一种柔性多层石墨烯复合膜及其制备方法与流程

文档序号:12097305阅读:329来源:国知局
一种柔性多层石墨烯复合膜及其制备方法与流程

本发明涉及一种石墨烯复合膜,具体涉及一种柔性多层石墨烯复合膜。



背景技术:

石墨是元素碳的一种同素异形体,每个碳原子的周边连结著另外三个碳原子(排列方式呈蜂巢式的多个六边形)以共价键结合,构成共价分子。石墨属于典型的层状结构,碳原子成层排列,每个碳与相邻的碳之间等距相连,每一层中的碳按六方环状排列,上下相邻层的碳六方环通过平行网面方向相互位移后再叠置形成层状结构。由于其特殊结构,石墨具有耐高温性、导电性、导热性、润滑性、化学稳定性、可塑性和抗热震性等,可以作为耐火材料、润滑材料、导电导热材料等应用于冶金、化工、机械、电子、原子能和国防等工业中。其导热性超过钢、铁、铅等金属材料。但导热系数随温度升高而降低,在极高的温度下,石墨还可以成绝热体。石墨膜材料因为具有超越金属材料的导热性能,还具有像有机塑料一样的可塑性,并且能涂敷在固体表面的特性,在诸如需要散热的电子显示产品和需要加热的电子元器件领域都得到了广泛的应用。

现有的石墨膜结构简单,韧性不佳,长时间使用易断裂,无法保证使用寿命,也会影响产品的功效。



技术实现要素:

本发明针对上述问题提出了一种柔性多层石墨烯复合膜,具有三层式的导热散热结构,柔韧性好,散热效果好,大幅提高了使用寿命。

具体的技术方案如下:

一种柔性多层石墨烯复合膜,包括相变层和散热层,所述散热层为多层石墨烯膜,所述相变层的数量为两层,散热层通过粘接剂固定在两个相变层之间。

上述一种柔性多层石墨烯复合膜,其中,所述散热层的厚度为h1,相变层的厚度为h2,h1=2*h2,散热层的宽度为L1,相变层的宽度为L2,L1<L2。

一种柔性多层石墨烯复合膜的制备方法,所述多层石墨烯膜的制备方法为:

(1)将SiC基底置于化学气相沉积反应腔体中,控制化学气相沉积反应腔体的绝对真空度大于104帕,1200-1400℃下在SiC基底表面生长4-8微米的碳化硅外延层;

(2)控制化学气相沉积反应腔体的温度降低至1000℃,在惰性气体氛围下对化学气相沉积反应腔体从1000℃加热升温至1600℃,使碳化硅外延层结构分解及重组,在SiC基底上获得多层石墨烯膜;

所述相变层的制备方法为:

(1)制备凝固液,将凝胶液在惰性气体氛围下先以10-15℃/min的速率升温到800-1200℃,保温1-2h;

(2)在惰性气体氛围下以5-8℃/min的速率升温到1800-2200℃,保温2‐3h;

(3)在惰性气体氛围下以1-3℃/min的速率升温到2800‐3200℃,保温3‐4h,得到气凝胶膜;

(4)将气凝胶膜在浓度为1‐100g/ml的石蜡的二氯甲烷溶液中浸泡1‐10h,再放于20-40℃真空烘箱中干燥,得到相变层。

上述一种柔性多层石墨烯复合膜的制备方法,其中,所述惰性气体由氩气、氦气和氮气按照3:4:1的体积比混合而成。

上述一种柔性多层石墨烯复合膜,其中,所述凝固液的制备方法为:

(1)按重量份数计将氧化锌0.5-2.4份、柠檬酸钠5-18份、丙三醇3-9份、丁二胺2.2-4.5份、醋酸乙烯-乙烯共聚乳液15-32份、邻苯二甲酸二辛酯22-38份混合后进行超声波分散20-50min得混合液A;

(2)将膨胀石墨加入混合液A中,搅拌2-3h后即可得到凝固液;膨胀石墨的重量为混合液A重量的0.1%-1.3%。

上述一种柔性多层石墨烯复合膜的制备方法,其中,所述粘接剂的制备方法为:

按重量份数计将聚偏氟乙烯15-28份、硅溶胶3-9份、环烷油10-16份、乙二醇8-16份在60-80℃的温度下混合搅拌1-2h即可得粘接剂。

本发明的有益效果为:

本发明将散热层通过胶粘固定在两个相变层之间,粘接剂涂覆在散热层的上、下两个端面上,粘接剂实现粘接固定作用,固定更加牢固。

石墨烯作用性能极佳的散热材料,很好的起到了散热效果,实现了快速导热,与相变层加以配合,实现了潜能的储、放,提升了经济价值,大幅提高了生产效率,降低了成本,应用范围广泛,可广泛用于设备降温。

本发明设置独特的相变层和粘接剂,大幅提升了石墨烯复合膜的散热性能,同时具有一定的储热作用,进一步的增加了石墨烯复合膜的应用范围。

附图说明

图1为本发明剖视图。

图2为本发明第一支撑条结构图。

图3为本发明第二支撑条结构图。

具体实施方式

为使本发明的技术方案更加清晰明确,下面结合附图对本发明进行进一步描述,任何对本发明技术方案的技术特征进行等价替换和常规推理得出的方案均落入本发明保护范围。

附图标记

相变层1、散热层2、第一支撑条3、第二支撑条4、第一支撑脚5、第一支撑环6、第二支撑脚7、第二支撑环8、溶胶槽9。

实施例一:

如图所示一种柔性多层石墨烯复合膜,包括相变层1和散热层2,所述散热层为多层石墨烯,所述相变层的数量为两层,散热层通过粘接剂固定在两个相变层之间;所述散热层的厚度为h1,相变层的厚度为h2,h1=2*h2,散热层的宽度为L1,相变层的宽度为L2,L1<L2;

所述柔性多层石墨烯复合膜的制备方法为:

1、制备多层石墨烯膜:

(1)将SiC基底置于化学气相沉积反应腔体中,控制化学气相沉积反应腔体的绝对真空度大于104帕,1350℃下在SiC基底表面生长5微米的碳化硅外延层;

(2)控制化学气相沉积反应腔体的温度降低至1000℃,保温30min,在惰性气体氛围下对化学气相沉积反应腔体从1000℃加热升温至1600℃后保温55min,升温速度为35℃/20min,使碳化硅外延层结构分解及重组,在SiC基底上获得多层石墨烯膜;

2、制备相变层:

(1)制备凝固液:

①按重量份数计将氧化锌1.5份、柠檬酸钠10份、丙三醇6份、丁二胺3.4份、醋酸乙烯-乙烯共聚乳液22份、邻苯二甲酸二辛酯30份混合后进行超声波分散32min得混合液A;

②将膨胀石墨加入混合液A中,搅拌2-3h后即可得到凝固液;膨胀石墨的重量为混合液A重量的0.8%;

(2)将凝胶液在惰性气体氛围下先以12℃/min的速率升温到1000℃,保温1.5h;

(3)在惰性气体氛围下以6.5℃/min的速率升温到2000℃,保温2.5h;

(4)在惰性气体氛围下以1.5℃/min的速率升温到3000℃,保温3.5h,得到气凝胶膜;

(5)将气凝胶膜在浓度为22g/ml的石蜡的二氯甲烷溶液中浸泡3h,再放于32℃真空烘箱中干燥,得到相变层;所述惰性气体由氩气、氦气和氮气按照3:4:1的体积比混合而成;

3、制备粘接剂:

按重量份数计将聚偏氟乙烯23份、硅溶胶6份、环烷油12份、乙二醇12份在72℃的温度下混合搅拌1.5h即可得粘接剂;

4、将两层多层石墨烯膜在3.5t的压力下相互压合,在两层多层石墨烯膜的上、下两个端面上涂覆一层粘接剂,将相变层覆盖在两层多层石墨烯膜的上、下两个端面上,通过热压机在18t的压力下压合成型即可,热压机的压合温度为90℃。

实施例二

如图所示一种柔性多层石墨烯复合膜,包括相变层和散热层,所述散热层为多层石墨烯,所述相变层的数量为两层,散热层通过粘接剂固定在两个相变层之间;所述散热层的厚度为h1,相变层的厚度为h2,h1=2*h2,散热层的宽度为L1,相变层的宽度为L2,L1<L2;

所述柔性多层石墨烯复合膜的制备方法为:

1、制备多层石墨烯膜:

(1)将SiC基底置于化学气相沉积反应腔体中,控制化学气相沉积反应腔体的绝对真空度大于104帕,1200-1400℃下在SiC基底表面生长8微米的碳化硅外延层;

(2)控制化学气相沉积反应腔体的温度降低至1000℃,保温40min,在惰性气体氛围下对化学气相沉积反应腔体从1000℃加热升温至1600℃后保温

80min,升温速度为40℃/20min,使碳化硅外延层结构分解及重组,在SiC基底上获得多层石墨烯膜;

2、制备相变层:

(1)制备凝固液:

①按重量份数计将氧化锌2.4份、柠檬酸钠18份、丙三醇9份、丁二胺4.5份、醋酸乙烯-乙烯共聚乳液32份、邻苯二甲酸二辛酯38份混合后进行超声波分散50min得混合液A;

②将膨胀石墨加入混合液A中,搅拌3h后即可得到凝固液;膨胀石墨的重量为混合液A重量的1.3%;

(2)将凝胶液在惰性气体氛围下先以15℃/min的速率升温到1200℃,保温2h;

(3)在惰性气体氛围下以8℃/min的速率升温到2200℃,保温3h;

(4)在惰性气体氛围下以3℃/min的速率升温到3200℃,保温4h,得到气凝胶膜;

(5)将气凝胶膜在浓度为83g/ml的石蜡的二氯甲烷溶液中浸泡8h,再放于40℃真空烘箱中干燥,得到相变层;所述惰性气体由氩气、氦气和氮气按照3:4:1的体积比混合而成;

3、制备粘接剂:

按重量份数计将聚偏氟乙烯28份、硅溶胶9份、环烷油16份、乙二醇16份在80℃的温度下混合搅拌2h即可得粘接剂;

4、将两层多层石墨烯膜在7.6t的压力下相互压合,在两层多层石墨烯膜的上、下两个端面上涂覆一层粘接剂,将相变层覆盖在两层多层石墨烯膜的上、下两个端面上,通过热压机在22t的压力下压合成型即可,热压机的压合温度为100℃。

实施例三

如图所示一种柔性多层石墨烯复合膜,包括相变层和散热层,所述散热层为多层石墨烯,所述相变层的数量为两层,散热层通过粘接剂固定在两个相变层之间;所述散热层的厚度为h1,相变层的厚度为h2,h1=2*h2,散热层的宽度为L1,相变层的宽度为L2,L1<L2;

所述柔性多层石墨烯复合膜的制备方法为:

1、制备多层石墨烯膜:

(1)将SiC基底置于化学气相沉积反应腔体中,控制化学气相沉积反应腔体的绝对真空度大于104帕,1200℃下在SiC基底表面生长4微米的碳化硅外延层;

(2)控制化学气相沉积反应腔体的温度降低至1000℃,保温20min,在惰性气体氛围下对化学气相沉积反应腔体从1000℃加热升温至1600℃后保温50min,升温速度为30℃/20min,使碳化硅外延层结构分解及重组,在SiC基底上获得多层石墨烯膜;

2、制备相变层:

(1)制备凝固液:

①按重量份数计将氧化锌0.5份、柠檬酸钠5份、丙三醇3份、丁二胺2.2份、醋酸乙烯-乙烯共聚乳液15份、邻苯二甲酸二辛酯22份混合后进行超声波分散20min得混合液A;

②将膨胀石墨加入混合液A中,搅拌2h后即可得到凝固液;膨胀石墨的重量为混合液A重量的0.1%;

(2)将凝胶液在惰性气体氛围下先以10℃/min的速率升温到800℃,保温1h;

(3)在惰性气体氛围下以5℃/min的速率升温到1800℃,保温2h;

(4)在惰性气体氛围下以1℃/min的速率升温到2800℃,保温3h,得到气凝胶膜;

(5)将气凝胶膜在浓度为65g/ml的石蜡的二氯甲烷溶液中浸泡4h,再放于32℃真空烘箱中干燥,得到相变层;所述惰性气体由氩气、氦气和氮气按照3:4:1的体积比混合而成;

3、制备粘接剂:

按重量份数计将聚偏氟乙烯15份、硅溶胶3份、环烷油10份、乙二醇8份在67℃的温度下混合搅拌1h即可得粘接剂;

4、将两个第一支撑条和一个第二支撑条放置在两层多层石墨烯膜之间,在1t的压力下压合成型,在两层多层石墨烯膜的上、下两个端面上涂覆一层粘接剂,将相变层覆盖在两层多层石墨烯膜的上、下两个端面上,通过热压机在15t的压力下压合成型即可,热压机的压合温度为80℃。

所述第二支撑条3设置在两个第一支撑条3之间,所述第一支撑条包括两个第一支撑脚5和固定在第一支撑脚之间的第一支撑环6,第一支撑环的截面形状为圆弧形结构,第一支撑环的厚度自两边向中间逐渐减小,第一支撑环最外侧的厚度为h3,第一支撑环中心处的厚度为h4,h3=1.5*h4;所述第二支撑条包括两个第二支撑脚7和固定在第二支撑脚之间的第二支撑环8,第二支撑环的截面形状为圆弧形结构,第二支撑环的厚度自两边向中间逐渐增大,第二支撑环最外侧的厚度为h5,第二支撑环中心处的厚度为h6,h6=1.5*h5;所述第一支撑环的开口方向与第二支撑环的开口方向相反。在散热层内设有开口方向相反的第一支撑条和第二支撑条,第一支撑条和第二支撑条均以铜为材料制成,既增加了散热性能,又提升了复合膜的韧性和强度,提高了使用寿命。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1