模块化传感器组件及其制造方法

文档序号:1133443阅读:225来源:国知局
专利名称:模块化传感器组件及其制造方法
技术领域
本发明总体涉及传感器组件,更具体来说,本发明涉及模块化传 感器组件以及制造模块化传感器组件的方法。
背景技术
传感器组件通常用在包括无损评估(NDE)和医疗诊断成像的领域 中,比如超声应用和计算机断层摄影(CT)。所述传感器组件通常包 括耦合到电子装置阵列的传感器阵列。所述传感器阵列通常包括数百 个或数千个单独的传感器。类似地,所述电子装置阵列包括数百个或 数千个集成接口电路(或"单元"),所述集成接口电路被电耦合在 一起以便提供对所述传感器的电控制,以用于波束成形、信号放大、 控制功能、信号处理等等。
被广泛使用的一种特定类型的传感器是超声换能器。两种公知类 型的超声换能器是电容性微加工超声换能器(cMUT)和压电换能器 (PZT) 。 PZT传感器通常包括压电陶资,其能够在受到机械应力时产 生电。cMUT换能器通常是通过形成布置在一个空腔上的柔性隔膜而制 造的,该空腔,皮形成在硅衬底中。通过对该隔膜施加电极、对该珪衬 底中的该空腔的底部施加电极以及在所述电极两端施加适当的电压, 可以为该cMUT通电以产生超声波。类似地,当被适当偏置时,该cMUT 的所述隔膜可以被用来接收超声信号,这是通过捕获反射超声能量并 且把所述能量转换成所述被电偏置的隔膜的移动以便生成一个信号。
在制造所述传感器阵列和所述电子装置阵列以及把这两个阵列耦 合在一起时提出了许多设计挑战。基于半导体的传感器通常是以晶片 的形式制造的并且被切割,从而提供多个传感器芯片。PZT传感器通常 是通过切割陶瓷块材料来制造的。PZT传感器常常是由多层陶瓷、匹配
材料和阻尼材料形成的。每个传感器子阵列通常包括许多传感器。所 述传感器阵列中的每个传感器子阵列或芯片通常被耦合到一个集成电 路芯片,以便提供对每个传感器的单独的控制。在数百个或数千个分 别具有不计其数的电连接的传感器和芯片的情况下,这种传感器组件 的制造和组装可以是非常具有挑战性的。当特定应用要求减小所述传 感器组件的尺寸时,这种挑战变得更为严峻。对于被设计成使用在人 体内部或者使用在人体外部的小表面上的传感器组件来说,通常希望 减小所述传感器组件的整体尺寸。
减小所述传感器组件的尺寸的一种方式是把所述传感器阵列放置 在所述电子装置阵列的上面,以便提供更高的封装效率。然而,把所 述传感器阵列层叠在所述电子装置阵列的上面引入了多种设计挑战。 此外,当考虑到所述传感器阵列的可制造性、所述传感器组件的形成 以及提供一种用来把信号流利地传送到所述传感器组件中并且从中传 送出去的机制时,也会带来设计、制造和可靠性方面的问题。
本发明的各实施例可以是针对上面描述的一种或多种挑战。


当参照附图阅读下面的详细描述时,将能够更好地理解本发明的 这些和其他特征、方面和优点,其中相同的附图标记在所有的图中表
示相同的部件,在附图中
图l是可以根据本发明的实施例制造的传感器组件的方框图2是可以根据本发明的实施例制造的模块化传感器组件的平面
图3是在图2中示出的模块化传感器组件的分解图; 图4是可以根据本发明的实施例制造的电子装置阵列的一部分的 顶部平面图5是可以根据本发明的实施例制造的传感器阵列的一部分的顶 部平面图6是可以根据本发明的实施例被切割形成传感器模块或电子装 置模块的各单独的传感器阵列或各单独的集成电路UC)电子装置的 晶片的顶部平面图7-12是示出了根据本发明的示例性实施例的传感器阵列与电子
装置阵列之间的互连以及传感器组件与系统之间的互连的各替换实施
例的横截面视图;以及
图13是描述根据本发明的实施例的制造传感器组件的方法的流程图。
具体实施例方式
首先参照图1,其中示出了可以根据本发明的实施例制造的传感器 组件IO的方框图。该传感器组件10包括通过互连16耦合到电子装置 阵列14的传感器阵列12。该传感器阵列12包括多个单独的芯片或元
件,并且每个传感器子阵列包括数百个或数千个单独的传感器。例如, 每个传感器可以是PZT元件或cMUT。或者,每个传感器可以包括替换 的压电材料,即诸如PMN-PT的单晶材料、聚偏氟乙烯(PVDF)传感器、 锌镉碲化物(CZT)传感器或压电微加工超声换能器(PMUT)。所述电 子装置阵列14包括多个集成电路(IC)芯片,所述集成电路芯片被配 置成控制该传感器阵列12以及/或者处理接收自该传感器阵列的信 号。所述互连16通常提供该传感器阵列12与该电子装置阵列14之间 的电接口。此外,根据本发明的实施例,由于该传感器阵列12与该电 子装置阵列14以层叠配置布置,因此该互连16还可以提供该传感器 阵列12与该电子装置阵列14之间的机械接口,正如下面将进一步描 述的那样。所述传感器组件IO可以通过接口 17耦合到一个系统(未 示出)。该接口 17被配置成提供双向信号路径,以便在该传感器组件 IO与传感器系统(比如超声系统)之间路由信号和传感器信息。
根据本发明的实施例,在传感器子阵列与IC芯片之间通常存在一 一对应关系。也就是说,对于所述传感器组件10中的每一个传感器子 阵列通常有一个IC芯片。传感器子阵列与IC芯片的比例可以不是1 比1 (例如2:1、 3:1等等)。不管怎样,该传感器组件10包括多个 单独的传感器子阵列以及多个单独的IC芯片以用于控制各传感器子阵 列和/或处理接收信号。下面将详细描述所述传感器子阵列与所述IC 芯片之间的关系。
现在参照图2,其中示出了图1的传感器組件IO的平面图。如上 所述,该传感器组件10通常耦合到一个系统,比如超声或CT系统, 其例如可以包括多个驱动器、发射器、接收器、信号处理器、转换器、交换网络、存储器装置、用户接口和视频监视器。为筒单起见,从图2
线;线缆。^T而,本领i技一术人员将认识到,^超声或CT系^中可以 采用附加的元件。
仍然参照图2,所述传感器阵列12被层叠在所述电子装置阵列14 的上面。所述互连16提供该传感器阵列12与该电子装置阵列14之间 的电和机械耦合。根据一个示例性实施例,该传感器阵列12通过倒装 芯片技术耦合到该电子装置阵列14,并且该互连16包括多个导电凸 块。下面将参照图7和13进一步描述互连16。当前说明的传感器阵列 12包括两行传感器子阵列18,其中的每一个具有多个传感器(未示 出)。如前所述,所述电子装置阵列14也包括多个单独的IC芯片20。 根据一个示例性实施例,每个传感器子阵列18对应一个IC芯片20。
此外,虽然图2中示出的所述传感器组件IO示出了耦合到单个电 子装置阵列14的单个传感器阵列12,但是根据本发明的实施例,其他 的层叠配置也是可能的。在一个示例性实施例中,第二传感器阵列(未 示出)可以通过第二互连(未示出)耦合到该电子装置阵列14的另一 侧。在这种布置中,所迷叠层将包括夹在两个传感器阵列之间的电子 装置阵列,其中,每个传感器阵列通过对应的互连耦合到该电子装置 阵列的对应的一侧。在另一个实施例中,可以包括第二电子装置阵列。 在该实施例中,与图2中示出的传感器组件IO基本上相同的另一个传 感器组件IO可以被耦合到图2的电子装置阵列14的背側。也就是说, 两个传感器组件IO可以层叠在一起,以便产生包括两个电子装置阵列 的叠层,所述两个电子装置阵列背靠背耦合并且夹在两个传感器阵列 之间,其中,每个传感器阵列通过对应的互连耦合到对应的其中一个 电子装置阵列。
根据本发明的实施例,所述传感器组件10是完全"模块化的"。 也就是说,所述传感器阵列12和所述电子装置阵列14被制造成模块。 更具体来说,该传感器阵列12包括多个传感器模块,其中,每个传感 器模块包括多个传感器子阵列18。类似地,该电子装置阵列14包括多 个IC模块,其中,每个IC模块包括多个IC芯片20。每个传感器模块 中的传感器子阵列18的数目以及每个IC模块中的IC芯片20的数目 可以被选择成优化例如可制造性、可靠性和/或电气性能。此外,根据
本发明的实施例,所述ic模块和传感器模块是彼此独立地制造的。一 旦制造并且测试了每个模块之后,可以把传感器模块和ic模块耦合在 一起,正如下面将进一步描述的那样。这种模块性进一步扩展到耦合 的传感器模块与ic模块分组,并且允许通过把这些传感器/ic分组"模 块"彼此相邻地放置来建立更大的阵列。这些模块还可以成组测试, 并且如果后来在工作现场确定这些模块是坏的或者出了故障,则可以 在正在工作中的阵列组件中替换这些模块,而无需丢弃整个阵列。
现在参照图3,其中示出了所述传感器组件10的一个示例性实施 例的分解视图。出于说明性的目的,图3中示出的互连16被简单地描 绘成固体薄片。然而,如下面将参照图7和13进一步描述的那样,该 互连16可以包括多个单独的互连,比如在所述传感器子阵列18和IC 芯片20的其中之一或二者之上的导电凸块,所述传感器子阵列18和 IC芯片20可以通过回焊(reflow)所述凸块而被耦合。相应地,为 方便和简单起见,图3的互连16被显示为单个薄片。本领域技术人员 将认识到可以采用多种类型的互连,下面更加详细地描述了其中的几 种。图3中示出的实施例包括六(6)个传感器模块22。每个传感器模 块22包括三个传感器子阵列18,每个传感器子阵列被彼此相邻地设 置。相应地,每个传感器模块22是"3xl模块"(三个传感器子阵列 设置在一行中)。每个传感器模块22中的传感器子阵列18的数目可 以根据特定应用以及制造商的制造能力而改变。另外的考虑可以是每 个传感器子阵列18的可靠性和鲁棒性(robustness)。在切割晶片以 形成所述传感器模块22之后,所述传感器子阵列18鲁棒性和可靠性 越强,该传感器模块22就可以越大。如果制造商担心单个传感器子阵 列18的故障,则该制造商可以通过最小化该传感器模块22的尺寸, 选择减少由于所述传感器模块22中的一个传感器子阵列18的故障而 必须废弃的良好的传感器子阵列18的数目,这是。这里使用的"模块" 指代在制造期间的任何位置处都不被彼此分离或切割的芯片或装置 (这里是传感器子阵列18)的组。
根据本发明的其他实施例,所述电子装置阵列14也是模块化的。 该电子装置阵列14包括多个IC模块24。每个IC模块包括多个IC芯 片20。在当前说明的实施例中,每个IC模块24也是3xl模块。也就 是说,每个IC模块24包括彼此相邻地设置在单个行中的三个IC芯片
20。与每个传感器模块22中的传感器子阵列18的数目一样,每个IC 模块24中的IC芯片20的数目可以被选择成优化可制造性、可靠性和 /或电性能。
通过彼此独立地制造和测试所述IC模块24和传感器模块22,用 来制造不同类型的模块(传感器或IC)的技术的优点或限制将不会彼 此影响。例如,对于可以采用标准CMOS技术制造的IC模块24来说, CMOS技术中的优点或者其中的限制将不会影响传感器模块22的制 造。类似地,传感器模块22的制造中的优点或限制将不会对IC模块 的制造产生不利影响。此外,能够在通过利用所述互连16把所述模块 彼此耦合从而形成所述传感器组件之前对每种类型的模块进行测试和 废弃,可以减少返工并且最小化由于组件故障所导致的废弃量。该互 连16可以单独在模块化的基础上实现,可以是单个IC仅对应传感器
子阵列,或者可以同时用于整个阵列。
此外,取决于所采用的互连技术的类型,所述传感器组件10的模 块化设计可以便于的该传感器组件IO返工,同时最小化由于故障而导 致的废弃量。例如,在所述组件完成并且所述传感器模块22被耦合到 所述IC模块24之后,如果在单个传感器子阵列18中出现了故障,则 可以替换包括该故障的传感器子阵列18的传感器模块22。有利地,替 换单个传感器模块22将仅仅导致废弃最小数目的功能传感器子阵列 (即包括在含有故障元件的模块中的那些传感器子阵列)。因此,不需 要替换耦合到该故障的传感器模块22的IC芯片20以及剩余的传感器 模块22。如果所述互连技术本身无法在组装之后把传感器模块22与 IC模块24断开以允许替换故障的模块,由废弃耦合到所述故障元件的 良好装置所导致的浪费量也被最小化,这是因为仅耦合到具有故障传 感器子阵列18的传感器模块22的IC模块24中的IC芯片20将被废 弃。这在传感器模块22与IC模块24的比例为1: 1的系统中是特别方 便的。由于所述电子装置阵列14也是模块化的,因此相同的优点将同 样适用于各个IC芯片20的故障。
图4示出了示例性电子装置阵列14的顶部平面图。图4的电子装 置阵列14包括两个9xl IC模块24。也就是说,每个IC模块24包括 彼此相邻地设置在一行中的九个IC芯片20。如前所述,所述IC模块 24中的IC芯片20的数目可以根据多个上述变量而改变。相应地,每
个IC模块24可以是N个芯片宽,其中N是IC芯片20的数目。在当 前的例子中,N=9。有利地,根据本发明的其他实施例,每个IC芯片 20包括I/O焊盘区域26用于把每个IC芯片20(以及相应的传感器子 阵列18)耦合到一个系统,该系统比如是超声系统(未示出)。有利 地,该I/O焊盘区域26可以沿着每个IC芯片20的单个边缘设置,如 图4中所示出的那样。或者,每个IC芯片20可以包括沿着多于一条 边缘设置的多于一个I/O焊盘区域。根据一个示例性实施例,该I/O 焊盘区域26可以耦合到柔性线缆,如下面将参照图7更加详细地描述 的那样。此外,根据所述I/0配置,有可能形成包括多于一行的IC模 块24 (例如3x2 IC模块24 )。每个IC芯片20的尺寸使得最终将被 层叠在该IC芯片20的上的每个相应的传感器子阵列18的尺寸基本上 与该IC芯片20相同,不包括所述I/0焊盘区域26。也就是说, 一旦 所述传感器阵列12被耦合到所述电子装置阵列l4,每个IC芯片20 的I/O焊盘区域26可以延伸超出上面的传感器子阵列18的覆盖区。 或者,可以采用穿过晶片的通路把1/0焊盘信号从电子装置阵列14路 由到传感器阵列12的顶部,所述通路可以在该处,皮引线接合或连接到 柔线(flex)组件,正如下面将进一步描述和说明的那样。
图5示出了一个示例性传感器阵列12的顶部平面图。图5的传感 器阵列12可以包括六个3xl传感器模块22。也就是说,每个传感器模 块22包括彼此相邻地设置在一行中的三个传感器子阵列18。每个传感 器模块22中的传感器子阵列18的数目可以改变。相应地,每个传感 器模块22可以有M个传感器子阵列宽,其中,M是传感器子阵列18 的数目。在当前的例子中,M-3。此外,根据所述I/0配置,有可能采 用包括多于一行的传感器子阵列18 (例如3x2传感器子阵列18 )。如 前所述,图5中示出的包括六个3xl传感器模块22的传感器阵列12 可以耦合到一个类似配置的电子装置阵列14,其包括六个3xl IC模 块24。也就是说,传感器模块22与IC模块24可以有1: 1的对应关 系。然而,取决于采用各种模块布置的优点,所述比例可以不同。例 如,图5的包括六个3xl传感器模块22的传感器阵列12可以耦合到 图4的电子装置阵列14,其包括两个9xl IC模块。在该示例性传感 器组件10配置中组合了图4的电子装置阵列14与图5的传感器阵列 12,传感器模块22与电子装置模块24的比例将是3: 1而不是l: 1。
现在参照图6,可以通过参照具有制造在其上的多个管芯的晶片 28的顶部平面图来描述本发明的实施例的其中一个优点。所述管芯例 如可以包括传感器子阵列18或IC芯片20。可以测试该管芯的电气功 能,以便识别好的管芯30和坏的管芯32。不是在电测试之前确定特定 的划线图案(scribe pattern)(通过预先确定该划线图案管芯在切 割之后将构成特定模块),而是可以在识别了电气良好的管芯30之后 确定所述划线图案。在电测试之后确定所述划线图案,使得基于电气 良好的管芯30在所述晶片28上的位置识别出最大数目的电气良好的 模块34。如图6中所示,在已经识别出每个电气良好的管芯30之后, 可以确定所述划线图案以便最大化电气良好的模块34的数目。在当前 的例子中,每个模块34 (由加粗的线表示)包括三个电气良好的管芯 30。如图6所示,可以产生十六(16)个电气良好的模块34。这一概 念可以应用于所述传感器模块22、 IC模块24或者二者的制造。相应 地,可以采用具有已知的良好管芯30的模块34来制造所述传感器组 件10。通过独立地确定传感器和电子装置阵列的产量,所产生的组合 产量要高于在组合所述两种制造工艺的情况下所可能获得的产量。
现在参照图7,其中提供了所述传感器组件10的一部分的横截面 视图,其示出了所述电子装置阵列14到所述传感器阵列12以及到所 述系统的互连的一个示例性实施例。如图7所示,可以利用倒装芯片 技术把该传感器阵列12耦合到该电子装置阵列14。如下面将参照图 13更加详细地描述的那样,该传感器阵列12可以通过导电凸块36耦 合到该电子装置阵列14。所述导电凸块36形成该电子装置阵列14与 该传感器阵列12之间的电互连。根据图7的示例性实施例,该传感器 阵列12与该电子装置阵列14分别包括导电焊盘38和40。这里使用的 "倒装芯片技术,,包括任何这样的技术其中,把导电材料布置在所述 导电焊盘38或导电焊盘40或者二者上,随后使用该材料把该传感器 阵列12电气地和/或机械地耦合到该电子装置阵列14。相应地,虽然 参照图7-13描述和说明的实施例包括沉积导电金属以便在导电焊盘 38和/或40上形成金属凸块,但是也可以采用金属与非金属的组合(例 如具有形成在其上的导电环氧树脂凸块的接线柱形金凸块)。或者, 代替设置凸块,可以在导电焊盘38和所述传感器阵列12的背侧上布 置各向异性的导电薄膜,以及/或者可以在所述电子装置阵列14的背
侧和所述焊盘40上布置各向异性的导电薄膜,以便通过倒装芯片技术 把所述阵列耦合在一起。
所述互连16还可以包括下填(underfill)材料42,其可以是传 统的毛细管下填或者是具有"稀释环氧树脂(fluxing epoxy)"的特 征的无流动下填,其可以被布置或者注入在所述传感器阵列12与所述 电子装置阵列14之间。或者,所述下填材料42可以包括固体预型件 (preform),其可以在把该电子装置阵列14耦合到该传感器阵列之前 被布置到该电子装置阵列14上,或者反之亦然。在该实施例中,可以 通过所述预型件形成孔径,以便产生与所述导电焊盘38/40对准的开 口,其被配置成接收所述凸起材料的沉积。在某些实施例中,所述下 填材料还可以包括具有所期望的声学属性的材料或者被热加载 (thermally loaded)以得到更好的电气和机械性能的材料。还可以调 节所述互连16的高度以便提供特定的声学性能,比如提供所述传感器 阵列12与所述电子装置阵列14之间的良好的声学匹配或能量传输, 或者提供对于来自该传感器阵列12的背面的声学能量的显著阻尼。或 者,可以省略所述下填材料42。
如前所述,所述电子装置阵列14的每个IC芯片包括I/O焊盘区 域26,其具有用于把相应的IC芯片和传感器子阵列电耦合到一个系统 (比如超声系统)的I/O焊盘39。根据一个示例性实施例,所述I/O 焊盘区域26还包括导电凸块46,所述导电凸块46可以被用来通过传 输介质(比如柔性线缆44 )把信号传送到所述传感器组件10或者从该 传感器组件10传送信号。由于所述I/O焊盘区域26沿着每个IC芯片 的一侧设置,并且由于所述I/O焊盘区域26延伸超出上面的传感器阵 列12的覆盖区(footprint),因此提供了去往及来自所述传感器组件 10的很容易的电访问。通过熔融所述导电凸块36,使用回流焊接来产 生所述传感器阵列12与所述电子装置阵列14之间的连接。该工艺是 自对准的,因此便于所述传感器与电子装置阵列的配准。虽然图7的 示例性说明示出了导电凸块36大于导电凸块46,但是应当理解的是, 在某些实施例中,导电凸块36可以小于导电凸块46,或者其尺寸可以 与导电凸块46近似相同。此外,在某些实施例中,与所述互连区域16 中的凸块相比,所述1/0焊盘区域26中的凸块可以具有不同的尺寸、 不同的材料和/或具有不同的回流属性。此外,虽然所示出的实施例在 所述电子装置阵列14上提供了 I/O焊盘区域26并且所述柔性线缆44 与之相耦合,但是还可以替换地在所述传感器阵列12上制造1/0焊盘 区域,从而该柔线线缆44可以被附着成把所述传感器组件10电耦合 到一个系统。
图8-12示出了所述传感器组件10的替换实施例的横截面视图, 其采用了不同的配置和机制将所述传感器阵列12机械地、电气地耦合 到所述电子装置阵列14,以及/或者用于把该传感器组件IO辆合到一 个系统。例如,根据图8中示出的实施例,如前面参照图7所描述的 那样,通过导电凸块36把该传感器阵列12耦合到该电子装置阵列。 然而,代替如图7所示的那样通过耦合到柔性线缆44的导电凸块46 把该电子装置阵列14电耦合到一个系统,例如通过环氧树脂、软膏或 粘胶把该电子装置阵列14机械地耦合到基板48。该基板48例如可以 包括印刷电路板、陶瓷、柔线、软硬线(rigid flex)或FR4。该电子 装置阵列14 (因此整个传感器组件10)通过接合引线(bondwire) 50 电耦合到该基板48。应当理解,根据该实施例,该电子装置阵列14 的所述I/O区域26包括用来电耦合接合引线的引线接合焊盘52。该基 板48还包括引线接合焊盘54和通过该基板48的导电线路(未示出), 从而该基板48可以被用来把所述传感器阵列IO耦合到一个系统。虽 然没有示出,但是所述传感器阵列12与所述电子装置阵列14之间的 区域还可以包括下填材料,正如前面参照图7的下填材料42所描述的那样。
图9示出了所述传感器组件10的另一个替换实施例的横截面视 图。根据图9的实施例,该传感器组件10包括第一电子装置阵列14A 和第二电子装置阵列14B。所述传感器阵列12通过导电凸块36耦合到 该第一电子装置阵列14A。该第一电子装置阵列14A通过环氧树脂、软 膏、粘胶或者通过直接的机械接合(例如熔化接合、原子接合(atomic bond)或加压接合)机械地耦合到第二电子装置阵列14B。该笫二电 子装置阵列14B通过环氧树脂、软膏或粘胶耦合到基板48。电子装置 阵列14A和14B中每一个通过接合引线50电耦合到该基板44。在所 示出的实施例中,所述传感器阵列12也通过接合引线50电耦合到该 基板44。相应地,该传感器阵列12还包括接合引线焊盘56。或者, 该传感器阵列12可以通过所述导电凸块36电耦合到第一电子装置阵
列14A,并且随后可以通过接合引线50把来自该传感器阵列12的信号 从该第一电子装置阵列14A传送到该基板48。虽然没有示出,但是该 传感器阵列12和该第一电子装置阵列14A还可以包括下填材料,正如 前面参照图7的下填材料42所描述的那样。
图10-12示出了利用穿过晶片的通路把所述传感器阵列12耦合到 所述电子装置阵列14的替换实施例。具体来说,图IO示出了所述传 感器组件10的另一个替换实施例的横截面视图,其采用了穿过晶片的 通路。根据图IO的实施例,该传感器阵列12被制造成使得有源传感 器58被制造在晶片60的一侧。穿过该传感器阵列12的晶片60形成 穿晶片通路62,所述通路用诸如金属的导电材料填充,以便把所述传 感器58电耦合到该晶片60的背侧上的焊盘38。如前所述,该传感器 阵列12通过导电凸块36电耦合到所述电子装置阵列14。虽然没有示 出,但是该传感器阵列12与所述笫一电子装置阵列14A之间还可以包 括下填材料,正如前面参照图7的下填材料42所描述的那样。
图11示出了所述传感器组件10的另一个替换实施例的横截面视 图,其采用了穿晶片通路。根据图11的实施例,所述传感器阵列12 被制造成使得有源传感器5 8被制造在晶片6 0的具有穿晶片通路6 2的 一侧上,正如前面参照图IO所描述的那样。然而,代替如图10中那 样采用导电凸块36把该传感器阵列12电耦合到所述电子装置阵列 14,把该传感器阵列12直接耦合到该电子装置阵列14。所述通路62 电耦合到该电子装置阵列14上的焊盘40,从而提供信号路径。
图12示出了采用穿晶片通路的传感器组件10的另一个替换实施 例的横截面视图。根据图12的实施例,不是如图10中的实施例那样 通过位于其间的导电凸块36把所述传感器阵列12上的焊盘38直接耦 合到所述电子装置阵列14上的焊盘40从而把所述传感器58耦合到该 电子装置阵列,而是采用了在该电子装置阵列14上面的再分配层 (RDL) 64。该RDL层64包括用来把该RDL 64耦合到所述导电凸块36 的焊盘66。该RDL 64还包括穿过其形成的并且耦合到该电子装置阵 列14的焊盘40的导电路径68。通过在该电子装置阵列14上结合RDL 层64,不需要对准该传感器阵列12的焊盘38与该电子装置阵列14 的焊盘40,这是因为该RDL层64将被配置成提供其间的电连接。在备 选实施例中,作为对该电子装置阵列14上RDL层64的补充或取代,该传感器阵列12可以具有RDL层。
现在参照图13,其中示出了根据本发明的实施例的制造传感器组 件10的示例性工艺70的流程图。该工艺70特别针对制造关于图7说 明并描述的实施例。相应地,通过交叉参照图7可以最佳地理解该工 艺70。本领域技术人员将认识到为了制造关于图8-12说明的各实施例 必须在该工艺70中做出的变化。
如前所述,所述传感器阵列12与所述电子装置阵列14被彼此独 立地制造。因此,可以同时制造该传感器阵列12和该电子装置阵列 14。如框72中所示,制造该传感器阵列12。在所述工艺中的该位置处, 可以测试所制造的传感器阵列12以及电子装置阵列14,以便确定具有 已知的良好产量的那些管芯。在制造之后,并且在切割所述模块之前, 如框74中所示,把导电凸块耦合到该传感器阵列l2的背侧上的焊盘 38。对该传感器阵列12的处理通常包括在该传感器阵列12的背侧上 的导电焊盘38上沉积凸块下冶金(UBM)(即"凸起"所述导电焊盘 38)。在一个示例性实施例中,该UBM包括钛-镍-铜。在沉积了 UBM 之后,可以在该UBM层上沉积一个保护层(比如金层)。类似地,在 如框76中所示地制造了所述电子装置阵列14之后,可以如框78中所 示地把导电凸块沉积在该电子装置阵列14的背侧上的导电焊盘40 上。在一个实施例中,在每一个焊盘40 (包括所述I/O焊盘区域26 中的那些焊盘)上都沉积UBM层(比如钛-镍-铜)。接下来,在该电 子装置阵列14的UBM层上沉积一个焊料合金层,比如共晶锡铅或无铅 锡-银-铜合金。应当认识到,可以采用其他材料来凸起该传感器阵列 12和/或该电子装置阵列14,其中包括(但不限于)无铅锡或银。由 于该电子装置阵列14到该传感器阵列12的互连不同于该电子装置阵 列14与所述柔性线缆44之间的互连(图7),因此可以对所述I/O 焊盘区域26中的焊盘进行不同的凸起。也就是说,与所述互连区域16 中的凸块相比,所述I/O焊盘区域26中的凸块可以具有不同的尺寸、 不同的材料以及具有不同的回流属性。在一个示例性实施例中,在所 述I/O焊盘区域26中的焊盘39上沉积了所述UBM层之后,在该I/O 焊盘区域26中的所述焊盘上的该UBM层上沉积金层。 一旦该I/O焊盘 区域26中的焊盘39被凸起,就可以如框80中所示的那样附着柔性载 体44 (图7)。根据替换的实施例,还有可能在一旦建立了整个传感
器组件10之后附着该柔性线缆44。
在凸起了所述传感器阵列12和所述电子装置阵列14并且把所述 柔性载体40附着到所述I/0焊盘区域26之后,可以如框82中所示把 该传感器阵列12放置在该电子装置阵列14的上面。应当认识到,可 以把该传感器阵列12与该电子装置阵列14凸起成使得当把所述阵列 设置在倒装芯片位置中时,每个阵列上的凸块与另一个阵列上的凸块 对准。接下来,如框84中所示对所述凸块进行回流,从而使得该电子 装置阵列14上的每个凸块和该传感器阵列12上的每个凸块形成从该 传感器阵列12到该电子装置阵列14的各个单个互连。参照图7中的 附图标记36最佳地说明了这一点。最后,在回流之后,可以通过使用 液体下填材料的毛细管属性来施加所述下填,以便完全填充该电子装 置阵列14与该传感器阵列12之间的区域,如框86中所示。根据替换 实施例,可以凸起该传感器阵列12或者该电子装置阵列14(而不是凸 起二者),并且随后将它们以倒装芯片的方式接合在一起。相应地, 可以省略步骤74或78。此外,根据另一个实施例,可能有利的是,凸 起整个传感器阵列12,而只凸起该电子装置阵列14的一部分(例如所 述I/O区域)。
应当理解,根据本发明的各实施例,所述传感器组件10的模块化 方案允许在制造工艺70期间的多个位置处进行测试。例如,根据该工 艺70,测试可以发生在步骤72和74、 76和78、 80和82之间以及/ 或者发生在步骤86之后。测试的数量以及在该工艺70中执行测试的 位置将根据应用而改变。
虽然这里仅仅说明并描述了本发明的某些特征,但是本领域技术 人员可以想到许多修改和改变。因此,应当理解,所附权利要求书意 图覆盖落在本发明的真实范围之内的所有这种修改和改变。
元件列表(194592; G,; 0731 ) 10传感器组件 12 传感器阵列 14 电子装置阵列
16 互连
17 接口
18传感器子阵列
20 IC芯片
22传感器模块
24 电子装置/IC模块
26 1/0焊盘区域
28 晶片
30 好管芯
32 坏管芯
34 电气良好的模块
36 导电凸块
38 导电焊盘
39 导电焊盘
40 导电焊盘 42 下填材料 44 柔性线缆 46 导电凸块 48 基板
50接合引线
52引线接合焊盘
54引线接合焊盘
56 接合引线焊盘
58传感器
60 晶片
62 穿晶片通路
64 再分配层
66 焊盘
68 导电路径
70 工艺
72 工艺步骤
74 工艺步骤
76 工艺步骤
78 工艺步骤
80 工艺步骤
82 工艺步骤
84 工艺步骤
86 工艺步骤。
权利要求
1、一种传感器组件(10),包括传感器阵列(12),其包括多个传感器模块(22),其中,所述多个传感器模块(22)中的每一个包括多个传感器子阵列(18);以及电子装置阵列(14),其耦合到该传感器阵列(12)并且包括多个集成电路模块(24),其中,所述多个集成电路模块(24)中的每一个包括多个集成电路芯片(20)。
2、 如权利要求2所述的传感器组件(10),其中,所述互连(16) 包括倒装芯片凸块接合、原子接合、低温熔化接合、层压金凸块或铟 凸块、铜加压接合、各向异性导电薄膜之一或其组合。
3、 如权利要求l所述的传感器组件(10),其中,每一个所述传 感器子阵列(18)包括电容性微加工超声换能器(cMUT)、锌镉碲化 物(CZT)传感器、压电换能器(PZT)、压电微加工超声换能器(PMUT) 或光电传感器阵列之一。
4、 如权利要求l所述的传感器組件(10),其中,所述多个集成 电路芯片(20)中的每一个包括输入/输出焊盘区域(26),所述输入 /输出焊盘区域(26)沿着该集成电路芯片(20)的单个边缘设置并且 被配置成把该集成电路芯片(20)耦合到传感器系统。
5、 如权利要求l所述的传感器组件(10),其中,所述多个集成 电路芯片(20)中的每一个包括输入/输出焊盘区域(26),输入/输 出焊盘区域(26)沿着该集成电路芯片(20)的多于一个边缘设置并 且被配置成把该集成电路芯片(20)耦合到超声系统。
6、 如权利要求l所述的传感器组件(10),其中,所述传感器阵 列(12)被层叠在所述电子装置阵列(14)的上面。
7、 如权利要求l所述的传感器组件(10),还包括被配置成把所 述传感器阵列(12 )耦合到所述电子装置阵列(14 )的互连(16 ), 其中,该互连(16)包括多个导电凸块(36),所述导电凸块被配置 成把该传感器阵列(12)机械地耦合到该电子装置阵列(14),以及 在该传感器阵列(12)与该电子装置阵列(14)之间传送电信号。
8、 一种制造传感器组件(10)的方法,包括 提供多个传感器模块(22),其中,每个传感器模块(22)包括多个传感器子阵列(18);提供多个电子装置模块(24),其中,每个电子装置模块(") 包括多个集成电路芯片(20);以及以层叠布置把所述多个传感器模块(22)中的每一个耦合到所述 多个集成电路模块(24)中对应的一个。
9、 如权利要求8所述的方法,其中,提供所述多个传感器模块(22) 包括在晶片(28)上制造所述多个传感器子阵列(18)当中的每一个; 对所述多个传感器子阵列(18)当中的每一个进行电测试; 在该晶片(28)上识别电气良好的传感器子阵列(34);以及 在识别了所述电气良好的传感器子阵列(34 )之后,对该晶片(28 ) 进行划线以便产生所述多个传感器模块(22 ),每一个传感器模块(22 ) 包括设置在单个行中的M个传感器子阵列(18),其中选择划线图案以 便最大化传感器模块(22)的数目,其中传感器模块(22)中的每个 传感器子阵列(34)是电气良好的传感器子阵列(34)。
10、 如权利要求8所述的方法,其中,提供所述多个电子装置模块 (24)包括在晶片上制造所述多个集成电路芯片(20)当中的每一个; 对所述多个集成电路芯片(20)当中的每一个进行电测试; 在该晶片上识别电气良好的集成电路芯片(20);以及 在识别了所述电气良好的集成电路芯片(20)之后,对该晶片进 行划线以便产生所述多个电子装置模块(24),每一个电子装置模块 (24)包括设置在单个行中的N个集成电路芯片(20),其中选择划线 图案以便最大化电子装置模块(24)的数目,其中该电子装置模块(24) 中的每个集成电路芯片(20)是电气良好的集成电路芯片。
全文摘要
本发明提供一种模块化传感器组件(10)以及制造模块化传感器组件(10)的方法(70)。该模块化传感器组件(10)包括在层叠配置中耦合到电子装置阵列(14)的传感器阵列(12)。该传感器阵列(12)包括多个传感器模块(22),其中的每一个包括多个传感器子阵列(18)。该电子装置阵列(14)包括多个集成电路模块(24),其中的每一个包括多个集成电路芯片(20)。所述传感器模块(22)可以通过倒装芯片技术耦合到所述电子装置模块(24)。
文档编号A61B19/00GK101199434SQ200710180198
公开日2008年6月18日 申请日期2007年10月11日 优先权日2006年12月11日
发明者C·G·沃伊奇克, D·M·米尔斯, D·R·艾斯勒, J·S·艾尔鲍姆, R·A·费希尔, R·G·沃尼基, S·科甘 申请人:通用电气公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1