用于皮肤的emr治疗处理的方法和装置的制作方法

文档序号:1020593阅读:171来源:国知局
专利名称:用于皮肤的emr治疗处理的方法和装置的制作方法
技术领域
本发明涉及将电磁辐射(EMR)用于各种不同的治疗处理的方法和装置,更具体地说涉及通过使用空间上受限制的集中的EMR形成实质上被剩余区域包围着的处理或损伤区域用于皮肤病学处理的方法和装置。本发明的现有技术相干的和非相干的两种电磁辐射(尤其是光学辐射)的各种不同形式许多年来已被用于各种不同的医学处理,尤其是用于皮肤病学处理。这样的处理包括但是绝不局限于去除不想要的毛发,皮肤返老还童,消除静脉损伤,治疗痤疮,脂肪团、着色损伤和牛皮癣的处理,去除纹身、皮肤和其它癌的处理等。这些处理中大多数已以一种或另一种方式牵涉到被称为选择性福射热解的过程的运用例如,见Anderson RR, Parrish J.在Sciencel983 ;220:524-526 上发表的“Selective Photothermolysis:Precise Microsurgery bySelective Absorption of the Pulsed Radiation(选择性的福射热解:用脉冲福射的选择性的吸收完成的精确的显微外科手术),这个过程包括用在被发色团(天然的发色团或人工引入的发色团)优先吸收的波长下的辐射照射目标区域,在目标区域中,发色团的加热直接或间接地影响预期的处理。尽管这些技术对于许多指出的应用是有用的,但是这些技术有许多重大限制。首先,在比较大的区域上完成的处理(例如,皮肤返老还童和去除毛发,尤其是皮肤返老还童)能在实际的处理区域上造成不同程度的皮肤损伤。具体地说,这样的处理有时能导致皮肤层的分离。这些比较大的皮肤损伤区域往往需要花费几个星期或更多的时间才能痊愈,而后续的处理在正常情况下不能在这个时间周期中进行。优选的是如果这些程序能以将导致比较小的、被隔开的、能更快痊愈的损伤的方式完成,那么这将提高患者的舒适度和更迅速地完成后续处理的能力两者。此外,诸如去除毛发和去除皱纹之类的许多处理只需要在大得多的处理区域的某些小局部或区域中完成处理;然而,当前的处理技术通常需要在整个处理区域上而不是仅仅在处理区域的某些选定的需要处理的区域上完成处理。另一个潜在的问题是在目标区域中需要选择性地吸收外加辐射以产生处理所需热量的发色团。首先,在处理区域上方的区域包含优先吸收或以别的方式吸收外加辐射的发色团达到这样的程度,以致这样的发色团也被加热,而且为了保证这样的加热不造成表皮或真皮损伤在任何处理中都必须仔细。这样的叠层区域的冷却的各种不同形式(有时是侵蚀性冷却)往往是允许在不损伤上覆层皮肤的情况下完成这样的处理必不可少的。例如,就去除毛发或以黑色素为目标的其它处理而言,在表皮中特别是在真皮-表皮(DE)结合部黑色素的加热是一个问题。在作为目标的发色团是水的场合,实质上处理区域中及其上方所有的组织都将吸收辐射并且将被加热,从而使选定的身体部分的受控处理变得困难和增加不想要的外围损伤的可能性。采用选择性的 辐射热解的另一个问题是为辐射选定的波长通常是由被利用的发色团的吸收特性规定的。然而,这样的波长对于其它的目的不可能是最佳的。例如,皮肤是一种散射媒体,但是这样的散射在某些波长比在其它波长显著得多。令人遗憾的是例如被黑色素(一种时常使用的发色团)优先吸收的波长也是实质上发生散射的波长。这对于通常用来处理静脉损伤的波长也是真实的。皮肤中的光子吸收也在光学波段上变化,选择性辐射热解所规定的波长时常是被皮肤高度吸收的波长。通常供选择性辐射热解利用的波长被高度散射和高度吸收这一事实限制有选择地瞄准身体某些部分的能力,尤其限制能够有效地和高效率地完成处理的深度。此外,施加给目标区域的能量要么被散射、没有达到正在经受处理的身体部分,要么在上覆层或周围组织中被吸收引起对这样的组织的不想要的有潜在危险的加热这一事实导致效率非常低的光学的皮肤医学处理。对于这样的处理这种低效率意味着为了实现预期的治疗结果需要更大和更有力的EMR源以及为了通过表面冷却或其它适当的技术减轻这种不想要的加热作用必须利用附加的费用和能量。对于更有力的EMR源的热能管理也是个问题,通常需要昂贵的和庞大的水循环或其它热能管理机构。此外,由于目标中的发色团(例如,毛发中的黑色素)的浓度在目标之间和患者之间大幅度地改变,所以就使用选择性辐射热解对给定的目标进行有效的处理而言难以确定最佳值,甚至难以确定适当的参数。某些类型的皮肤的高吸收,例如,生来皮肤黑的个人和皮肤晒得非常黑的人时常使某些处理变得难以甚至不可能安全地实施。因此,允许对所有类型和肤色的皮肤进行安全处理的技术(优选痛苦极少或没有痛苦的和优选实质上使用相同参数的)是令人想要的。采用现有的处理的另一个问题是能够施加给处理区域的能量的数量即使在对表皮的伤害、皮肤结疤、或者其它损伤不是问题的场合也时常受患者所经历的痛苦限制。理想的是,通常用于美容目的的EMR皮肤医学程序应该是无痛苦的或实质上无痛苦的。尽管如果该程序将由医师完成,痛苦可以通过使用局部麻醉或甚至通过迫使患者睡觉而得到控制,但是在使用任何麻醉剂时都存在危险,而为了局部麻醉剂的给药使用针就美容程序而言是不受欢迎的。所以,优选的是如果患者的痛苦实质上有可能在不需要这样的程序的情况下被减轻和消除,同时仍然允许施加足够的辐射,以实现预期的治疗结果。另外,存在这样一些场合,即有必要或希望在患者的皮肤上(尤其是在皮肤表面附近)进行显微外科手术的场合;要处理的区域属于尺寸在微米范围内的场合,例如,10微米,一个用解剖刀不能处理的尺寸。用来完成显微外科手术的现有的EMR装置也不适合在这样小的目标上完成外科手术。所以需要用来完成这样精细的显微外科手术的改进的技术。此外,尽管EMR技术对于处理前面指出的一些情况是可用的,但是用来处理包括痤疮疤痕、水痘疤痕等在内的疤痕的、用于皮肤中起因于疤痕组织的肿块的、用于拉紧痕迹的、用来处理某些寄生虫的这样的技术目前还不存在。因此,需要用来处理这样的情况的有效技术。另外一个问题是在消除纹身或特别接近皮肤表面的着色损伤方面,在这种场合现有技术时常造成水泡和其它皮肤问题。将允许以足够温和的方式使这样的纹身褪色和/或最终消除它的不造成对患者皮肤的伤害或重大的患者不便的改进技术也是令人向往的。用来处理各种不同的皮肤瑕疵的类似的技术也是令人向往的。最后,尽管目前有在处理大的静脉损伤方面比较有效的技术,但是这样的技术不如在处理蛛网形静脉和其它小静脉方面那样高效率。相似的无效率存在于将辐射施加在患者皮肤的比较大的区域上而需要处理的仅仅在这样的区域的比较小的部分之中的场合。因此,需要有用于EMR治疗处理的,具体地说用于光学的皮肤医学处理的改进的方法和装置,该方法和装置允许在目标区域中更有选择地处理,而且不依赖选择性辐射热解,以致所利用的波长可以是为了更有效地将辐射在选定的深度交付给预期的目标体积、具体地说交付给这样的目标体积的某些优选被未被处理的部分包围的选定部分而选定的,而且用来处理给定目标的适当的参数可以被更容易地确定。本发明的概述依照上文,这项发明提供一种用来在以患者皮肤的区域和深度坐标定位的体积上完成处理的方法和装置,该方法包括提供辐射源和把来自辐射源的辐射应用于光学系统,后者将辐射集中到该体积的深度坐标之内的至少一个深度和在该体积的区域坐标之内选定的区域,所述的至少一个深度和选定的区域在该体积中定义该体积的未经处理的部分之内的三维空间处理部分。该装置有辐射源和将来自辐射源的辐射应用于它的光学系统,光学系统将辐射集中到该体积中的至少一个深度和该体积中选定的区域,所述的至少一个深度和区域在该体积中定义在该体积的未经处理的部分之内的三维空间处理部分。就所述的方法和装置两者而言,处理部分对体积的比例可以在0.1%和90%之间,然而,优选介于10%和50%之间,更优选介于10%和30%之间。在每种情况下,处理部分都可以是至少有一个选定的尺寸和厚度的圆柱体、球体、椭球体、实心长方体或平面。处理部分也可以是有选定的长度和厚度的隔离行。光学系统可以实质上同时将辐射应用于所有的处理部分,或者光学系统可以将辐射至少连续地应用于选定的处理部分。在至少一个处理部分上的患者皮肤也可以在整段持续时间内被预先冷却到选定的温度,为预先冷却选定的温度和持续时间优选就处理部分而言足以将皮肤冷却到至少在至少一个深度至少达到在正常体温以下选定的温度。对于选定的实施方案,就处理部分而言皮肤被至少冷却到选定的温度和至少一个深度以下的深度,以致所述的至少一个处理部分实质上被冷却的皮 肤包围着。冷却可以在施加辐射期间继续,而且就这个实施方案而言,施加辐射的持续时间可以大于处理部分的热松弛时间。用于辐射源的波长优选是这样选定的,以致在要完成处理的体积上方的患者皮肤中既没有强吸收也没有强散射。对于较深的深度坐标,为了在患者的皮肤中实现集中在预期的深度坐标,光学系统聚焦到在处理部分的至少一个深度以下选定的深度。在将要完成处理的体积和/或在这个体积上方的患者皮肤中选定的条件可以被检测,检测的结果在施加辐射期间被用来控制辐射集中到其上的处理部分。外加辐射优选具有至少部分地作为处理部分的至少一个深度的函数的输出波长。更具体地说,外加辐射的波长可以作为外加辐射的下述函数被选定:深度=.05到.2毫米,波长=400-1880nm和 2050_2350nm,其中 800_1850nm 和 2100_2300nm 是优选的;深度=.2到.3 毫米,波长=500-1880nm和 2050_2350nm,其中 800_1850nm和 2150_2300nm是优选的;深度=.3 到.5 毫米,波长=600-1380nm和 1520_1850nm和 2150_2260nm,其中 900_1300nm和1550-1820nm和2150_2250nm是优选的;深度=.5到1.0毫米,波长=600_1370nm和1600-1820nm,其中900-1250nm和1650_1750nm是优选的;深度=1.0胜过2.0毫米,波长=670-1350nm和1650_1780nm,其中900_1230nm是优选的;深度=2.0到5.0毫米,波长=800-1300nm,其中 1050_1220nm 是优选的.
为了处理各种不同的医学条件,所述的方法和装置也可以被利用。在选定的深度下处理静脉损伤的情况下,包括光学系统和外加辐射的波长在内的处理参数是这样选定的,以致处理部分的至少一个深度接近正被处理的脉管的深度。同样地,在处理是通过胶原蛋白的处理或去除毛发进行的皮肤再次调整的情况下,包括光学系统和辐射波长在内的处理参数是这样的选定的,以致那至少一个深度分别是真皮间的胶原蛋白的深度和至少作为毛囊的凸出部分和基体之一的深度。这项发明的教导也可以被用来处理痤疮、对准和破坏脂肪瘤、处理脂肪团、消除纹身、处理着色损伤、处理向下的和其它的疤痕和其它皮肤瑕疵、以及处理皮肤中各种不同的其它情况。在实践这项发明时所利用的光学系统可以包括光学要素的阵列,来自辐射源的辐射将被至少同时应用于其中众多的光学要素,每个光学要素都将辐射集中到该体积的选定部分。例如,每个光学要素都可以聚焦或集中到选定长度和厚度的行上,用于一些要素的行以选定的角度到其它要素的行。作为替代,光学系统可以包括用来扫描施加给光学集中部件的辐射,以便每次将辐射连续地聚焦到N个处理部分的装置,其中N > I。光学系统可以改为包括深度可调节的光学聚焦部件和用于这样的光学聚焦部件的定位机构,后者为了聚焦在连续的处理部分上移动所述部件。该装置还可以包括至少将选定的区域坐标上的那部分患者皮肤冷却到选定的温度的机构,和为了在施加辐射之前和/或在施加辐射期间在选定的整段持续时间里预先冷却患者皮肤的这个部分而有选择地操作冷却机构的控制装置。冷却机构和控制装置可以将皮肤预先冷却到某个温度而且其持续时间足以至少将那部分皮肤冷却到在正常体温以下选定的温度并且冷却到处理部分的至少一个深度,或者可以冷却到处理部分的至少一个深度以下的深度,在后一种情况下处理部分实质上被冷却的皮肤包围着。装置还可以包括在该体积中和/或在该体积上方的一部分患者皮肤中用于至少一个选定的条件的检测器,光学系统可以为了控制该体积接受集中辐射的处理部分而作为对检测器的响应进行操作。 本发明还包括用·来在按患者皮肤的区域和深度坐标定位的体积上完成处理的方法和装置,其中包括提供辐射源·和在选定的整段持续时间里将在体积的至少一部分区域坐标上的患者皮肤预先冷却到选定的温度,选定的温度和持续时间足以将皮肤冷却到在体积的深度坐标以下的深度;以及将辐射施加给光学系统,该光学系统将辐射集中到至少一个深度坐标和在区域坐标之内选定的区域,以便在体积中定义处理部分,所述的处理部分小于总体积,而且每个处理部分都处在未经处理的部分之内并且实质上被冷却的皮肤包围着。更明确地说,可以提供一种机构,该机构将区域坐标上的患者皮肤冷却到选定的温度,而且可以提供用来在施加辐射之前和/或在施加辐射期间有选择地操作冷却机构以便在选定的整段持续时间里预先冷却皮肤的控制装置,该机构和控制装置在足以将皮肤冷却到至少在体积的深度坐标以下的某个深度至少达到在正常体温以下选定的温度的整段持续时间里冷却到某个温度。用冷却机构冷却患者的皮肤可以在施加辐射的步骤期间继续,而施加辐射的持续时间可以大于每个处理部分的热松弛时间。最后,本发明包括用来通过将选定至少一个波长的外加辐射集中在众多选定的三维空间定位的处理部分上完成在患者皮肤上的治疗处理的方法和装置,其中处理部分在非处理部分之内。
本发明的上述和其它目的、特征和优势从下面结合附图予以举例说明的本发明的各种不同的实施方案的更具体的描述将变得显而易见,其中相同或相关的参考数字在各种不同的附图中被用于共同的要素。附图简要说明

图1-1B是包括适合供平行地将辐射交付给众多目标部分使用的光学要素阵列的三个光学系统的俯视图。图2-3C是适合供平行地将辐射交付给众多目标部分使用的各种不同的透镜阵列的侧视图。图4-4C是适合供平行地将辐射交付给众多目标部分使用的菲涅耳透镜阵列的侧视图。图5-5B是适合供平行地将辐射交付给众多目标部分使用的全息透镜阵列的侧视图。图6-6A是适合供平行地将辐射交付给众多目标部分使用的梯度透镜阵列的侧视图。图7-7B是圆柱形透镜的各种不同的矩阵阵列的俯视图,其中一些适合为众多的目标部分提供行聚焦。图8-8C是适合平行地将辐射交付给众多目标部分的圆柱形透镜矩阵系统之一层的剖视图或侧视图。图9-9B分别是适合平行地将辐射交付给众多目标部分的两层圆柱形透镜阵列的透视图和侧剂图。图10-13是适合在将辐`射集中到一个或多个目标部分时使用的各种不同的光学物镜阵列的侧视图。图14-19是适合与图10-13的阵列一起使用以便移动到连续的目标部分的各种不同的偏转器系统的侧视图。图20和21是适合在实践本发明的教导中使用的两个不同的变焦光学系统的侧视图。图22A和22B分别是一段患者皮肤和位于其上用来实践这项发明的教导的设备的半示意性的透视图和侧视图。
图23A是不同损伤深度的优选的参数范围列表。
图23B是短脉冲在不同损伤深度的优选的参数范围列表。
图23C是长脉冲在不同损伤深度的优选的参数范围列表。本发明的详细描述首先参照图22k和22B,一部分患者的皮肤200被展示,该部分包括覆盖着真皮204表皮202,表皮和真皮的连接处被称为真皮-表皮(DE)结合部206。另外,展示了在患者的皮肤中位于深度d并且有区域A的处理体积V。处理体积V可以包含一个或多个将被破坏或除去的静脉损伤;可以包含众多将被永久破坏的、或者至少将被损伤从而造成暂时性的毛发脱落的、或者将受到刺激从而引起毛发生长的毛囊;可以将用各种不同的方法(例如,通过暂时破坏来刺激再次生长,尤其是为了皮肤返老还童和消除皱纹)重构的胶原蛋白包含在DE结合部下面的区域中;可以包含将被除去的黑素瘤、静脉损伤、着色损伤、葡萄酒色痣、牛皮癣、疤痕、或将被除去的其它皮肤瑕疵或纹身、或一些在它上面完成光学皮肤医学程序的其它的身体组成部分。另外,还展示用来将光学辐射交付给体积V的系统208。系统208包括EMR辐射源210,该福射源可以是相干光源,例如,固态激光器、染料激光器、二极管激光器、纤维激光器或其它的相干光源,或者可以是非相干光源,例如,在皮肤医学程序中用来交付光学辐射的闪光灯、卤素灯、灯泡或其它非相干光源。声频、射频或其它EMF(电磁频率)的辐射源也可以被用在适当的应用中。来自辐射源210的输出被施加给光学系统212,后者优选呈输出头与患者的皮肤表面接触的状态,如图22B所示。在使用声频、射频或其它非光学的EMR源作为辐射源210的场合,系统212将是适合集中或聚焦这样的EMR的系统,例如,相控阵,而术语“光学系统”应该在适当的场合予以解释,以便包括这样的系统。光学系统212的各种不同的实施方案将在下面予以讨论并且在各种不同的附图中予以展示。通常,系统212的功能是接受来自辐射源210的辐射并且将这样的辐射聚焦/集中成指向体积V中选定的一个或多个处理部分或目标部分214的一个或多个聚焦的射束222,聚焦是对深度d聚焦和在区域A中空间聚焦两者。因此,外加的EMR能量被集中,以便将更多的能量交付给目标部分214。依据系统参数,部分214可以是选定直径和厚度的圆柱体、球体或椭球体、而且对于一个实施方案可以有正方形或矩形的横截面。每种形状的部分可以穿过体积V延伸,或者可以是在单层及其错层中形成的。目标部分214还可以是(a)可以穿过体积V延伸的、或者在体积V中的单一的薄层中形成的、或者是在该体积的错层中形成的狭长条;或者(b)可以是在体积V中形成的一个或多个薄层。如同在后面将予以更详细地讨论的那样,光学系统212可以同时聚焦到所有的或选定的部分214的子集,可以包含用来将聚焦到深度d上的辐射移动到连续的部分214上的某种类型的光学或机械光学扫描器,或者可以产生被聚焦到深度d上而且通过手工操作或用二维或三维(包括深度)的定位机构在体积V上的皮肤表面上按自然法则移动把辐射引向预期的连续部分214的输出。对于后面的两个实施方案,移动可以是为了在其上面聚焦直接从一个部分到另一个部分,或者移动可以按标准图 案(例如,格子图案)进行,而EMR源仅仅在位于预期的部分214之上时才被点燃。为了冷却处理体积V上的皮肤200的表面,冷却要素215也被包括在内。如图22A和22B所示,冷却要素215作用于光学系统212上,以便冷却这个系统与患者的皮肤接触的部分,并因此冷却患者的皮肤与这样的要素接触的部分。例如,冷却要素215可以是一种热电的要素,或者可以是用来在光学系统这样的部分之上运送水(优选冷冻水)、气体(优选冷冻气体,甚至可能是低温气体)的系统。技术上已知的其它用来冷却患者皮肤表面的技术中也可以被使用。此外,在光学系统212不与患者的皮肤接触的场合,低温喷雾冷却、气流或其它非接触冷却技术可以被利用。皮肤表面上的冷却凝胶也可以被用来补充或取代前面指出的冷却的技术之一。系统208还包括非必选的检测器216,该检测器举例说可能是C⑶摄像机或其它用于患者皮肤的选定的特性的适当的检测器。来自检测器216的输出被施加给控制装置218,该控制装置通常是适当地编程的微处理器,但也可以是专用的硬件或者硬件和软件的混合体。控制装置218控制打开和关闭辐射源210而且可以控制辐射的功率分布图。控制装置218还被应用于光学系统212,以便(例如)控制光学系统的聚焦深度和控制在任何给定的时刻辐射正被聚焦/集中到它上面的一个或多个部分214,例如,通过控制光学系统的扫描和/或从那里辐射出来的射束。最后,控制装置218被应用于冷却要素215,以便在整个预先冷却过程中和辐照期间控制体积V上方的皮肤温度和冷却的持续时间。依照这项发明的教导,系统208控制外加辐射的各种参数。表1-3中的数据是使用不同波长下的皮肤散射和吸收的标准参数根据光子传播的Monte-Carlo模型找到的。这些参数包括但绝不局限于:1.处理部分214的形状。这些部分当中的每一个都可以是如图所示的薄圆盘,可以是加长的圆柱体,例如,可以它可以从比较靠近DE结合部206的第一深度延伸到比较深的第二深度,或者如同稍后将予以讨论的那样连同要描述的各种不同的光学系统,可以是行聚焦,每行都有选定的长度、宽度和取向,而且相邻的行都被选定的数量隔开。在给定的应用中用于部分214的行的取向不需要全是相同的,例如,其中一些行可以相对其它的行成直角(例如,见图7A和7B)。为了效率更高,行可以围绕着处理目标取向。例如,行可以垂直于脉管或平行于皱纹。部分214也可能是球形的、椭球形的,而且至少对于一个实施方案,可以是选定厚度的实心正方形或长方形。部分214的形状是由施加给它的聚焦的光学信号与施加的持续时间的组合参数规定的,而且在较小的程度上信号的波长在确定目标部分的形状方面是重要因素。例如,业已发现,采用在大约0.5焦耳到2焦耳下操作并且有
0.5到2毫秒的脉冲持续时间的1720nm激光器,通常获得呈圆柱形的部分214。反之,采用按同样的能量范围操作并且有0.5到3秒(平均值为I秒)的脉冲持续时间的1250nm激光器,通常获得呈球形的目标部分。用来获得特定的部分形状的参数可以以各种不同的方式决定,包括凭经验。通过适当地控制波长、聚焦、在表面的斑点大小和其它参数,不管形状如何部分214都可以穿过体积V延伸,可以是以体积V的单一薄层形式形成的,或者可以这样交错,以致,例如,毗邻的部分214处在体积V不同的薄层中。目标部分在体积V中的图案也可以随着应用而改变。进而,目标部分214还可以是(A)在单一的薄层中形成的或在不同的薄层中交错的(例如,Btt邻的长条处在不同的层中)可以穿过体积V延伸的比较狭窄的长条;或(b)可以是在体积V中形成的一个或多个薄层。虽然对于目标部分214全部现有的构型都可能被·连续地或平行地形成,但是最终在体积V中有多重薄层的构型或许需要被连续地形成。处理部分214的几何形状控制处理部分中的热损伤。由于球形提供最大的梯度,并因此提供最大的空间限制,所以它提供最大的局域性的生物损伤,并因此对于有这种需要的应用可以作为优选的目标形状。2.处理部分214的大小。对于进入患者皮肤大约I毫米的深度,部分214的最小直径,或行214的最小宽度估计是大约100微米;然而,大得多的部分(几毫米或更多)是可能的。对于更大的深度,最小尺寸将更大。3.部分214之间中心到中心的间隔。中心到中心的间隔是由许多因素决定的,包括部分214的大小和要完成的处理。通常,人们希望毗邻部分214之间的间隔足以保护的患者皮肤并且有助于损伤的痊愈,同时仍然允许实现预期的治疗效果。在一项应用中,如同4%那样小的体积V受到损伤(即,4%填充因数);然而,损伤部分214通常将覆盖实质上更多的处理体积V。尽管理论上处理部分214的组合体积对体积V比例(有时也称之为填充因数)可以是0.1%到90%,但是就填充因素而言优选的范围对于一些应用是10%到50%,而对于大多数应用是10%到30%。重要的是在每个小岛或处理/损伤区域214的周围至少有一些保留区域(some area of sparing)而且这个保留区域足以允许皮肤复原,这样的复原是通过黑素体迁移变得容易的。4.用于体积V的深度d。虽然在诸如皮肤之类的散射媒体中在I毫米以下更深的深度难以实现小焦斑214,但是只要不要求严格的聚焦,而且较大的部分尺寸214(或许是几毫米)是可接受的,在深达4毫米而且或许更深的深度聚焦或许是可能的。5.焦点深度。尽管如同可以从表I看到的那样,用于体积V的深度d和光学系统212的聚点深度在对浅的深度聚焦时实质上是相同的,但是为了实现在更深的深度d聚焦,在诸如皮肤之类的散射媒体中在更大的深度(有时在大得多的深度)聚焦通常是必要的。其理由是散射妨碍实现严格的聚焦和导致最小的斑点尺寸,并因此使能量最大限度地集中,因为聚焦的射束实质上在射束聚焦深度的上方。聚焦深度可以是为了在预期的深度d实现最小的斑点尺寸根据已知的皮肤特性选定的。6.波长。散射和吸收两者都是随波长变化的。所以,尽管就深度浅的情况而言在实现聚焦的射束的同时仍然能利用相当宽的波段,但是,聚焦深度越深,越多的散射和吸收变成因素,而且能实现合理聚焦的可用的波段也越狭窄。表I指出为各种不同的深度优选的波段,虽然可接受但是并非最佳的结果有可能在这些波段之外。7.脉冲宽度。在正常情况下外加辐射的脉冲宽度应该是小于每个目标部分214的热松弛时间(TRT),因为较长的持续时间将导致热量迁移到这些部分的边界之外。因为部分214通常将是比较小的,所以脉冲持续时间也将如表I所示是比较短的。然而,当深度增加,斑点尺寸也因此增加的时候,最大的脉冲宽度或持续时间也增加。再者,在表I中给出的数值是针对给定的斑点尺寸的最大值,而且较短的脉冲可以被使用。通常,热扩散理论指出就球形小岛而言脉冲宽度τ应该是τ < 500D2/24,而就直径为D的圆柱形小岛而言应该是τ <50D2/16。进而,如果目标的密度不是太高,则脉冲宽度有时可以比目标部分214的热松弛时间长,以致来自目标的组合热量在这些区域之外的任何点就在这样的点的组织而言都很好地在损伤门限值 下面。另外,如同稍后将予以讨论的那样,采用适当的冷却制度,上述的限制可能不适用,而且可以利用就损伤部分214而言超过热松弛时间(有时远远超过TRT)的脉冲持续时间。8.功率。来自辐射源的必要的功率取决于预期的治疗效果,随着深度的逐渐增加、冷却和因波长造成的吸收的减少而逐渐增加。功率还随着脉冲宽度逐渐增加而减少。9.冷却。冷却器215通常在辐射源210之前被激活,以便将患者的皮肤预先冷却到在正常的皮肤温度以下的温度(例如,O到10°C)以及冷却到至少在DE结合部206的深度,并且优选冷却到保护体积V上方的整个皮肤区域220的深度d。然而,依照这项发明的教导,如果预先冷却时间周期延长到足以将患者的皮肤冷却到体积V以下的深度,具体地说如果冷却继续到开始施加辐射之后,那么加热将仅仅发生在被照射的部分214中,每个这样的部分都将被冷却的皮肤包围着。所以,即使就部分214而言外加辐射的持续时间超过TRT,来自这些部分的热量也将受到抑制,因此热损伤将不发生在这些部分之外。此外,尽管神经在部分214中可能受到刺激,但是在部分214外面冷却这些神经除了允许严格控制损伤体积之外还将阻断痛苦信号传送到大脑,因此允许处理在患者较为舒适的情况下发挥作用,具体地说允许将要施加的辐射剂量影响因为患者所经历的由此产生的痛苦或许不可能以别的方式进行的预期的处理。这个冷却制度是这项发明的重要特征。
10.数值孔径。数值孔径是用于来自光学装置212的聚焦的辐射射束222的角度Θ的函数。优选的是这个数字(并因此角度Θ)尽可能大,以致在体积V中集中在部分214上的辐射能量远远大于在体积V中(和在区域220中)其它点的能量,借此在体积V的部分214中仍然实现预期的治疗效果的同时,使在区域220中和在体积V的除部分214之外的部分中对组织的伤害最小。较高的射束数值孔径将增加表皮的安全,但是它受较高的杂散反射光线的散射和吸收的限制。如同能从表I看到的那样,随着聚焦深度增加,数值孔径可能逐渐减少。因此,通过明智地选择前面和其它人指出的各种不同的参数,可以实现一个或多个聚焦的辐射射束222,以便在患者皮肤中形成在选定的深度d的处理体积V中的处理/损伤小岛214。用来在各种不同的深度实现这些目的的参数的优选范围是在表I中提供的。表2和表3举例说明在各种不同的深度下分别用于短脉冲(即,用于肤浅的小目标的小于10毫秒的脉冲和用于较深的深度的小于100毫秒的脉冲)和长脉冲的参数范围。表2中的数值假定上述的穿过体积V的深层冷却尚未提供,以致脉冲持续时间受损伤部分214的热松弛时间的限制。因此,在能够实现较小的斑点或聚焦区域(例如,直径为50微米的斑点)的较短的深度,如同在表2中假定的那样,小于10毫秒的脉冲宽度是必要的,而且其它参数被相应地选定。反之,就较深的深度而言,严格的聚焦由于散射不能实现,从而就这些部分而言导致直径相当大的损伤部分214和较长的热松弛时间,所以,能够提供实质上比较长的脉冲宽度,允许实现治疗效果必不可少的能量在较长的时间间隔内提供。这有助于清除来自区域220 (具体地说来自其表皮部分202和DE结合部206)的热量。它还允许利用峰值功率比较低的辐射源 210。从表2和表3,人们还注意到聚焦深度被指出大于损伤部分214的深度d。其理由前面已经讨论过。当控制装置218能够为了聚焦在目标体积V中选定的部分214上而被预先编程的时候,另一个选项是使用反馈来控制在体积V中聚焦在它上面的部分214,其中反馈要么是通过使用检测器216机械地获得的,要么是由操作员获得的,通常用光学方法,但是有可能使用操作员的其它感觉,例如触觉或听觉。例如,假定检测器216是CCD成像装置,在体积V中毛囊、静脉损伤或其它目标部分的位置能被定位,而且聚焦的射束222明确地指向这样的组成部分的位置。因此,假定进行清除毛发处理,检测器216可以在体积V上方的表面找出每个毛囊,然后使射束222在选定的深度(例如,干细胞所在的I毫米深度)聚焦到每个这样的毛囊上。射束也可以被聚焦在沿着毛囊延伸的深度,例如,0.7-3毫米,以保证在实质上不损伤毛囊周围的真皮组织或没有毛囊基体损伤的情况下破坏毛囊之内对于永久地或实质上永久地清除毛发必不可少的全部要素,例如,破坏毛囊干细胞。如果利用前面讨论的冷却技术,这个结果是最容易实现的,其中冷却延伸到处理体积V以下,以致每个要处理的毛囊都被冷却的真皮组织包围着。反馈还可能被用来跟踪要处理的血管或其它静脉结构或跟踪要通过胶原蛋白重构处理的一条或多条皱纹。此外,当聚焦的射束222能够凭借控制装置218响应来自检测器216的输出自动定位的时候,这样的反馈还能通过操作员手动调节光学系统212的位置来跟踪和处理毛囊、静脉结构、皱纹之类的东西得以实现。更明确地说,所用的扫描器可能包括三个供检测使用的优选不同颜色的低功率激光二极管和一个处理使用的高功率激光二极管。例如,扫描器可以被用来检测血管的位置和检测相关的深度。供检测使用的三个二极管之一可以是高功率二极管,它既能在检测模式下操作,也能在处理模式下操作,而且在某些情况下,检测可以仅仅由一个或两个二极管来完成,在某些情况下这些二极管也可以供处理使用。适当的扫描器能被用来在选定的图案上移动检测器和/或处理二极管。然而,尽管过去使用电流扫描器,但是就这个应用而言接触扫描器是必不可少的,因为射束所需要的聚焦要求接触不可能用电流扫描器的某种东西。再者,扫描器能为了跟踪特定的图案找出目标而编程,而且可以为了跟随曾经找到的目标(例如,静脉)而编程,或者扫描可以是手动控制的。在扫描跟随着选定的目标(例如,血管)的场合,照射可以沿着血管发生在选定的点。为了停止其中的血液流动和杀死脉管,沿着脉管在选定的一个或多个点使血管凝固通常是必不可少的。为了达到破坏它的目的,照射整个脉管应该不是必不可少的。在使用扫描器的场合,被扫描的区域能投射在荧屏上,从而提供有助于在被编程的扫描中选择预期的目标点或沿着目标(例如血管)实施扫描的有效的放大。可以为了提供不同的颜色而被滤波的多样的检测器能被用了检测目标(例如,血管)的深度,以致光线能聚焦在适合处理的深度。因此,扫描可以是三维的。由于深度在某种程度上受波长、输出波长在有限的范围内可编程而且可以被用来控制用于检测和处理两者的皮肤深度的纤维激光器的控制。在每种情况下,处理都可以单独受聚焦到选定点的辐射、在该点被正常加热的水、或这样的聚焦加上预期的目标在所用波长下的选择性吸收的效果的影响。发色团(尽管通常是水)也可能是血或黑色素。此外,在处理血管的时候,由于不需要血色素作为发色团,脉管在处理期间能被压缩,例如,通过对脉管施加压力。这可以允许能造成脉管更永久的闭合和永久地闭合较大的脉管的可能性的脉管壁的变性和收缩。处理/损伤小岛的位置和尺寸能针对脉管的不同尺寸、类型和位置进行调节。同样地,为来除去毛发,由于不需要以黑色素为目标,所以没有在毛干或毛囊内高黑色素含量的要求,从而有助于比较容易的灰色和金色毛发的处 理。对于葡萄酒色痣,波长可以在用于水吸收的0.9到1.85微米的范围内或者在用于血色素吸收的0.38到1.1微米的范围内,而填充因数为10%到80%,优选30%到50%。光源可以是有滤光和遮蔽的弧光灯。这项发明的教导还特别适合通过胶原蛋白再生进行皮肤返老还童的处理。在这样的处理中,由于胶原蛋白本身不是发色团,在乳突状真皮之中和之下的组织或血液中的发色团(例如,水)通常吸收辐射并且被加热,借此加热毗邻的胶原蛋白,从而引起导致胶原蛋白再生的选择性损伤或破坏。释放触发新在该区域中扰动血管还能导致释放引起生成新胶原蛋白的纤维原细胞。尽管这样的处理可以仅仅沿着要处理的那行皱纹或其它瑕疵进行,但是这样的处理通常是在比较大的经受处理的区域上完成的。依照这项发明的教导,这样的处理能在填充因数或许是30%到50%的情况下通过加热选定的部分214被更有效地完成,从而在患者遭受较少的损伤和痛苦的情况下造成效果显著的胶原蛋白再生。这样的程序可以在比较大的区域A上完成,或者利用与前面针对血管讨论的那些类似的技术,可以通过在皱纹上时周期性地激发射束得以完成,射束是按预定的图案跟踪的而且仅仅在皱纹上选定的点上时才被激发,或者为了跟踪皱纹是移动的并且在它上面时被周期性地激发。另外,至于采用这项发明的教导的其它的处理,痊愈较快地发生,以致后续的处理在必要的程度上通常或许在最初处理的几个星期之内完成,而且确实不超过一个月。
通常,皮肤中轻微的肿胀发生在胶原蛋白被加热的时候,轻微的肿胀起因于胶原蛋白的收缩。因此,这项技术不仅能被用来消除皱纹而且能被用来除去其它的皮肤瑕疵(例如,痤疮或水痘疤痕或皮肤中的其它疤痕),而且还可以用来处理脂肪团。尽管轻微的肿胀可以在大约一个月之后消退,但是加热还增加该区域中的胶原蛋白的厚度/长度比,因此增加胶原蛋白的厚度,从而导致大多数来自相当永久的皮肤返老还童/除去瑕疵的改进。其它能用这项发明的教导处理的皮肤瑕疵包括不同于皱纹的舒展痕迹,因为这些痕迹实质上与表面齐平,所以胶原蛋白的收缩和再生作为加热的结果减少这些痕迹。向下结疤,发生在外科手术或某些创伤之后的隆起的疤痕也能以与前面处理葡萄酒色痣非常相同的方式通过减少血液向疤痕脉管流动而得到处理。除了去除毛发、处理静脉损伤和赋予皮肤新表面之外,这项发明的教导还能被用来瞄准和破坏一个或多个皮脂腺,例如,处理痤疮、瞄准和破坏过多的皮下脂肪、处理脂肪团和在当前不能实施这样的处理的区域(例如,采用标准的赋予皮肤新表面的技术所引起的损伤不能正常痊愈的颈部和手)上赋予皮肤新表面。在这样的区域中仅仅处理小岛应该为痊愈的发生留下充足的未受损伤的皮肤结构。这项发明的教导如同前面指出的那样可以也被用来除去纹身、处理疤痕、处理着色损伤、处理向下的和其它的疤痕、舒展的痕迹、痤疮和水痘疤痕以及其它的皮肤瑕疵、和处理可以存在于患者的身体中在小于大约4毫米的深度的各种不同的其它情况,例如,各种不同的皮肤癌而且可能是PFB。对于皮肤肿瘤,可以使用使肿瘤位置局域化的反馈系统和确保肿瘤被完全热破坏的遥控系统的组合。牛皮癣可以采用与用于葡萄酒色痣的实质上相同的参数和实质上相同的方式进行处理。这些教导还可以用来处理使用本发明的教导能被找到并且被有选择地杀死的真皮内的寄生虫,例如幼虫迁移动物。为了除去纹身通常可以有三种利用本发明的方法。第一种是通过使用被纹身墨水吸收的一种或多种波长,优选采用高积分通量的短脉冲,来瓦解或破坏在细胞之中和之间的墨水。第二技术包括破坏包含墨水的细胞、以墨水或细胞中的水为目标,用身体的淋巴系统引起墨水的释放和清除。在这里通常将利用具有低功率和高能量的在毫秒到秒范围内的长脉冲。在第三种技术中,烧蚀激光器被用来往纹身中钻出I到2毫米的斑点,从而使这些区域中的细胞和纹身墨水两者都烧蚀或蒸发掉。采用小的填充因数,例如,在10%到80%的范围中,优选在10%到30%的范围中,这样小的损伤斑点痊愈得很好,从而就这三种处理中的每种处理而言都允许纹身被渐进地照射并且最终被除去。关于每种处理的随机化的图案也是为扰乱清除图案优选的。这项发明的教导特别适合解决的具体问题是处理表皮中的胎记或其它着色损伤。这样的损伤通常难以在不起水泡的情况下采用传统的处理方法进行处理。通过采用填充因数为1%到50% (优选10%到30%)的损伤岛和100微米到1/2毫米的斑点尺寸,在不结疤的情况下处理这样的损伤是可能的。由于在这种情况下的处理是如此接近表面,所以聚焦是不必要的。采用相似的填充因数的相似的处理可以被用来处理葡萄酒色痣或纹身,但是在这些情况中的任何一种情况下,聚焦都是必要的,因为处理是在较大的深度。在所有的情况下,第一种处理或许导致仅仅照射被处理的区域。被处理的部分一旦痊愈(这通常在采用损伤处理岛的情况下发生在 几个星期到一个月之内),一种或多种追加处理就能被完成,以便进一步照射被处理的区域,直到损伤、葡萄酒色痣、纹身等被除去为止。在每种情况下,由于处理产生的包含黑素体、墨水或类似的东西的死亡细胞将正常地经过淋巴系统被身体清除。因此,业已提供(a)允许在深达大约4毫米的深度在患者的身体上进行各种不同的治疗处理;(b)仅仅允许三维空间的损伤岛发生,借此促进痊愈(通过允许在皮层和损伤岛214之间延续血液流动和细胞增殖)和减少患者的不适;(c)允许以用于处理的特定的组成部分为目标不对患者身体的周围部分造成伤害,借此更有效地使用外加辐射,同时减少由于这样的处理造成的对患者身体的外围损伤;(d)允许对给定的处理使用实质上相同的参数处理各种类型的皮肤,借此使处理配置和处理安全性,和(e)允许处理所用的波长是针对处理的深度选定的最佳波长,而不是被限定为目标发色团吸收最佳的波长的技术。事实上,尽管为这项发明的教导选定的波长在正常情况下有重大的水吸收,但是在选择波长方面判据之一是它们甚至不被水大量地吸收,尤其是对于较深的深度,以致辐射能到达预期的深度而不由于吸收损失大量的能量/光子。光子/能量集中在目标部分214将增加在这些部分的能量,使之补偿在所用的波长下减少的吸收绰绰有余。因此,这项发明提供一种用来实施这样的处理的全新的新颖技术。图1-21举例说明适合在光学系统212中使用的各种不同的光学元器件。在这些附图中,图1-9B举例说明各种不同的用来将辐射平行地交付给众多目标部分214的系统。这些附图的阵列通常是用于特定深度d的定焦距阵列。这个深度可以通过使用具有不同聚焦深度的阵列、通过有选择地改变阵列相对患者的皮肤表面或目标体积V的位置、或通过控制辐射的波长被改变。图10-13展示为了在目标体积V内移动到一个或多个连续的聚焦部分214可以与图14-19所示的扫描或偏转系统结合使用的各种不同的光学物镜阵列。最后,图20和21展示两种不同的变焦光学系统,例如,它们可以通过机械或通过手工操作在患者的皮肤上移动,以便照射其上的连续部分214。更详细地参照这 些附图,图1、IA和IB展示在基体3上的聚焦要素1,该聚焦要素有呈六角形图案(图1)的、正方形图案(图1A)的和圆形或椭圆形图案(图1B)的边界。标准的光学材料能被用于这些要素。虽然图1和图1A的六角形和正方形的图案能完全充满聚焦要素板4的工作区域,但是这对于图1B的要素图案不是真实的。来自辐射源210的辐射通常将被同时施加到所有的聚焦要素I上;然而,通过使用适当的扫描机构,辐射也能按顺序照在这些要素上,或者可能在一个方向上被扫描,例如,同时照亮/照射四个要素。图2和2A是熔合在折射材料8 (例如,多孔玻璃)中的微透镜系统的剖视图。用于透镜5的材料的折射指数必须大于折射材料8的折射指数。在图2中,射束11最初通过折射材料8的平坦表面10,然后被每个微透镜5的主表面6和次表面7两者折射,从而导致射束被聚焦到的焦点12。在图2A中,该过程被颠倒过来,但是结果是相同的。在图2B和2C中,入射的射束11被由折射材料8制成的主透镜表面6折射。用于各种不同的阵列的表面6和7要么是球面的,要么是非球面的。 在图3和3A中,透镜块15被安装到基体中并且处在浸溃材料16中。透镜块15的折射指数大于浸溃材料16的折射指数。浸溃材料16可以在气体(空气)、液体(水、制冷剂喷雾)或适当的固体之中。气体和液体能被用来冷却皮肤。浸溃物质通常分别在主要的和次要的平坦表面13和14。在图3A中,每个透镜块15的主表面6和次表面7度允许实现较高质量的聚焦。就图3B和3C而言,透镜块15被固定在折射材料8的表面上,就给定的透镜15而言,图3C的实施方案提供比图3B的实施方案或在图3-3C中展示的任何其它阵列深的焦点。在图3A-3C中展示的透镜阵列在实践这项发明的教导中是优选的透镜阵列。图4-4C展示在折射材料8上形成的菲涅耳透镜表面17和18。改变菲涅耳透镜表面17和18的轮廓,在菲涅耳表面的中心17和环18的半径之间的关系使它有可能实现所需要的聚焦质量。图4B和4C的阵列允许实现较高质量的聚焦并且是其它的优选阵列。表面17和18要么是球面的,要么是非球面的。在图5和5A中,入射射束11的聚焦是通过在折射材料8的表面上形成全息透镜19(S卩,摄影全息图)实现的。全息透镜19可以如图5和5A所示在折射材料8的任一表面上或者在两个表面上形成。图5B展示取代图5和5A的折射材料8的全息材料20。全息透镜是在材料20的体积中形成的。在图6和6A中,聚焦要素是由具有主平面表面23和次平面表面24的梯度透镜22形成的。如图6A所示,这样的梯度透镜可以夹在为透镜提供支撑、保护和还可能提供冷却的一对折射材料板8之间。图7、7A和7B举例说明圆柱透镜25的各种不同的矩阵阵列。圆柱透镜25的长度26和直径27的关系如附图所示能够改变。图7A和7B的圆柱透镜25提供行聚焦,而不是与先前展示的阵列有关的点或圆聚焦。图8-8C是圆柱透镜矩阵系统中一层的剖视图。入射的射束11被圆柱透镜25 (图8和8A)或半个圆柱体透镜29 (图8B和8C)折射并且聚焦到行焦点28。在图8B和8C中,圆柱透镜29处在浸溃材料16之中。主光学工作表面30和次光学工作表面31可以是球面的或非球面的,它们允许实现高质量的聚焦。如图7-8C所示,就毗邻的透镜而言行聚焦可以按不同的方向取向,在这些附图中有些透镜的取向是彼此垂直的。在图9、9A和9B中, 焦斑的矩阵是通过让入射的射束11通过两层圆柱透镜32和35实现的。图9A和9B是从两个正交的方向看图9所示的阵列的剖视图。通过改变具有表面33的第一层透镜32和具有表面36的第二透镜35的焦距,有可能实现所需尺寸的矩形焦斑。第一层透镜32和第二层透镜35被安装在浸溃材料16中。透镜32和35可能是标准的光学纤维,也可能被圆柱透镜取代,它们既可以是球面的也可以是非球面的。为了使边缘损失减到最小,表面34和37可以是光学质量的。图10展示带射束分离器38的单透镜物镜43。入射在斜射束分离器38上的射束11分开通过透镜43的折射表面41和42,以便聚焦在中心点39和偏离中心的点40。表面41和42可以是球面的和/或非球面的。有平坦的光学表面53和55的板54允许在光学表面55和焦点39、40之间实现固定的距离。斜射束分离器38可以作为能将射束11分成几个射束并提供几个焦点的光栅。在图11中,双透镜(43、46)物镜由于光学表面41、42和44被放置在最佳位置提供较高质量的聚焦和数值孔径。这些表面全部可以是球面的或非球面的。透镜46的光学表面45可以是平面的,以便增加数值孔径,而且可以与板54接触。板54也可以是先前讨论过的冷却要素。图12在提供三透镜物镜方面(透镜43、46和49)不同于上述的附图。图13展示四透镜物镜系统,透镜52的光学表面50和51允许增加处理区域的半径(即,点39和40之间的距离)。图14、14A和14B举例说明三个可以作为扫描前端被用到图10_13所示的各种不同的物镜上的光学系统。在这些附图中,初始的准直射束11投射在扫描反射镜62并且被这面镜子反射到透镜光学系统的第一透镜43的表面41上。扫描反射镜62是为了在角度f上移动光轴63而设计的。反射镜62的法线64的角位移为角度f将引起射束11的角度改变角度2f。扫描反射镜62的光学位置在聚焦物镜的入射光瞳。为了更好地建立扫描反射镜62的直径和工作表面的半径(即,点39和40之间的距离)之间的相关关系和提高聚焦质量,透镜58可以如图14A所不插在扫描反射镜62的前面。透镜58的光学表面56和57可以是球面的或非球面的。就附加的象差控制而言,透镜61可以插在透镜58和反射镜62之间,透镜61有光学表面59和60。图15,15A和15B除了光源是点光源或光学纤维65而不是准直射束11之外类似于图14、14A和14B。来自点光源(例如光纤末端)65的光束66入射在扫描反射镜62 (图15)或透镜58的表面57 (图15A,15B)上。图16和16A展示A 二面反射镜扫描系统。在图16所示的比较简单的情况下,扫描反射镜67在角度f2范围内转动而扫描反射镜62在角度fI范围内转动。射束63最初入射到反射镜67上并且被反射镜62反射到反射镜67上,然后再被反射到光学透镜43的表面41上。在图16A中,为了增大聚焦射束的数值孔径,增大皮肤上的工作区域和减少扫描反射镜62和67之间的象差,物镜透镜106被插在这两个反射镜之间。虽然在这张附图中展示的是简单的透镜物镜106,但是可以使用比较复杂的物镜。物镜透镜106将射束从扫描反射镜67的中心折射到扫描反射镜62的中心。在图17中,扫描是用在方向s上可移动的扫描透镜70完成的。当扫描透镜70移动到偏离中心的位置73的时候,光学表面68将光线沿着光轴71折射到方向72上。在图18中,扫描是用旋转透镜76(例如,转到位置77)完成的。表面74是平面而表面75是这样选定的, 以致它不影响折射光轴72的方向。在图19中,扫描是通过在方向s上移动点光源或光纤65完成的。图20和21个展示将移动到不同的深度的变焦镜头物镜。在图20中,第一部件由可沿着光轴相对不能移动的由两个透镜84和87组成的第二部件移动的单透镜81组成。透镜84被用来增大数值孔径。为了增大数值孔径、后焦距的范围和减少焦斑尺寸,光学表面79、80、82、83和85可以是非球面的。第一和第二部件的相对位置决定焦斑12的深度。图21展示有球面的光学表面的变焦镜头物镜。第一部件由能沿着光轴相对第二部件移动的单透镜90组成。不能移动的第二部件由五个透镜93、96、99、102和105组成。表面88和89的曲率半径是为了补偿不能移动的第二部件的象差而选定的。再者,焦点的深度可以通过控制第一和第二部件之间的距离而得到控制。在图20和21中展示的任何透镜系统都可以被安装成通过手工操作或在控制装置218的控制下可移动的,以便有选择地聚焦在目标体积V的预期部分214上或者不加选择地聚焦在目标体积的各个部分上。尽管本发明已在前面参照许多实施方案予以展示和描述,而关于这些实施方案的诸多变化也已予以讨论,但是这些实施方案主要是为了举例说明而被提出的,上述的和其它的在形式和细节方面的改变可以被熟悉这项技术的人在不脱离仅仅通过权利要求书定义的本发明的精神和范围的情况下在这些实施方案之上完成。
权利要求
1.一种用来在患者皮肤的预定的体积部分上完成处理的装置,该装置包括 辐射源;以及 应用来自辐射源的辐射的光学系统,所述的光学系统包括光学元件的阵列,其中至少多个元件被配置为同时应用来自辐射源的辐射以在所述的体积部分内创建多个三维照射处理部分,所述光学元件阵列被配置以至于多个照射处理部分彼此间隔开。
2.根据权利要求I所述的装置,其中所述的辐射源被配置用于提供由水选择性的吸收的一个或多个波长的辐射。
3.根据权利要求I所述的装置,其中所述的多个照射处理部分通过促使其上的损伤痊愈的充足的距离间隔开。
4.根据权利要求I所述的装置,进一步包括至少一个聚焦部件和被耦合到聚焦部件上的定位机构用于移动所述聚焦部件以便将辐射聚焦到所述的多个处理部分。
5.根据权利要求4所述的装置,其中所述的至少一个聚焦部件包括可调整深度的聚焦部件。
6.根据权利要求5所述的装置,其中所述的至少一个可调整深度的聚焦部件包括与所述的辐射源光耦合的变焦透镜以接收辐射并沿着光轴移动,以便将辐射聚焦到空间上隔开的处理部分,至少一些空间上隔开的处理部分被定位在所述的体积部分内的不同深度。
7.根据权利要求I的装置,其中每个光学元件将辐射源接收的辐射聚焦到具有长度和厚度的狭窄的长条上。
8.根据权利要求I的装置,其中所述的光学系统将辐射集中到所述的体积部分以至于所述的照射处理部分被定型为选定大小和厚度的圆柱体、球体、椭球体或实心长方体。
9.根据权利要求I的装置,其中每个光学元件集中所述的辐射源接收的辐射到具有长度和厚度的多个行上,其中用于一些元件的行相对于用于另一些元件的行处在选定的角度。
10.根据权利要求I的装置,其中所述的光学系统进一步包括扫描反射镜和扫描透镜,所述的扫描反射镜和扫描透镜用于扫描应用于所述的光学元件上的辐射,以便将所述的辐射在一个时间连续地聚焦到N个所述的处理部分,其中N是所述的处理部分的数量并且N> I。
11.根据权利要求I的装置,其中所述的辐射源生成具有一个或多个波长的辐射,其中波长在1050-1220nm范围或1650_1780nm范围或2100_2300nm范围的任意一个范围内。
12.根据权利要求I的装置,其中所述的辐射源生成具有波长在1550-1820nm范围或1600-1820nm范围或2150_2300nm范围内的辐射。
13.根据权利要求I的装置,其中所述的辐射源生成具有波长在1520-1850nm范围或2150-2260nm范围内的辐射。
14.根据权利要求I的装置,其中所述的辐射源生成具有波长在400-1800nm范围内的辐射。
15.根据权利要求I的装置,其中所述的光学系统将辐射聚焦到皮肤深度在O.5mm至4mm之间。
16.根据权利要求I的装置,其中所述的光学系统包括微透镜系统。
17.根据权利要求I的装置,其中所述的光学系统包括圆柱透镜阵列。
全文摘要
这项发明提供一种通过将至少一种选定波长的外加辐射集中在众多选定的三维空间定位的处理部分(这些处理部分处在非处理部分之内)来完成在患者皮肤上的治疗处理的方法和装置。处理部分对总体积的比例可以从0.1%变化到90%,但是优选小于50%。包括波长在内的各种不同的技术都可以被用来控制辐射被集中的深度,而且可以提供适当的光学系统,以便平行地或连续地为一个或多个处理部分的选定的组合集中外加辐射。
文档编号A61K51/00GK103251453SQ20131003106
公开日2013年8月21日 申请日期2001年12月27日 优先权日2000年12月28日
发明者格雷戈里·B·阿特舒勒, R·罗克斯·安德森, 迪特·曼斯坦恩, 塞格伊·B·伯尔鲁陈斯基, 安德列·V·埃若费瓦 申请人:帕洛玛医疗技术有限公司, 通用医院有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1