其中锡-锑合金包含约5%至约10%重量的锑。
3.如权利要求1或权利要求2的方法,其中焊接步骤包含使焊料构件再流。
4.如权利要求1至3任何之一的方法,其中进一步包括步骤提供第二基片;以及用无铅连结焊料将焊料构件焊接到第二基片。
5.如权利要求4的方法,其中将焊料构件焊接到第二基片的步骤包括在高于连结焊料的液相线温度并低于约250℃的温度再流连结焊料。
6.如权利要求4或5的方法,其中将焊料构件焊接到第二基片的步骤包括在高于连结焊料的液相线温度并低于将不损伤电子结构的任何部分的最高温度的温度再流连结焊料。
7.如权利要求4至6任何之一的方法,其中连结焊料包括锡-银-铜合金,其以重量计包含大约95.5-96.0%锡、大约3.5-4.0%银和大约0.5-1.0%铜。
8.如权利要求4至7任何之一的方法,其中将焊料构件焊接至第二基片的步骤包含使焊料构件熔化。
9.如权利要求4至8任何之一的方法,其中将焊料构件焊接至第二基片的步骤包含使锡-锑合金与连结焊料混合。
10.一种电子结构,包括一基片;一无铅焊料构件,其在焊料构件与基片之间无连结焊料的情况下焊接至基片,其中焊料构件包括锡-锑合金,该合金包含约3%至约15%重量的锑。
全文摘要
一种用于可焊接地耦合电子模块(例如,陶瓷或塑料球栅阵列模块)至电路板的方法及结构。在不使用连结焊料完成焊接的情况下无铅焊料球可焊接至模块。焊料球包括锡-锑合金,其包含约3%至约15%重量的锑。焊料球以无铅的连结焊料焊接至电路板。连结焊料包括锡-银-铜合金,其以重量计包含大约95.5-96.0%锡、大约3.5-4.0%银与大约0.5-1.0%铜。模块与电路板间之所得的焊料连接具有一参考结构之疲劳寿命的至少约90%。参考结构具有一90铅/10锡焊料球,其通过63锡/37铅连结焊料而连结至模块与电路卡二者。
文档编号H05K3/34GK1491433SQ0280469
公开日2004年4月21日 申请日期2002年1月30日 优先权日2001年2月8日
发明者S·K·雷, S K 雷, A·K·萨克赫尔, 萨克赫尔 申请人:国际商业机器公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1