具有支承件的内置假体结构的制作方法

文档序号:1304698阅读:133来源:国知局
具有支承件的内置假体结构的制作方法
【专利摘要】提供了一种内置假体,其包括多个蛇形环,蛇形环具有支承件,支承件能够提高环向强度、抑制反冲并提高表面积。支承件可以在蛇形环的相邻轴向支杆间形成,或者可以在将蛇形环连接在一起的轴向长度间定位。
【专利说明】具有支承件的内置假体结构
[0001]本申请是2008年I月18日提交的发明名称为“具有支承件的内置假体结构”的200880006660.3号中国专利申请的分案申请。
[0002]发明背景
[0003]1.发明领域
[0004]本发明涉及内置假体设计,具体涉及可生物降解和不可生物降解的支架和移植体,它们被配置成能够植入患者体内管腔中,例如冠状动脉或其他血管或体内管腔。支架尤其适用于治疗动脉和静脉内的动脉粥样硬化性狭窄。
[0005]支架通常为管形装置,用于使血管或体内其他管腔,例如冠状动脉、颈动脉、隐静脉移植物或股动脉的一部分保持打开或得到增强。它们也适用于支承和阻止可能阻塞流体通路的切开的动脉内衬,以稳定斑块或支承生物瓣。支架可由各种材料制成,尤其是聚合和/或金属材料,可以是非降解的、可生物降解的、或者同时由可降解和非生物性组件构成。通常采用导管将支架递送至体内管腔中的目标区域。对于球囊扩张式支架,将支架安装到球囊导管上,引导至适当区域,使球囊膨胀来扩张支架。自扩张式支架可递送至目标区域,释放并扩张至所需的直径以治疗疾病。支架也可溶出各种药物或药理学试剂。
[0006]参考图1,示出了目前心血管支架的常用模式,其包括由短轴连杆14连接的许多蛇形环12。蛇形环包括轴向支杆16,冠状件18连接周向邻接支杆,用作铰链以允许各个环12周向扩张。该模式适用于可生物降解和不可生物降解的支架及其他内置假体。
[0007]在支架和其他内置假体的设计中,必须实现许多相互抵触的目的。对于冠状动脉支架,通常希望能使支架塌陷,以尽可能减小横截面而便于递送,同时在扩张后尽可能增加支架的表面积。当采用涂药支架时,表面积最大既可提高壁支撑以减少血管反冲,又可提高药物递送量。另一设计目的是用最小的力压缩支架,同时在扩张后维持良好的箍环强度以进一步抵抗血管反冲。
[0008]因此,需要一种能提高径向或箍环强度、降低植入后的血管反冲,在提高表面积的同时维持或降低支架尺寸和质量的支架设计或支架材料。本发明满足了至少一些上述需求。
2.

【背景技术】
[0009]美国专利6,773,455描述了一种支架,其具有通过内部扩张元件轴向连接的蛇形环。US2003/0093143描述的支架包括由U形连接件周向连接的盒结构。US2003/0144729描述了一种支架,其包括由叉骨连接件连接的轴向间隔的蛇形带。也可参见US7,291,166和US6, 896,695。
[0010]发明概述
[0011]本发明提供了一种内置假体,如支架、移植体或其他脚手架样管腔假体,用于治疗血管和其他管腔病症。内置假体包括附加于基体结构的支承件或元件。支架的基体结构由相互间直接连接或与至少一个连杆或支杆连接的一系列周圈蛇形环形成,通常如图1所示,其中每个环包括由冠状件和支杆构成的多个扩张区段。根据本发明,基体结构用支承件进行加固,与没有支承件的结构相比,所述支承件能增加支架扩张时的径向强度和/或降低反冲。支承件可包括各种类型的形状,例如I形、C形、V形、U形、S形、Y形、M形、W形、Z形、螺旋形或其他类型。在第一个实施方式中,支承件连接至少一些相邻的支杆。在另一个实施方式中,至少一个支承件连接于至少一个轴向连接连杆。
[0012]因此,根据本发明,内置假体包括多个可沿周向扩张的蛇形环、连接相邻环的轴向连杆和支承件。每个可沿周向扩张的蛇形环包括由冠状件连接的轴向支杆,其中所述冠状件起铰链作用,使支杆随环的周向打开而伸展。轴向连杆通过连接环上的至少一些冠状件而连接相邻的蛇形环。支承件在至少一些蛇形环的至少一些相邻支杆之间延伸,当所述环沿周向扩张时所述支承件伸长而所述支杆保持基本上不变形。
[0013]内置假体可由各种常规支架材料构成,可以是球囊扩张型、自扩张型或者两者的组合。自扩张型内置假体的蛇形环具有足够的弹性,使得它们在输送期间被限制在小横截面积,并在血管系统或体内其他管腔里释放而形成沿周向扩张的构型。相反,球囊扩张型内置假体的蛇形环具有足够的延展性,使得从环内施加径向向外的力时能够沿周向扩张,通常采用可膨胀的球囊或其他可膨胀结构。尤其优选的支架材料包括金属和合金,例如铁、锌、钢、钴-铬、镍-钛,以及聚合物如聚丙交酯、聚己酸内酯、聚碳酸乙二酯、聚丙交酯-乙交酯共聚物、聚丙交酯-1,3-丙二醇碳酸酯等。具体材料和制造方法参见与本发明同日提交的共同拥有的申请11/__(律师案卷号022265-000520US)。
[0014]支承件可具有各种具体的构型或图案,这些构型和图案随着内置假体蛇形环的扩张而伸长或以其他方式扩张。示例性的支承件的构型包括:u形连接件、V形连接件、S形连接件、螺旋形连接件、W形连接件、N形连接件、Z形连接件等。为增加或控制内置假体的裸露表面积,支承结构的宽度可变,例如螺旋形连接件可包括环或圆盘形核心以提高或控制表面积。虽然支承结构的宽度和截面积通常小于蛇形环的宽度和截面积,使支承件的扩张不会导致主要的环结构发生变形或偏转,但是也有可能通过提供使支承件优先向蛇形环屈服的偏转点以增加支承件的面积。例如,支承件的一部分可具缺口,使该部分随内置假体的扩张先发生屈服。
[0015]在一些实施方式中,可在至少一些相邻支杆之间设置一个或多个额外的支承件。如果采用单个支承件,其通常大致在相邻支杆的中点间延伸,但在其他情况下也可位于不与冠状件连接在一起的支杆末端附近。如果在相邻的支杆对之间提供两个或多个支承件,这些支承件可位于沿支杆长度的任何点,通常一个位于中点附近,另一个位于自由末端附近(即,不与冠状件连接在一起的末端)。
[0016]轴向连杆通常包括短直线梁,所述直线梁与内置假体的轴线轴向对齐。在其他情况下,直线梁可设置成与轴线成锐角,通常从零度到45度。
[0017]本发明内置假体可包括由轴向连杆连接的多个沿周向扩张的蛇形环,支承件在相邻蛇形环之间的至少一些相邻的轴向连杆之间延伸。这些相邻轴向连杆之间的支承件随着环沿周向扩张而伸长。连接在相邻轴向连杆之间的示例性的支承件包括蛇形连接件,通常所述连接件的折叠部分延伸到相邻轴向支杆之间的区域内。或者,连接件可包括“盒状”连接件,其具有投射到轴向支杆之间的区域内的对称延伸长度。
[0018]附图简要说明
[0019]图1示出了常规的蛇形环支架。
[0020]图2A和2B示出了本发明内置假体的第一种实施方式,蛇形环中相邻的轴向支杆之间具有U形连接件。
[0021]图3示出了图2A和2B的支架结构扩张后的情形。
[0022]图4和5示出了作为支承件的示例性V形连接件,所述连接件朝向冠状件(图4)或背离冠状件(图5)取向。
[0023]图6示出了作为支承结构的示例性S形连接件。
[0024]图7-9示出了示例性的螺旋形支承结构,其中图7示出了外翻螺旋,图8示出了具有环核心的螺旋,图9示出了具有圆盘核心的螺旋。
[0025]图10示出了在蛇形结构开放端附近具有U形连接件的示例性的内置假体结构。
[0026]图11和12示出了在相邻的轴向支杆之间具有支承件对的示例性的内置假体结。
[0027]图13示出了具有径向和轴向排列的伸长部分的复杂的支承件。
[0028]图14、15A和15B示出了具有类似于缺口的屈服点的U形支承件,所述屈服点控制两阶段扩张,如图15A和15B所示。
[0029]图16和17示出了示例性的内置假体设计,其中相邻的蛇形环通过倾斜的轴向连杆连接。图16还示出了作为支承件的M形连接件,而图17示出了作为支承件的N形连接件。
[0030]图18和19示出了连接相邻轴向连杆的支承件,其中图18示出了蛇形图案,图19示出了盒状图案的连接件。
[0031]发明详述
[0032]本发明提供了一种可用于治疗血管或其他管腔病症的内置假体(如支架),其具有附加于基体支架结构的支承件或元件。支架基体结构由一个或多个蛇形环构成。所述环可直接互连或者用至少一个连杆连接。每个环由冠状件和支杆构建的多个扩张区段组成。然后通过支承件加固支架,与没有支承件的支架相比,支承件能增加径向强度(如环向强度)、增加表面积和/或降低反冲。至少一个支承件通常连接围绕冠状件(铰链)扩张(伸展开)的轴向支杆的相对侧。或者,支承件可连接接合蛇形环的轴向连杆。区段扩张后,支承件可增加径向强度和/或降低反冲。支架可以是不可降解或是可降解的,其中降解包括在生理学环境中完全或部分地生物降解、生物溶蚀、生物吸收、腐蚀和崩解。支承件可在扩张时经历塑性变形以加固支架基体结构,或者可选地发生弹性扩张以提供加固作用。
[0033]在一个实施方式中,至少一个支承件在扩张时发生变形并增强支架基体结构。通常,与没有至少一个支承件的支架相比,至少一个支承件能使扩张后的支架的径向强度提高至少15%,优选至少50%,更优选至少100%。在其它实施方式中,至少一个支承件能使支架扩张后的反冲小于15%,优选小于7%,更优选小于4%。在一种情况下,至少一个支承件使在哺乳动物中扩张后至少28天的支架的反冲小于20%,优选小于10%,更优选小于6%。
[0034]支承件通常从支杆连接到支杆,但可选地或者可额外地从支杆连接到冠状件,从支杆连接到连杆,从连杆连接到连杆,从冠状件连接到冠状件,从冠状件连接到连杆,或从冠状件连接到同一冠状件。示例性的支承件可包括各种类型的形状,例如C形、V形、U形、S形、Y形、M形、W形、Z形、螺旋形或其他形状。这些形状可以是连续或不连续的。每个环具有至少一种类型的支承件。
[0035]支承件的厚度和/或宽度可大于、小于或约等于相邻扩张区段的厚度。在一个实施方式中,支承件的厚度为0.125毫米(0.0005英寸)到2.5毫米(0.010英寸),优选0.25毫米(0.001英寸)到1.25毫米(0.005英寸),更优选0.5毫米(0.002英寸)到I毫米(0.004英寸)。在一个实施方式中,支承件的宽度为0.125毫米(0.0005英寸)到2.5毫米(0.010英寸),优选0.25毫米(0.001英寸)到1.25毫米(0.005英寸),更优选0.5毫米(0.002英寸)到I毫米(0.004英寸)。在一个实施方式中,支承件的轨迹长度为1.25毫米(0.005英寸)到25毫米(I英寸),优选0.25毫米(0.010英寸)到0.75毫米(0.250英寸),更优选0.5毫米(0.020英寸)到2.5毫米(0.100英寸)。
[0036]在一个实施方式中,支承件连接至扩张区段或连杆的角度约为90度,但该角度也可以小于90度或者大于90度。通常,支承件连接至轴向支杆或连杆的角度为30-150度,优选45-135度,更优选60-120度。
[0037]支承件的材料可以是金属、金属合金、聚合物、复合材料、陶瓷、或其组合、或其他类型的材料,可以是与扩张区段或连杆的材料类型相同或不同。
[0038]这些设计提供的径向强度的增加和/或反冲的降低尤其有利于可生物降解的支架。内置假体设计和图案适用于可生物降解和非生物降解性材料,以提高强度和/或增加弹性。示例性的可生物降解的内置假体材料包括金属、金属合金、聚合物、陶瓷、复合材料以及组合的其他材料。可生物降解的材料的屈服强度通常是最终强度的至少50%,优选最终强度的至少75%,更优选最终强度的至少90%。对于可生物降解的聚合物支架材料,在37°C的水中测定屈服强度。可生物降解的金属支架的弹性模量通常至少为50GPa,优选至少lOOGPa,更优选至少150GPa。相反,在37°C的水中测定,可生物降解的聚合物支架的弹性模量至少为0.5GPa,优选至少0.75GPa,更优选至少lGPa。屈服时较高的应变可导致较高的支架反冲。在37°C的水中测定时,可生物降解的聚合物支架材料的屈服应变优选不超过10%,优选不超过5%,更优选不超过3 %。在37°C的水中测定时,可生物降解的聚合物支架材料的塑性应变优选至少20 %,更优选至少30 %,甚至更优选至少40 %,而在37°C的水中测定时,发生应变的可生物降解的聚合物支架材料的弹性回复率为至多15%,优选至多10%,更优选至多5%。
[0039]可生物降解的支架材料可具有广泛变化的持久性。通常,材料将在植入后3年内,更常见I年内,甚至更常见6个月内基本降解。在生理学条件(例如血管条件)下降解时,I个月后可生物降解的支架优选保留至少25%的环向强度,优选保留至少40%,更优选保留至少70%。
[0040]可生物降解的聚合物支架材料可通过几种已知机制中的任一种发生降解,这些机制包括整体溶蚀、表面溶蚀及其组合。可生物降解的聚合物支架材料通常通过水解降解、酶降解、氧化降解、光致降解、生理学环境下降解或其组合中的至少一种发生降解。
[0041] 合适的可生物降解的聚合物支架材料包括但不限于:聚酯、聚酐、聚酰胺、聚氨酯、聚(酯氨酯)、聚脲、聚醚、聚碳酸亚烷基酯、聚丙烯酸、聚胺、聚酯酰胺、聚酯胺、聚乙酸乙烯酯、聚乙烯亚胺、聚氰基丙烯酸酯、聚磷腈、聚磷酸酯、聚膦酸酯、聚氨酯、聚脲、聚磺酸酯、聚磺酰胺、聚丙交酯、聚乙交酯、再生纤维素、或生物聚合物或掺混物、嵌段聚合物、共聚合物或其组合。这些聚合物的例子包括但不限于:聚(L-乳酸)、聚(L/D-乳酸)、聚(L/DL-乳酸)、聚(乙醇酸)、聚(丙交酯-共-乙交酯)、共聚物和异构体、聚二氧六环酮(polyd1xanone)、聚(谷氨酸乙酯)、聚(羟基丁酸酯)、聚羟基戍酸酯和共聚物聚(3_轻基丁酸酯-共-羟基戊酸酯)、聚已酸内酯、聚酐、聚(原酸酯)?’聚(醚酯)、聚(1,3_丙二醇碳酸酯)、聚CL-乳酸-共-1,3-丙二醇碳酸酯)、聚(L/D-乳酸-共-1,3-丙二醇碳酸酯)、聚(L/DL-乳酸-共-1,3-丙二醇碳酸酯)、聚(己内酯-共-1,3-丙二醇碳酸酯)、聚(乙醇酸-共-1,3-丙二醇碳酸酯)、聚(乙醇酸-共-1,3-丙二醇碳酸酯-共-二氧六环酮)、聚碳酸乙二酯、聚碳酸乙二酯和聚(碳酸丙二醇酯)的共聚物、聚1,2-丙二醇碳酸酯、聚(亚氨基碳酸酯)、聚(苹果酸)、改性的聚(对苯二甲酸乙二酯)、聚(琥珀酸丁二酯)、聚(琥珀酸己二酸丁二酯)、聚(琥珀酸对苯二甲酸酯丁二酯)、聚(己二酸-共-对苯二甲酸酯丁二酯)、淀粉基聚合物、透明质酸(hylaronic acid)、氧化或非氧化再生的纤维素共聚物和其他脂族聚酯、或其合适的共聚物。本发明可生物降解的聚合物支架材料可以是均聚物、共聚物、接枝聚合物、嵌段聚合物、具有特殊官能团或末端基团的聚合物(如酸性或亲水型)、或者两种或更多种均聚物或共聚物的掺混物。
[0042]可生物降解的聚合物支架材料可具有各种分子构造,例如线性、支化、交联、高度支化或树状。本发明可生物降解的聚合物支架材料的分子量为1KDa到10,000KDa,优选10KDa 到 lOOOKDa,更优选 300KDa 到 600KDa。
[0043]在某些实施方式中,可生物降解的聚合物支架材料包含至少一种添加剂。添加剂可影响强度、反冲或降解速率或其组合。添加剂也可影响可生物降解的支架材料的加工处理、射线不透性或表面粗糙度或其他。添加剂可以是可生物降解或非生物降解的。添加剂可通过掺混、挤出、注塑、涂覆、表面处理、化学处理、机械处理、冲压或其他方式或其组合掺入可生物降解的支架材料中。添加剂可以在掺入可生物降解的支架材料之前经化学改性。
[0044]在一个实施方式中,添加剂的重量百分比从0.01%到25%,优选0.1%到10%,更优选1%到5%。在一个实施方式中,添加剂至少包括纳米粘土、纳米管、纳米颗粒、片状剥落物(exfoliate)、纤维、须状物(whisker)、小片状物(platelet)、纳米粉、富勒烯、纳米球、沸石、聚合物或其他或其组合。纳米粘土的例子包括:蒙脱土、蒙脱石、滑石粉或血小板形颗粒或其他或其组合。粘土可以是内插或片状剥落的。粘土的例子包括CloisiteNA、93A、30B、25A、15A、10A或其他或其组合。纤维的例子包括:纤维素纤维如亚麻、棉花、人造丝、乙酸酯;蛋白质纤维如羊毛或丝;植物纤维;玻璃纤维;碳纤维;金属纤维;陶瓷纤维;可吸收纤维如聚乙醇酸、聚乳酸、聚葡糖酸酯或其他。须状物的例子包括:羟基磷灰石须状物、磷酸三钙须状物或其他。
[0045]在另一实施方式中,添加剂至少包括改性淀粉、大豆、透明质酸、羟基磷灰石、三碳酸酯磷酸酯(tricarbonate phosphate)、阴离子和阳离子表面活性剂如十二烧基硫酸钠、三亚乙基苄基氯化铵(triethylene benzylammonium chloride)、降解助剂(pro-degradant)如 D2W(来自 SP 技术公司(Symphony Plastic Technologies))、光致降解添加剂如UV-H(来自WRP公司(Willow Ridge Plastics))、氧化性添加剂如I3DQ(来自WRP公司(Willow Ridge Plastics))、TDPA、聚乳酸及其无规或嵌段共聚物家族或其他。
[0046]在另一实施方式中,添加剂可诱导非降解性聚合物支架材料的降解。例如,降解助剂如D2W(来自SP技术公司(Symphony Plastic Technologies))、光致降解剂添加剂如UV-H(来自WRP公司(Willow Ridge Plastics))、氧化性添加剂如PDQ(来自WRP公司(Willow Ridge Plastics))、TDPA或其他或其组合,可引发非降解性支架材料,例如聚乙烯、聚丙烯、聚对苯二甲酸乙二酯等的降解。在其它实施方式中,添加剂包括电致活化或电解质聚合物、吸湿性聚合物、干燥剂或其他。添加剂可包括氧化剂如酸、高氯酸盐、硝酸盐、高锰酸盐、盐或其他或其组合。添加剂可包括可生物降解的聚合物支架材料单体。例如,乙醇酸是聚乙醇酸或其共聚物支架材料的添加剂。添加剂可包含水排斥性单体、低聚物或聚合物,例如蜂蜡、低MW聚乙烯或其他。在其它实施方式中,添加剂可以是水吸引性单体、低聚物或聚合物,例如聚乙烯醇、聚环氧乙烷、甘油、咖啡因、利多卡因或其他。在其它实施方式中,添加剂可能影响可生物降解的聚合物支架材料的结晶度。PLLA的纳米粘土添加剂的例子影响其结晶度。在其它实施方式中,可生物降解的聚合物支架材料曝露于诸如Y或电子束的辐射时结晶度增加。累积辐射剂量从IMrad到lOOMrad,优选5_50Mrad,更优选10_30Mrad。通过牵拉、加压和/或加热支架材料提高可生物降解的支架材料中聚合物链在径向和/或纵向方向的取向,可以提高可生物降解的支架材料的结晶度。在另一实施方式中,牵拉、加压和/或加热支架材料同时或相继进行。
[0047]制备具有本文所述图案的可生物降解的聚合物支架的具体方法参见与本发明同日提交的共同待批的申请11/_(律师案卷号022265-000520US),所有内容被纳入本文作为参考。
[0048]在本发明中,支架材料可包含药理学试剂,例如免疫调节剂、抗癌药、抗增殖药、抗炎药、抗血栓形成药、抗血小板药、抗真菌药、抗糖尿病药、抗高脂血症药、抗血管生成药、血管生成药、抗高血压药、促进治愈药物或其他治疗类型的药物或其组合。示例性的免疫调节剂包括但不限于:雷帕霉素、依维莫司、ABT578、AP20840、AP23841、AP23573、CC1-779、氘化雷帕霉素、TAFA93、他克莫司、环孢素、TKB662、多球壳菌素;它们的类似物、前药、代谢物、 盐;或其它药物、或其组合。
[0049]抗癌药的例子包括:阿西维辛、阿柔比星、阿考达唑、阿克罗宁、阿多来新、阿拉诺新、阿地白介素、别嘌醇钠、六甲蜜胺、氨鲁米特、氨萘非特、聚肌胞、安吖啶、雄性激素、蛇形菌素(anguidine)、阿非迪霉素、甘氨酸酯、亮氨酸溶肉瘤素、天冬酰胺酶、5-阿扎胞苷、硫唑嘌呤、卡介苗(BCG)、贝克抗叶酸剂(可溶性)、β-2’-脱氧硫鸟苷、盐酸比生群、硫酸博来霉素、白消安、丁硫氨酸亚砜胺、BWA773U82、BW502U83.HC1、BW7U85甲磺酸盐、卡醋胺(ceracemide)、卡贝替姆、卡钼、卡莫司汀、苯丁酸氮芥、氯喹喔啉_磺酰胺、氯脲霉素、色霉素A3、顺钼、克拉屈滨、皮质类固醇激素、短小棒状杆菌菌苗、CPT-11、克立那托、环胞苷、环磷酰胺、阿糖胞苷、色他巴(cytemebena)、马来酸戴比(dabis maleate)、达卡巴嗪、放线菌素、盐酸道诺霉素、脱氮尿苷、右雷佐生、去水卫矛醇、地吖醌、二溴卫矛醇、代代宁
B、二乙基二硫代氨基甲酸酯、肌苷二醛、二氢-5-氮胞苷、多柔比星、棘霉素、依达曲沙、依地福新、依氟鸟氨酸、艾氏溶液(Ell1tt’ s solut1n)、依沙芦星、表柔比星、依索比星、磷酸雌莫司汀、雌激素、依他硝唑、氨磷汀、依托泊甙、法倔唑、法扎拉滨、芬维A胺、非格司亭、非那雄胺、黄酮醋酸、氟尿苷、磷酸氟达拉滨、5-氟脲嘧啶、氟乐舒(fluosoD.RTM、氟他胺、硝酸镓、吉西他滨、醋酸戈舍瑞林、亥舒凡(hepsulfam)、六亚甲基二乙酰胺、高三尖杉酯碱、硫酸肼、4-羟雄留烯二酮、羟基脲、盐酸依达比星、异环磷酰胺、α-干扰素、β_干扰素、Y-干扰素、白介素-1a和β、白介素-3、白介素-4、白介素-6、4_番薯酮醇、异丙钼、异维A酸、亚叶酸钙、醋酸亮丙瑞林、左旋咪唑、脂质体道诺霉素、脂质体包膜多柔比星、洛莫司汀、氯尼达明、美登素、盐酸氮芥、美法伦、美诺立尔、美巴隆(merbar0ne)、6-巯基嘌呤、巯乙磺酸钠、卡介苗的甲醇萃取残余物、氨甲蝶呤、N-甲基酰胺、米非司酮、米托胍腙、丝裂霉素-C、米托坦、盐酸米托蒽醌、单核细胞/巨噬细胞集落形成刺激因子、大麻隆、萘福昔定、新抑癌蛋白、醋酸奥曲肽、奥马钼、奥沙利钼、紫杉醇、帕拉(pala)、喷司他丁(penostain)、哌嗪双酮、哌泊溴烷、吡柔比星、吡曲克辛、盐酸吡罗蒽醌、PIXY-321、普卡霉素、叶吩姆钠、泼尼莫司汀、丙卡巴肼、孕激素、吡唑呋喃菌素、雷佐生、沙格司亭、锗螺胺、螺莫司汀、链黑菌素、链佐星、磺氯苯脲、舒拉明钠、他莫昔芬、泰素帝、替加氟、替尼泊苷、对苯二酸脒(terephthalamidine)、替罗昔隆、硫鸟嘌呤、硫替派、胸腺喃唳注射液、噻唑呋啉、托泊替康、托瑞米芬、维A酸、盐酸三氟拉嗪、曲氟尿苷、三甲曲沙、肿瘤坏死因子、乌拉莫司汀、硫酸长春碱、硫酸长春新碱、长春地辛、长春瑞滨、长春利定、Yoshi864、佐柔比星、QP-2、埃博霉素D(epothilone D)、埃博霉素C(epothilone C),诸如紫杉醇和多西他赛这样的泰素(Taxol),ABJ879、帕妥匹隆(patupilone)、MN-029、BMS247550,诸如 ET-743 这样的海鞘素(ecteinascidin),四氢异喹啉生物碱、西罗莫司、放线菌素、氨甲蝶呤、阿替肽酶素(ant1peptin)、长春新碱、丝裂霉素、2-氯脱氧腺苷或其他;抗真菌剂,例如卡泊芬净、法尼基化二苯并二氮平、EC0-4 601、氟康唑或其他;血管生成药物,例如卵泡抑素、瘦素(I印tin)、肝素结合细胞因子(midkine)、血管生成素、血管形成素-1、贝卡普勒明、雷格尼克(Regranex)等;抗血管生成药物,例如血管生成抑制素(canstatin)、血管他汀、内皮他汀、类视黄醇、土米他汀(tumistatin)、血管抑制素(vasculostatin)、血管抑制蛋白(ang1arrestin)、伐索他汀(vasostatin)、贝伐单抗、普啉司他或其他;二甲双胍等抗糖尿病药;高血压药,例如坎地沙坦、代文、地尔硫卓、阿替洛尔、硝苯地平(adalat)或其他;抗缺血药物,例如雷诺嗪、二硝酸异山梨醇或其他。
[0050]抗炎症药的例子包括传统的非甾族抗炎症药(NSAIDS),例如阿司匹林、双氯芬酸、吲哚美辛、舒林酸、酮洛芬、氟比洛芬、布洛芬、奈普生、吡罗昔康、替诺昔康、托美丁、酮咯酸、奥沙普嗪(oxaprosin)、甲芬那酸、非诺洛芬、萘普酮(瑞力芬)、对乙酰氨基酹(泰诺林.RTM.)以及上述物质的混合物;C0X-2抑制剂,如尼美舒利、NS-398、氟舒胺(f1sulid)、L-745337、塞来考昔、罗非考昔、SC-57666、DuP-697、帕瑞考昔钠、JTE-522、伐地考昔、SC-58125、艾托考昔、RS-57067、L-748780、L-761066、APHS、依托度酸、美洛昔康、S-2474 或上述物质的混合物;糖皮质激素,例如氢化可的松、可的松、强的松、强的松龙、甲基强的松龙、甲基泼尼松、氟羟强的松龙、帕拉米松、氟强的松龙、倍他米松、地塞米松、氟氢可的松、去氧皮质酮、丙酸氟替卡松、吡罗昔康、塞来考昔、甲灭酸、曲马多、美洛昔康、甲基强的松、伪蕨素或其他;高钙血症药物,如唑来膦酸、双膦酸盐或其他;抗血栓药,如氯吡格雷、肝素、阿科斯特(Arixtra)和速避凝、或其他药物或上述物质的混合物。
[0051]使用类似物、前药、衍生物、前体、片段、盐或其他药用制剂的改进形式或变体,也都包括在本发明内。
[0052]根据所需治疗的种类,这些药用制剂的类似物、衍生物、前药、盐、合成的或生物性的等价物可以从支架上释放出来,所需的治疗包括过度增殖疾病、狭窄、伤口愈合、癌症、动脉瘤、糖尿病、腹主动脉瘤、血管生成、高钙血症、局部缺血、纤维性颤动、心律失常或其他疾病。
[0053]这些药剂可以通过不可降解的、可部分降解的、可完全降解的涂层或其组合,从植入体上释放出来,这些类型的涂层在前述纳入本文作为参考的专利申请中已经论述过了。这些药剂可以作为基质加入到涂层中,或者加在植入体表面然后被涂层覆盖,起到限速屏障的作用,或者直接把药物涂覆在植入体表面。
[0054]将药剂和涂层引入支架所用的溶剂可以是有机溶剂,例如二氯甲烷、四氢呋喃、乙醇或其他溶剂。在一个实施方式中,用于涂覆药剂和/或药剂-聚合物基质的溶剂不会影响聚合物支架材料的化学或机械性质。
[0055]在一个实施方式中,使用超临界流体如超临界二氧化碳作为药剂和/或聚合物的载体溶剂并用药剂和/或药剂-聚合物基质涂覆支架。惰性气体如二氧化碳的使用使得不再需要使用可能改变药理学试剂的化学和物理性质的其他有机溶剂。
[0056]在一个实施方式中,支架材料上药理学试剂的结晶度大于90%,优选大于93%,更优选大于95%。
[0057]在一个实施方式中,可将药理学试剂引入可生物降解的聚合物支架材料中,挤出形成支架导管,然后对所述导管进行激光切割,得到支架。在另一实施方式中,将试剂引入保护性涂层中,以防止挤出或激光切割期间试剂发生降解。
[0058]在一个实施方式中,药剂释放的速率可以被设定成在某些时间点和一定的持续时间释放,对应于支架材料的降解速率或支架材料环境中的生物响应事件。例如,抗炎药、抗增殖剂、免疫调节药物或这些药物的组合,可以被制成在整个降解期间释放。多种药物可以按与涂层降解速率和/或植入体降解速率相匹配的速率释放出来。抗血小板或抗血栓药可以在初始阶段释放,抗炎药、抗增殖剂或免疫抑制剂可以同时释放或在后续阶段释放。
[0059]现在参考图 2A和2B,本发明支架10具有与图1所示支架相同的基本图案,包括由轴向连杆14连接的多个相邻的蛇形环12。如图所示,支架10包括六个相邻的蛇形环12,其中每个环包括六个蛇形区段,各蛇形区段包括在一端由铰链样冠状件18连接的一对轴向支杆16。所述环和区段的数目可在宽范围内变化,取决于支架的所需尺寸。根据本发明,支承件20位于相邻的轴向支杆16之间,其连接方式使其能够随支杆沿周向扩张,通常是伸长,如图3所示。扩张前,支承件20通常是封闭的U形构型,如图2A和2B所示,在蛇形环12径向扩张期间随着轴向支杆16围绕冠状件18的打开而打开,形成浅V形,如图3所示。支承件20能提高支架沿径向扩张后的环向强度,扩张完成后帮助抵抗反冲,并提供附加面积,用于支承血管或其他管腔壁,并且任选地用于将药物输送到管腔壁内。
[0060]虽然在图2A和2B中显示了 U形支承件20,但是也可采用许多其他构型,如图4-17所示。在图4中,在相邻的轴向支杆16之间设置V形支承件22。图5的支承件24与图4所示的大致相同,只是它们指向相反方向,即背离冠状件18而不是朝向冠状件。图6中示出了 S形连接件26,而图7显示了螺旋形连接件28。图8显示了在其中心具有开环的另一种螺旋形连接件30,而图9显示了在其中心具有圆盘的类似支承件32。
[0061]如前述附图所示,支承件20-32在所述支杆16中点附近连接于相邻的轴向支杆
16。支承件34也可以连接在轴向支杆16的开放末端附近,如图10所示,或者可以成对或以更大数量连接,如图11所示。图12示出了在中点附近连接的一对连接件34,而图13示出了在相邻轴向支杆16之间的三个点连接的复杂支承件40,其中两个点在支杆的开放末端附近,第三个点在冠状件18的内侧。
[0062]现在参考图14、15A和15B,支承件42可具有沿其长度形成的偏转点44以控制扩张。例如,通过在U形连接件42中间设置缺口 44,支承件被设定成在偏转点44先打开,如图15A所示,然后在连接件的冠状件处打开,如图15B所示。这种设定的开放程序有助于确保轴向支杆16扩张而不会受到支承件42扩张所需的力的显著阻碍。
[0063]还提供了支承件和轴向连杆的结构和定位方面的进一步变化形式。如图16所示,支承件50可包括N形连接件,而轴向连杆52相对于内置假体的轴线方向成一定角度。类似地,如图17所示,可提供N形支承件60连接由倾斜的轴线连杆62固定在一起的蛇形环。
[0064]现在参考图18和19,本发明的内置假体中支承件也可连接在轴向连杆14之间。支承件70大致为蛇形构型,弯曲或折叠部分延伸到相邻轴向支杆16之间的区域内。图19所示内置假体中的支承件72类似于70,只是支承件包括盒状区域,该区域有一对突出部74延伸到相邻轴向支杆16之间的区域内。在这两种情况下,支承件70和72都将提高径向扩张后蛇形环的环向强度,抑制反冲,并提高用于支承组织和输送活性剂的表面积。
[0065] 虽然上述内容完整描述了本发明的优选实施方式,但也可使用各种可选形式、改进形式和等价形式。因此,上述内容不应视作对本发明范围的限制,本发明的范围由所附权利要求书限定。
【权利要求】
1.一种内置假体,其包括: 多个可沿周向扩张的蛇形环,每个蛇形环包括由冠状件接合的轴向支杆,其中所述冠状件起铰链作用,使所述支杆随着所述环沿周向打开而伸展; 连接相邻环上的至少一些冠状件的轴向连杆;和 在至少一些蛇形环的至少一些相邻支杆间延伸的支承件,其中当所述环沿周向扩张时,所述支承件伸长且所述支杆保持基本不变形; 其特征在于,所述支承件在相邻轴向支杆上的两点以及连接所述支杆的所述冠状件上的一点间延伸。
2.如权利要求1所述的内置假体,其特征在于,所述假体至少部分地包含可生物降解的材料。
3.如权利要求1所述的内置假体,其特征在于,所述假体至少部分地包含金属。
4.如权利要求1所述的内置假体,其特征在于,所述蛇形环具有足够的弹性,使它们既能够被约束在小横截面积内,而释放后又能形成沿周向扩张的构型。
5.如权利要求1所述的内置假体,其特征在于,所述蛇形环具有足够的延展性,使得从所述环内施加径向 向外的力时,它能够沿周向扩张。
6.如权利要求1所述的内置假体,其特征在于,所述支承件包括U形连接件。
7.如权利要求1所述的内置假体,其特征在于,所述支承件包括S形连接件。
8.如权利要求1所述的内置假体,其特征在于,所述支承件包括W形连接件。
9.如权利要求1所述的内置假体,其特征在于,所述支承件包括N形连接件。
10.如权利要求1所述的内置假体,其特征在于,所述假体还包括在至少一些相邻支杆间延伸的至少一个额外的支承件。
11.如权利要求1所述的内置假体,其特征在于,所述支承件在相邻支杆上的冠状件附近的位置间延伸。
12.如权利要求1所述的内置假体,其特征在于,所述支承件的横截面积小于所述轴向支杆的横截面积。
13.如权利要求1所述的内置假体,其特征在于,至少一些支承件具有偏转点,当所述蛇形环沿周向扩张时,所述偏转点优先屈服。
14.如权利要求13所述的内置假体,其特征在于,所述偏转点包括缺口。
15.如权利要求1所述的内置假体,其特征在于,所述轴向连杆包括线性梁。
16.如权利要求15所述的内置假体,其特征在于,所述线性梁是轴向排列的。
17.如权利要求15所述的内置假体,其特征在于,所述线性梁相对于所述轴线成一定角度排列。
【文档编号】A61F2/915GK104042375SQ201410172099
【公开日】2014年9月17日 申请日期:2008年1月18日 优先权日:2007年1月19日
【发明者】H·黄, J·严, B·克瑞耶, M·西尔汉, V·巴塔 申请人:万能医药公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1