一种在心血管植入材料表面改善多种仿生功能的方法

文档序号:1273118阅读:480来源:国知局
一种在心血管植入材料表面改善多种仿生功能的方法
【专利摘要】本发明公开了一种在心血管植入材料表面改善多种仿生功能的方法。首先在材料表面制备高分子量的HA条纹状微图形,并在该表面培养血管内皮细胞,通过HA条纹状微图形调控血管内皮细胞外基质的体外构建。然后利用脱细胞技术将材料表面的内皮细胞剥离下来,从而在心血管植入材料表面制备具有抗凝血/促内皮化/抑制平滑肌细胞粘附和增殖/抑制巨噬细胞粘附和铺展多功能的生物化修饰表面。本发明在心血管植入材料表面构建具有抗凝血,再内皮化,抑制平滑肌细胞粘附、增殖并从促进其表型收缩,以及抑制巨噬细胞粘附和铺展特性的多功能仿生内皮细胞外基质修饰层,显著改善了材料的血液相容性和内皮损伤的结构和功能修复能力。
【专利说明】一种在心血管植入材料表面改善多种仿生功能的方法
【技术领域】
[0001]本发明属于生物材料表面工程与仿生物制造工程交叉领域。
【背景技术】
[0002]心血管植入材料表面修饰技术发展至今,已逐渐趋于成熟,并广泛应用于临床。但目前临床上所用材料表面疗效,远未达到预期目标。这主要是由于再好的表面修饰,其仿生功能也无法媲美机体本身心血管内血液接触界面的生物学功能健全。
[0003]通过对材料表面的仿生,赋予材料良好的血液相容性、仿生再内皮化能力、抑制平滑肌细胞增殖能力和抑制巨噬细胞粘附能力是仿生生物化新技术的基础。
[0004]内皮细胞外基质,是由内皮细胞分泌的由多种生物大分子和生长因子组成,在维持血管内膜和中膜的生理结构和功能中发挥重要功能。最近有研究发现完整的内皮细胞外基质与单一的内皮细胞外基质成分比较,更有助于植入材料表面内皮化和抗凝血。尽管如此,完整的内皮细胞外基质修饰的表面在异体植入过程中的免疫排斥和炎症反应仍然是未来研究中亟需解决的问题。
[0005]透明质酸( HA)是细胞外基质的骨架和整合成分,其分子量从几千到上百万不等。不同分子量的HA对于细胞发挥不同的生物学功能。高分子量的HA对多种细胞的粘附起阻抗作用;同时由于其开放的空间链状结构和自身忽视免疫排斥作用的功能,还具有保护蛋白质和生物因子免受免疫排斥作用影响的效果。高分子量的HA还具有较强的亲水性,容易固定于亲水性表面;同时由于其分子结构中含有大量羧基,也较容易以氢键、酰胺键或碱键的方式固定于羟基、氨基化或金属表面。
[0006]材料表面图形化是一种使细胞形态改变的技术,在条纹状微图形表面调控下,细胞可以在没有流体剪切力的条件下达到形态拉长的目的,增强内皮细胞的一氧化氮(N0)和前列腺环素(PGI2)等的分泌、细胞外基质构建,从而强化内皮细胞抗凝血、抑制平滑肌细胞增生、抑制巨噬细胞粘附等功能。
[0007]生物材料表面HA微图形制备技术是一种比较成熟的现有技术,该技术可通过在材料表面制备不同尺寸的HA微图形达到调控细胞形态、行为和功能的目的,但所制备的表面血液相容性不佳,其抗凝效果甚至不如原始材料表面;将内皮细胞外基质中的一两种成分固定于生物材料表面,以达到兼顾抗凝血和促内皮双重效果的目的,该方法也是一种成熟的现有技术,缺点在于所构造的表面仅着眼于一两种功能的仿生,而不是血管内壁完整功能的仿生;通过体外材料表面脱内皮细胞技术获得相对完整的内皮细胞外基质目前也已有报道,但就该表面的免疫排斥和抑制炎症反应功能并未得到描述,此外该表面制备过程中内皮细胞的培养并未在仿生条件下进行,其形态、功能和所分泌的细胞外基质是否具备完整的功能也未得到全面论证。
[0008]综上所述,通过制备高分子量HA条纹状微图形于心血管植入材料表面,调控血管内皮细胞形态和分泌功能,再融合脱细胞技术可制备一种材料表面仿生细胞外基质表面。这种仿生的细胞外基质表面应具备较好的原位血管内壁界面功能:可有效改善材料表面血液相容性,一定程度上促进血管内膜结构和功能修复,有效抑制平滑肌细胞的粘附和增殖,促进平滑肌细胞表型收缩,对巨噬细胞等免疫排斥和炎症相关细胞的粘附和铺展具有明显的抑制作用。而目前尚无利用心血管材料表面条纹状HA微图形体外调控内皮细胞融合脱细胞技术获得这种多功能仿生内皮细胞外基质的相关报道。

【发明内容】

[0009]本发明的目的在于提供一种在心血管植入材料表面制备多功能仿生血管内皮细胞外基质的新方法,通过该方法对心血管植入材料表面进行生物化改性可有效提高材料的血液相容性和细胞相容性。
[0010]本发明实现以上目的采用的技术方案是,一种在心血管植入材料表面制备多功能血管内皮细胞外基质的方法,其步骤为:
[0011]A、HA微图形制备。在材料表面制备分子量为1 X 105-1 X 107DA的透明质酸(HA)条纹状微图形,HA和裸露材料条纹宽度分别为10-40 μ m和10-40 μ m,待用;
[0012]B、材料表面血管内皮细胞外基质的制备:将传代2-5代的血管内皮细胞以1 X 104-1 X 105个/ml的密度种植于步骤A所述微图形表面,在37 °C,5%C02浓度的标准培养条件下培养1-3天,该步骤得到经HA微图形调控后,形状拉长、排布有序的血管内皮细胞;吸除用过的细胞培养液,培养细胞的样品用37°C的PBS(PH=7.4)清洗1_5遍后,加入脱细胞液,37°C,5%C02浓度的标准培养条件下脱细胞处理10-50分钟,取出后吸除脱细胞液,用37°C的PBS (PH=7.4)再次清洗1_5遍,37°C干燥后即得目标物,步骤A和步骤B均在无菌条件下完成;
[0013]步骤B所述脱细胞液配置方法为:用0.1-1%的Triton X - 100溶液(PBS,PH=7.4)与25-27%的浓氨水混合,混合体积配比为Triton X - 100:浓氨水=100ml ±20ml:120 μ 1 ±20 μ 1 ;配液完毕后需用滤膜过滤除菌,4°C避光保存。
[0014]本发明的反应过程与机理主要分为两个部分。第一部分为材料表面HA微条纹对血管内皮细胞的调控。首先通过高分子量HA对细胞粘附的阻抗作用使血管内皮细胞粘附在裸露的材料区域;其次利用条纹状微图形的尺寸效应调控血管内皮细胞形态拉长,促进仿生条件下内皮细胞功能性因子分泌和细胞外基质构建。第二部分为材料表面多功能血管内皮细胞外基质的获得。使用脱细胞试剂,剥离材料表面培养的细胞,即可得到目标产物多功能血管内皮细胞外基质。由于HA本身就是细胞外基质的骨架成分,可以和内皮细胞外基质发生复杂的相互作用,因此这种多功能仿生血管内皮细胞外基质可以牢固地固定在材料表面。
[0015]与现有技术相比,本发明的有益效果是:
[0016]一、创造性的在体外材料表面制备出多功能仿生血管内皮细胞外基质,利用高分子量透明质酸对血管内皮细胞粘附的阻抗作用与条纹状微图形的尺寸效应,在体外材料表面拉长内皮细胞,为仿生血管内皮细胞外基质的构建创造条件。通过该种方法,可以有效提高材料表面血管内皮细胞外基质构造的仿生度,使其结构和功能最大限度地接近人体血管内壁中的内皮细胞外基质生理结构和功能。
[0017]二、该多功能仿生血管内皮细胞外基质表面的制备工艺简单易操作,无需生物传感器等昂贵复杂的设备,工艺成本较低,效果显著。[0018]三、高分子量HA的存在可使该多功能仿生血管内皮细胞外基质免受免疫排斥和炎症反应等巨噬细胞相关生理病理因素的影响和干扰,为该生物化表面开辟更加广泛的应用前景。
【专利附图】

【附图说明】
[0019]下面结合附图和实施例对本发明的方法作进一步详细的说明。
[0020]图1为本发明方法中多功能仿生血管内皮细胞外基质表面制备的各步骤示意图。
[0021]图2为样品表面原子力显微镜图和表面粗糙度检测结果。图2a为空白材料;图2b为制备有多功能仿生血管内皮细胞外基质的材料表面。
[0022]图3为样品表面纤维蛋白原变性检测结果。(a)空白材料;(b)制备有多功能仿生血管内皮细胞外基质的Ti表面。
[0023]图4为样品表面内皮祖细胞培养后荧光染色和细胞数量统计结果(CCK-8检测法,细胞数量与吸光度呈正相关)。 图4a为空白材料表面内皮祖细胞免疫荧光图;图413为制备有多功能仿生血管内皮细胞外基质的材料表面的内皮祖细胞免疫荧光图。图4c为其对比统计图。
[0024]图5为样品表面平滑肌细胞培养后荧光染色和细胞数量统计结果(CCK-8检测法,细胞数量与吸光度呈正相关)。图5a为空白材料表面的平滑肌细胞免疫荧光图;图5b为制备有多功能仿生血管内皮细胞外基质的材料表面的平滑肌细胞免疫荧光图。图5c为其对比统计图。
[0025]图6为样品表面巨噬细胞培养后荧光染色和细胞数量统计结果。图6a为空白材料表面的巨噬细胞免疫荧光图;图6b为制备有多功能仿生血管内皮细胞外基质的材料表面的巨噬细胞免疫荧光图。图6c为其对比统计图。
【具体实施方式】
[0026]实施例一
[0027]参见图1,本发明的第一种【具体实施方式】是,一种在不锈钢表面获得多功能血管内皮细胞外基质的方法,其步骤为:
[0028]A、在抛光的不锈钢表面制备分子量为5X105DA的透明质酸(HA)条纹状微图形,HA和裸露材料条纹宽度分别为35 μ m和15 μ m,待用;
[0029]B、不锈钢表面血管内皮细胞外基质的制备:将传代3代的血管内皮细胞以5X104个/ml的密度种植于步骤A所述微图形表面,在37°C,5%C02浓度的标准培养条件下培养2天,该步骤得到经HA微图形调控后,形状拉长、排布有序的血管内皮细胞;吸除用过的细胞培养液,培养细胞的样品用37°C的PBS清洗3遍后,加入脱细胞液,37°C,5%C02浓度的标准培养条件下脱细胞处理15分钟,取出后吸除脱细胞液,用37°C的PBS再次清洗3遍,37°C干燥后即得目标物,步骤A和步骤B均在无菌条件下完成;
[0030]C、步骤B所述脱细胞液配置方法为:用0.1%的Triton X - 100溶液(PBS,PH=7.4)与27%的浓氨水混合,混合体积配比为Triton X - 100:浓氨水=100ml:120 μ 1 ;配液完毕后需用滤膜过滤除菌,4°C避光保存。
[0031]实施例二[0032]一种在钛表面获得多功能血管内皮细胞外基质的方法,其步骤为:
[0033]A、在抛光的钛表面制备分子量为1 X 106DA的透明质酸(HA)条纹状微图形,HA和裸露材料条纹宽度分别为25 μ m和25 μ m,待用;
[0034]B、钛表面血管内皮细胞外基质的制备:将传代2代的血管内皮细胞以1父105个/ml的密度种植于步骤A所述微图形表面,在37°C,5%C02浓度的标准培养条件下培养1天,该步骤得到经HA微图形调控后,形状拉长、排布有序的血管内皮细胞;吸除用过的细胞培养液,培养细胞的样品用37°C的PBS清洗4遍后,加入脱细胞液,37°C,5%C02浓度的标准培养条件下脱细胞处理20分钟,取出后吸除脱细胞液,用37°C的PBS再次清洗5遍,37°C干燥后即得目标物,步骤A和步骤B均在无菌条件下完成;
[0035]C、步骤B所述脱细胞液配置方法为:用0.1%的Triton X - 100溶液(PBS,PH=7.4)与27%的浓氨水混合,混合体积配比为Triton X - 100:浓氨水=100ml:134 μ 1 ;配液完毕后需用滤膜过滤除菌,4°C避光保存。
[0036]实施例三
[0037]—种在聚氨酯材料表面获得多功能血管内皮细胞外基质的方法,其步骤为:
[0038]A、在聚氨酯材料表面制备分子量为3X 106DA的透明质酸(HA)条纹状微图形,HA和裸露材料条纹宽度分别为30 μ m和20 μ m,待用;
[0039]B、聚氨酯材料表面血管内皮细胞外基质的制备:将传代3代的血管内皮细胞以8 X 104个/ml的密度种植于步骤A所述微图形表面,在37 °C,5%C02浓度的标准培养条件下培养3天,该步骤得到经HA微图形调控后,形状拉长、排布有序的血管内皮细胞;吸除用过的细胞培养液,培养细胞的样品用37°C的PBS清洗5遍后,加入脱细胞液,37°C,5%C02浓度的标准培养条件下脱细胞处理30分钟,取出后吸除脱细胞液,用37°C的PBS再次清洗5遍,37°C干燥后即得目标物,步骤A和步骤B均在无菌条件下完成;
`[0040]C、步骤B所述脱细胞液配置方法为:用0.6%的Triton X - 100溶液(PBS, PH=7.4)与25%的浓氨水混合,混合体积配比为Triton X - 100:浓氨水=120ml:139 μ 1 ;配液完毕
后需用滤膜过滤除菌,4°C避光保存。
【权利要求】
1.一种在心血管植入材料表面改善多种仿生功能的方法,其步骤为:A、在材料表面制备分子量为1X 105-1 X 107DA的透明质酸(HA)条纹状微图形,HA和裸露材料条纹宽度分别为10-40 μ m和10-40 μ m,待用;B、材料表面血管内皮细胞外基质的制备:将传代2-5代的血管内皮细胞以1 X 104-1 X 105个/ml的密度种植于步骤A所述微图形表面,在37 °C,5%C02浓度的标准培养条件下培养1-3天,该步骤得到经HA微图形调控后,形状拉长、排布有序的血管内皮细胞;吸除用过的细胞培养液,培养细胞的样品用37°C的PBS清洗1-5遍后,加入脱细胞液,在37°C,5%C02浓度的标准培养条件下脱细胞处理10-50分钟,取出后吸除脱细胞液,用37°C的PBS再次清洗1-5遍,37°C干燥后即得目标物,步骤A和步骤B均在无菌条件下完成。
2.根据权利要求1所述的在心血管植入材料表面改善多种仿生功能的方法,其特征在于:所述步骤B所用脱细胞液配置方法为:用0.1-1%的Triton X - 100溶液(PBS,PH=7.4)与25-27%的浓氨水混合,混合体积配比为Triton X - 100:浓氨水=100ml ±20ml:120 μ 1 ±20 μ 1 ;配液完毕后需用滤膜过滤除菌,4°C避光保存。
3.根据权利要求1所述的在心血管植入材料表面改善多种仿生功能的方法,其特征在于:所述材料包括适宜作为生物医学功能使用的多种金属材料和高分子材料,如不锈钢、钛和聚氨酯材料。
【文档编号】A61L31/06GK103656750SQ201310671971
【公开日】2014年3月26日 申请日期:2013年12月7日 优先权日:2013年12月7日
【发明者】杨苹, 李敬安, 张琨, 黄楠, 王进, 涂秋芬, 赵安莎, 向利洁, 吴珏珏 申请人:西南交通大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1