可膨胀的护套的制作方法

文档序号:13098140阅读:316来源:国知局
可膨胀的护套的制作方法与工艺

本申请涉及用于与基于导管的技术一起使用的护套的实施方式,用于修复和/或更换心脏瓣膜,以及用于递送植入物,诸如经由患者的脉管系统递送人工瓣膜至心脏。



背景技术:

血管内递送导管组件用于在不容易通过手术接近或者期望无侵入性手术进入的体内位置处植入假体装置,诸如人工瓣膜。例如,主动脉、二尖瓣、三尖瓣、和/或肺人工瓣膜可以使用微创手术技术递送至治疗部位。

插管器护套可以用于将递送设备安全地引入到患者的脉管系统(例如,股动脉)。插管器护套一般具有插入到脉管系统中的细长套筒和含有一个或多个密封阀的外壳,该一个或多个密封阀允许递送设备被放置与脉管系统流体连通而具有最小的血液损失。常规的插管器护套通常需要管状输入器,该管状输入器将被插入通过外壳中的密封件,为安装在球囊式导管上的瓣膜提供通过外壳的无障碍路径。常规的输入器从插管器护套的近端延伸,并且因此减小了可以插入通过护套并进入身体的递送设备的可用的工作长度。

在引入递送系统之前进入血管诸如股动脉的常规方法包括使用直径逐渐增大的多个扩张器或护套扩张血管。该重复的插入和血管扩张可以增加该步骤花费的时间,以及损伤血管的风险。

已经公开了径向膨胀的血管内护套。这种护套趋向于具有复杂的机构,诸如棘轮机构——一旦引入具有比护套的原始直径更大直径的装置其保持轴或护套处于膨胀配置。

然而,递送假体装置和其他材料至患者和/或从其移除假体装置和其他材料仍然对患者造成风险。此外,由于相对大轮廓的递送系统——其在插入期间可能引起血管的纵向和径向撕裂,进入血管仍然是一个挑战。递送系统可以另外地排出血管内钙化的斑块,造成由排出的斑块引起的额外的血栓风险。

美国专利号8,790,387,其名称为expandablesheathforintroducinganendovasculardeliverydeviceintoabody(用于将脉管递送设备引入体内的可膨胀护套)并且通过引用并入本文,公开了具有分开的外聚合物管层和内聚合物层的护套,例如图27a和28。内聚合物层的一部分延伸通过由切割产生的间隙并且可以被压缩在外聚合物管层的部分之间。在护套的膨胀之后,外聚合物管层的部分被彼此分离,并且内聚合物层膨胀为基本上圆柱形的管。有利地,在该‘387专利中公开的护套可以为了可植入的装置的穿过而临时膨胀并且然后返回其起始直径。

尽管公开了‘387专利,但是仍然对于用于植入瓣膜和其他假体装置的用于血管内系统的插管器护套的进一步改进存在需要。



技术实现要素:

通过用于递送安装在导管上的植入物的可膨胀的插管器护套提供以上需要和其他优势。护套包括弹性外管层和具有一体地连接至薄壁部分的厚壁部分的内管层。内管层可以具有压缩状态/折叠配置,其中薄壁部分在弹性外管层的推动下折叠在厚壁部分的外表面上。当植入物穿过其中时,外管层伸展并且内管层至少部分地展开成膨胀的管腔直径以容纳植入物的直径。一旦植入物穿过,外管层再一次推动内管层成折叠配置,其中护套再采取其较小的轮廓。除了减小的初始轮廓尺寸之外,内管层的一体构造防止了现有技术开管和均匀厚度衬垫组合的渗漏和挫裂(snag)。护套也可以包括选择性放置的纵向杆,其调节(mediate)内管层和外管层之间的摩擦以促进容易膨胀和收缩,从而减小推进尺寸过大的植入物通过护套的管腔所需要的推力。

实施方式包括用于递送安装在导管上的植入物的护套。护套可以包括弹性外管层和内管层。外管层限定轴向穿过其延伸并且具有初始直径的初始弹性管腔。内管层具有一体连接至薄壁部分的厚壁部分——诸如通过在制造期间共挤出。厚壁部分具有带有第一纵向延伸端和第二纵向延伸端的c形横截面。薄壁部分在第一和第二纵向延伸端之间延伸以限定轴向通过内管层延伸的膨胀的管腔。膨胀的管腔具有比初始弹性管腔的初始直径更大的膨胀的直径。内管层在压缩状态下延伸通过弹性外管层的初始弹性管腔,其中弹性外管层在内管层的第二纵向延伸端下推动第一纵向延伸端。局部膨胀状态的内管层具有径向膨胀分开的第一和第二纵向延伸端,其通过穿过植入物抵抗弹性外管层的推动,形成非重叠状态,其中薄壁部分在其间延伸以形成膨胀的管腔。内管层配置为在植入物穿过膨胀的管腔之后被外弹性管层推动为压缩状态。

在另一个方面,内管层的外表面和/或外管层的内表面可以具有润滑涂层,其配置为允许外弹性层和内管层自由的相对滑动。内管层的外表面的纵向延伸部分或带可以被粘附至外管层的内表面的相应的纵向延伸部分以提供关于内层和外层之间的旋转的一些限制。

在另一个实施方式中,管层可以包括连接至它们的表面的多个纵向杆。例如,外管层的内表面可以包括延伸到初始弹性管腔的杆。杆配置为提供轴承表面以促进当从局部膨胀的状态移动至压缩状态(和返回)时层的相对运动。嵌入弹性外管层内的纵向杆也可以从弹性外管层的内表面和外表面二者伸出。

纵向杆可以围绕外管层的内表面周向地间隔开。内管层也可以包括连接至其内表面的接触面积减小的杆。

在另一个方面,护套可以包括围绕弹性外管层的纵向部分延伸的不透射线的管层。在一些实施方式中,外管层由透明材料组成。

在一些实施方式中,在弹性外管层的远端处在弹性外管层的周围可以应用热收缩管。

在一些实施方式中,弹性外管层的远端部分和内管层被粘附至彼此。例如,弹性外管层的远端部分可以被粘附至内管层的膨胀的外表面。弹性外管层的远端部分和内管层可以在彼此上软熔(reflow)成密封的配置。在一些实施中,护套的远端部分具有喇叭形。喇叭形可以折叠成重叠的布置。

使用可膨胀的插管器护套的方法可以包括将护套至少部分地插入到患者的血管。植入物被推进通过护套的内管层。使用植入物的向外定向的径向力,内管层从压缩状态转变至局部膨胀的状态。在植入物穿过之后,局部膨胀的内管层通过外弹性管层的向内定向的径向力至少部分地收缩回压缩状态。在内管层的局部膨胀期间,第一和第二纵向延伸端朝向彼此移动并且然后远离彼此。在局部膨胀的内管层的收缩期间,第一和第二纵向延伸端朝向彼此移动并且然后远离彼此以至少部分地返回至压缩状态。

附图说明

图1是可膨胀的护套连同用于植入假体植入物的脉管内递送设备的正视图。

图2是护套和连接器(hub)的横截面视图。

图3a是护套的远部尖端的放大视图。

图3b是沿着图3a的线3b—3b截取的护套的远部尖端的横截面视图。

图4是护套的外管层的示例性实施的横截面视图。

图5是护套的外管层的另一个示例性实施的横截面视图。

图6是图5的部分外管层的放大视图,更详细地显示了纵向杆的横截面。

图7是护套的内管层的示例性实施的横截面。

图8是护套的内管层和外管层二者的横截面。在该实例中,内管层是压缩状态。

图9是可膨胀护套的实施的远端的透视图。

图10是可膨胀护套的一个实施的侧视图。

图11是护套的喇叭形远端部分的一个实施方式的透视图。

图12显示了折叠在热收缩管中的护套的远端部分的侧视图。

图13显示了包括不透射线的管层的护套的远端部分的实施方式的纵向横截面。

图14显示了处于折叠配置的护套的实例喇叭形远端部分。

图15显示了处于折叠配置的护套的远端部分的横截面。

图16显示了植入物穿过期间的护套。内管层和外管层以纵向延伸的带粘附在一起。

图17显示了包括嵌入在外管层中并且伸出到弹性管腔的纵向杆的示例性实施方式的横截面。

图18显示了包括嵌入在外管层中并且伸出到弹性管腔并且从外管层的外表面向外的纵向杆的示例性实施方式的横截面。

图19显示了包括嵌入在外管层中的纵向杆的示例性实施方式的横截面,其中一些杆伸出到弹性管腔内并且其他杆从外管层的外表面向外伸出。

图20显示了包括嵌入在外管层和内管层中的纵向杆的示例性实施方式的横截面。嵌入在外管层中的纵向杆伸出到弹性管腔内并且嵌入在内管层中的纵向杆伸出到中心管腔内。

图21显示了包括嵌入在外管层中并且伸出到弹性管腔内的纵向杆的另一个示例性实施方式的横截面。

图22显示了具有植入物穿过其中的护套的侧视图。

图23显示了护套的远端部分的喇叭形实施,其中喇叭形部分被折叠成压缩配置。

图24显示了具有展开且膨胀的喇叭形部分的图23的远端部分。

图25显示了图23的远端部分的横截面,其中喇叭形部分被折叠成压缩状态。

图26显示了可膨胀的护套的示例性实施的透视图。

图27显示了图26中显示的实施的近端区域的纵向横截面。

图28显示了图26中显示的实施的远端区域的纵向横截面。

图29显示了图26中显示的实施的远端区域的横截面。

图30至38显示了为可膨胀的护套的另一个实施方式装配加强且密封的尖端的方法。

具体实施方式

创造性概念的某些实例的以下描述不应当用于限制权利要求的范围。从以下描述,其他实例、特征、方面、实施方式、和优势对本领域技术人员将是显而易见的。如将认识到,装置和/或方法可以是其他不同且显而易见的方面,所有均不脱离创造性概念的精神。因此,附图和描述应当被视为本质上是说明性的而不是限制性的。

为了描述的目的,本文描述了本公开内容的实施方式的某些方面、优势、和新颖的特征。所描述的方法、系统、和设备绝不应当被解释为限制。相反,本公开内容涉及各种公开的实施方式的所有新颖的且非显而易见的特征和方面,单独的以及彼此的各种组合和子组合。所公开的方法、系统、和设备不限于任何具体方面、特征或其组合,所公开的方法、系统、和设备也不要求呈现任何一个或多个具体的优势或要解决问题。

结合本发明的特定方面、实施方式或实例描述的特征、整数、特性、化合物、化学部分、或基团将被理解为适用于本文描述的任何其他方面、实施方式或实例,除非不兼容。本说明书(包括任何所附权利要求、摘要和附图)中公开的所有特征和/或如此公开的任何方法或过程的所有步骤可以以任意组合结合,除了其中这些特征和/或步骤的至少一些是相互排斥的组合之外。本发明不受限于任何前述实施方式的细节。本发明延伸至本说明书(包括任何所附的权利要求、摘要和附图)中公开的特征的任何新颖特征、或任何新颖的组合,或者延伸至如此公开的任何方法或过程的步骤的任何新颖的步骤、或任何新颖的组合。

应当领会的是,宣称通过引用并入本文的任何专利、出版物、或其他公开材料全部或部分地并入本文,其程度为并入的材料不与现有的限定、陈述、或本公开内容中阐述的其他公开材料冲突。因此,并且在必要时,本文明确阐述的公开内容取代了通过引用并入本文的任何冲突的材料。宣称通过引用并入本文但与现有的限定、陈述、或本文阐述的其他公开材料冲突的任何材料、或其部分将仅在所并入的材料和现有的公开材料之间不产生冲突的程度上并入。

如在说明书和所附的权利要求中所使用,单数形式“一(a,an)”和“该(the)”包括复数指示物,除非上下文另外明确地规定。范围在本文中可以表达为从“大约”一个特定值,和/或至“大约”另一个特定值。当表达这种范围时,另一个方面包括从一个特定值和/或至另一个特定值。类似地,当值被表达为近似值时,通过使用先行词“大约”,将理解的是,特定值形成另一个方面。将进一步理解的是,每个范围的端点对于另一端点而言都是重要的,并且独立于另一端点。

“任选的”或“任选地”意思是随后描述的事件或情况可以发生或可以不发生,并且描述包括其中所述事件或情况发生的实例和其中其不发生的实例。

遍及本说明书的描述和权利要求,词语“包括(comprise)”和该词语的变形,诸如“包括(comprising)”“包括(comprises)”意味着“包括但不限于”,并且不意欲排除例如其他的添加剂、组分、整数或步骤。“示例性的”意思是“……的一个实例”并且不意欲表达优选或理想方面的指示。“诸如”不是在限制性意义上使用,而是用于说明性的目的。

可膨胀的护套的公开的实施方式可以通过允许临时膨胀插管器护套的一部分以容纳递送系统,接着一旦装置穿过就返回至原始直径来最小化对血管的创伤。可膨胀的护套可以包括,例如,具有厚壁部分和薄壁部分的一体形成的内管层,其中薄壁部分可以膨胀至膨胀的管腔用于植入物的穿过并且然后在植入物离开之后在外弹性管层的偏压下折叠回自身上。在另一个方面,可膨胀的护套可以包括一个或多个纵向取向的加强元件(诸如杆),其连接至弹性外层以为可膨胀的护套提供刚度。一些实施方式可以包括具有比现有技术插管器护套的轮廓更小轮廓的护套。此外,因为仅需要一个护套,而不是几个不同尺寸的护套,本实施方式可以减少步骤花费的时间长度,以及减小纵向或径向血管撕裂或斑块排出的风险。本可膨胀的护套的实施方式可以避免用于扩张血管的多次插入的需要。

本文公开的是细长的递送护套,其特别适合用于递送可植入的心脏瓣膜形式的植入物,诸如球囊可膨胀的可植入心脏瓣膜。球囊可膨胀的可植入心脏瓣膜是众所周知的并且将不在此更详细地描述。这种可植入心脏瓣膜的实例在美国专利号5,411,552中描述,并且也在美国专利申请公开号2012/0123529中描述,其二者在此通过引用并入。本文公开的细长的递送护套也可以被用于递送其他类型的可植入装置,诸如自膨胀的可植入心脏瓣膜、支架或滤器。如本文所使用的术语“可植入的”被广义地限定为意味着被递送至身体内的部位的任何东西——假体或非假体。例如,诊断装置可以是可植入的。

图1图解了示例性护套8,其与代表性递送设备10一起用于递送植入物12或其他类型的可植入物至患者。设备10可以包括可操纵的导向导管14(也被称为挠曲导管)和延伸通过导向导管14的球囊导管16。图解的实施方式中的导向导管14和球囊导管16适合于相对于彼此纵向滑动以促进在患者体内的植入部位递送和放置植入物12,如以下所详细描述。护套8是细长的、可膨胀的管,其可以包括在护套的相对的近端的止血阀以阻止血液渗漏。

一般地,在使用期间,护套8的远端穿过患者的皮肤并且插入到血管,诸如经股血管。递送设备10可以穿过止血阀插入到护套8,并且植入物12然后可以被递送并且植入在患者内。

如图2中显示,护套8包括连接器20、喇叭形的近端22和远部尖端24。连接器20由限定连接器管腔21的刚性圆柱形结构构造并且容纳止血阀26并且可以限定侧面端口28并且具有有螺纹的远端30。护套8的喇叭形近端22包括安装在管壁结构34上的有螺纹的阴连接头32。如图3中所示,护套8的远部尖端24被安装在管壁结构34的远端上。管壁结构34限定中心管腔38。

通过将有螺纹的远端阳端30转动到相应的有螺纹的阴连接头32中,将连接器20附连至喇叭形的近端22。这放置连接器管腔21与管壁结构34的中心管腔38连通。止血阀26调节递送设备10至连接器管腔21和中心管腔38的通路和在加压(充满血液)环境下植入物12的最终部署。侧面端口28提供用于施加生理盐水或其他流体的另外的通路。

同时,远部尖端24提供对另外的径向可膨胀的管壁结构34的一些抑制。通过提供锥形的推进表面,远部尖端24还有助于推进插管器。进一步地,远部尖端24在其远部尖端处改进护套8的刚度以防止在扭转和推进力期间管壁结构34的屈曲或收缩。

如图3a中所显示,管壁结构34包括弹性外管层40和内管层42和远部尖端24。远部尖端24一般地具有管状结构,其带有稍微锥形或截头圆锥形的远端。远部尖端24包括外壁44、内壁46和定位器48,外壁44具有比内壁46更长的轴向长度。外壁44的近端具有带有直边的管形。外壁在其远端自由端逐渐减小至颈部52并且开始轻微地扩大至从远端自由端向近侧移动的圆柱形凸出部50。颈部52具有比外壁44的近端管状端更小的直径。近端管状端又具有比圆柱形凸出部50更小的直径。

内壁46具有比外壁更短的轴向长度但是也具有圆柱形,其朝向它的远端自由端逐渐变细——尽管更逐渐地。如图3a中所示,内壁46的外表面和外壁44的内表面限定环形空间54,其配置为接收弹性外管层40的远端自由端。环形空间54由于其位置在外壁44的圆柱形凸出部50的底下而凸出一些。该凸出促进弹性外管层的插入和捕获。当外壁44和内壁46的表面汇合成结合接触时环形空间54逐渐减小至向远端移动的点。

如图3b的横截面中所显示,定位器48是另外的弧形壁,其沿着内壁46的内表面的一部分延伸并且限定其自身的新月形空间56。如以下将更详细描述,新月形空间56配置为接收内管层42的可折叠的薄壁部分。当其处于其压缩或折叠配置时,定位器48具有与内管层42的折叠部分的圆弧长度对应的弧尺寸。有利地,远部尖端24有助于增加管壁结构34的远端的结构强度,阻止层之间的血流并且提供当用金属线或扩张器推进时用于推动通过组织的光滑的锥形轮廓。

如图4中所显示,一个实施方式的外管层40具有圆柱形,其沿着其整个长度具有圆形横截面。外管层40限定轴向延伸通过其圆柱形横截面的初始弹性管腔58。外管层的尺寸为容纳患者的递送通道和/或将被递送的植入物12的尺寸。例如,层40的内径id可以是0.185英寸并且可以具有0.005+/-0.001英寸的壁厚度以便通过经股通路递送安装支架的心脏瓣膜。在一个方面,外管层40的内表面和/或内管层42的外表面可以被处理以具有润滑涂层或已在其上施加润滑涂层以促进内管层42的展开和折叠。

弹性管腔58被称为“初始”以指定当不受外力诸如穿过其的植入物12的影响时其被动的或所形成的直径或横截面尺寸。然而,应当注意,因为图解的实施方式中外管层40由弹性材料构成,甚至在轻的力诸如重力下它可能不会保持其形状。而且,外管层40不需要具有圆柱形横截面并且相反可以具有椭圆形、正方形或通常可以配置以满足内管层42和/或植入物12的预期形状的需要的其他横截面。因而,本文使用的术语“管”或“管状”不旨在将形状限于圆形横截面。相反,管或管状可以指具有闭合的横截面和轴向延伸穿过其的管腔的任何细长的结构。管也可以具有一些在其中选择性定位的狭缝或开口——尽管它仍将提供足够的闭合结构以包含在其管腔(一个或多个)内的其他部件。

在一个实施中,外管层40由相对弹性的材料构造,该相对弹性的材料具有足够的柔韧性以调节由植入物12的穿过引起的膨胀和内管层42的膨胀而同时具有足够的材料刚度以一旦植入物已经穿过推动内管层回到近似的初始直径。示例性材料包括neusoft。neusoft是半透明的聚醚聚氨酯基材料,其具有良好的弹性、减振性、抗磨损性和抗撕裂性。聚氨酯化学上耐水解并且适合用于成型(overmold)在聚烯烃、abs、pc、pebax和尼龙上。聚氨酯提供良好的水分和氧屏障以及uv稳定性。外管层40的一个优势是,它为加压血液提供流体屏障。具有类似弹性性能的其他材料也可以被用于弹性外管层40。

图5显示了包括多个纵向杆60的弹性外管层40的另一个实施。纵向杆60延伸外管层40的长度并且伸出到初始弹性管腔58中。如图6中所显示,纵向杆60被连接至外管层,诸如通过被共挤出和/或嵌入到外管层的弹性材料中。有利地,纵向杆60配置为提供轴承表面以促进内管层42在外管层40内的相对移动。当内管层42被展开并且返回其原始折叠形状时,这是特别有帮助的。

纵向杆60可以围绕外管层60的内表面被周向地隔开。虽然在图5的横截面中显示了十五个纵向杆60,但是可以采用任何数量的纵向杆,包括单个。而且,纵向杆60不需要延伸外管层60的整个长度。相反地,它们可以根据植入物的需求、应用和其他情况选择性地应用。纵向杆60可以被选择性地排除在整个间隔图案之外,诸如在图5中,其中外管层40的近似90度的内表面被留作未装饰的(unadorned)表面。

如图6中所显示,纵向杆可以具有圆形横截面以便将弯曲的轴承表面提供到弹性管腔58。虽然纵向杆60的直径可以变化,但是在一个实施方式中,它们的直径是0.004英寸。纵向杆的最外部分被放置距离外管层40的外表面大约0.006英寸。以这种方式,纵向杆60的内边缘表面将内管层42与外管层40的表面间隔开,因而减小摩擦或粘附和阻碍相对运动的趋势。在其他的实施方式中,纵向杆可以具有其他形状,并且这些形状可以沿着纵向方向在单个杆内改变。也如图6a中所显示,为了额外的稳定性,外管层40的材料经过纵向杆60的横截面的中点以斜边延伸。

如图7中所显示,内管层42具有与薄壁部分64一起一体挤出的厚壁部分62。厚壁部分62是近似0.011+/-0.001英寸并且薄壁部分66是近似0.0065+/-0.0010英寸。内管层42优选地由(与外管层40相比)相对刚性的材料诸如刚性的聚合物如高密度聚乙烯(hdpe)或等效聚合物构造。壁部分的一体构造,诸如一体挤出,有利地避免了现有技术护套的渗漏,现有技术护套在护套中使用裂口以促进可膨胀性。现有技术c形护套趋向于靠近在护套最大伸展的歧管处的近端渗漏。而且,一体构造改进了扭转护套8的能力。

在图7的图解的实施方式中,厚壁部分62具有c形横截面,其带有第一纵向延伸端66和第二纵向延伸端68。末端是厚壁部分62的厚度开始变窄至横截面上的薄部分64的位置。这种转变在护套8的轴的方向上纵向延伸,使得厚壁部分62形成细长的c形通道。

从厚壁部分62的那些末端66、68延伸薄壁部分64并且它们一起限定管形。在该管状中纵向延伸的是中心管腔38。特别地,图7显示了在其膨胀直径的中心管腔38,该膨胀直径比弹性外管层40的初始直径更大。例如,内管层42具有中心管腔38,其是大约0.300+/-0.004英寸。外管层40具有大约0.185英寸的初始弹性管腔58。

图8和9显示了在其压缩或折叠状态的内管层42,其折叠起来并且适合外管层的初始弹性管腔58。在压缩状态下,弹性外管层40在内管层42的第二纵向延伸端68下推动第一纵向延伸端66。这将薄壁部分64放置在第一和第二纵向延伸端66、68之间。

图10显示了植入物移动通过护套8的侧视图。在植入物穿过中心管腔38期间,管壁结构34采取对应于植入物12的长度和几何结构的局部膨胀的状态。如图7中,在膨胀状态,抵抗由于植入物12的穿过的弹性外管层40的推动,第一和第二纵向延伸端66、68径向膨胀分开成非重叠的状态,其中薄壁部分64在其间延伸以形成膨胀的管腔。在植入物12通过之后,内管层42被外弹性管层40推动成图8和9显示的压缩状态。使用这种配置,14french护套8允许29mm经导管心脏瓣膜诸如从edwardslifesciences可获得的sapienxt和sapien3经导管心脏瓣膜穿过。

作为另一个选择,内管层42可以沿着外管层40的一个或多个纵向延伸部分被粘附。例如,粘附可以通过两层之间的热熔或者粘合剂结合。如图9中所显示,纵向延伸部分可以是带70,其中内管层42的外表面被结合或者以另外方式粘附至外管层40的内表面。优选地,带70被放置与薄壁部分64相对以远离内管层42的褶皱,并且不影响内管层42的褶皱。抑制折叠也将增大用于植入物12的穿过的推力。另一个实施可以包括第二薄结合带70或线。虽然带70的厚度可以变化,优选地它是相对窄的以减小它对两层的膨胀和推力的任何增加的抑制。层40、42之间的窄的结合线的使用防止层相对于彼此的自由旋转同时最小化对推力的影响。

在另一个实施方式中,如图11-15中所显示,护套管壁结构34的远部尖端24可以是密封尖端以减轻血液侵入和/或在植入物12行进的远端促进膨胀。在一个方面,如图11中所显示,管壁结构34的远端部分可以被软熔以粘附内层和外层40、42。特别地,两层40、42被推动成它们完全膨胀的(展开的状态)并且然后软熔以将内管层42的外表面结合至外管层40的内表面。然后,软熔部分返回至压缩或折叠的配置并且被压缩在热收缩层74下以设置褶皱。热收缩层74然后被去除。因而,当壁结构34的远端折叠时,外管层40也被折叠,如图14和15所显示。密封尖端阻止血液到护套8的远端处的两个层40、42之间同时保持管壁结构34的高可膨胀的性能。

软熔外管层40可以具有向其中添加不透射线的环72。不透射线的环72可以被粘附(诸如通过热收缩)在外管层40的软熔的、折叠的远端部分的外侧并且围绕外管层40的软熔的、折叠的远端部分。环72可以被施加(诸如通过软熔)在外管层40的外侧(图13)或在外管层40的内侧(图12)。环72优选地由高弹性聚合物构造以允许膨胀和促进推动尖端回到折叠配置。

有利地,外管层40和内管层42都是无缝的,其阻止血液渗漏到护套8中。内管层42的无缝构造消除了常规c形护套的末端。通过添加薄部分64消除c形护套中的切口改进了扭转性能。而且,两个层容易通过挤出工艺制造。弹性外管层40具有与最软尖端相似或相同的弹性材料,使得它们的附连更容易。

如图17-20中所显示,护套8的其他实施方式可以包括被采用纵向杆60的弹性外管层40围绕的常规c-形内管层42。(图17-20也可以使用其他类型的内管层42,诸如本文公开的一体形成的那些)。图17显示了使用围绕外管层40的内表面相等间隔开的七个纵向杆,除了邻近内管层42中的裂口的部分缺少杆之外。该间隙促进c形内管层42的自由边缘的分散和返回。图18显示了类似的布置但是呈现了八个纵向杆60。但是杆稍微偏离内管层42的自由边缘的位置。此外,图18的杆从外管层40的外表面向外伸出以降低护套和例如身体管腔或另外的外递送护套之间的摩擦。

图19显示另一个实施方式,其中杆被嵌入外管层40中并且从其内表面和外表面交替地延伸。这可以降低来自护套8的推进的摩擦,其中,例如,层40的外表面接触身体管腔或另外的外递送护套。图20显示了另一个实施方式,其中内管层42也包括多个纵向杆60,其促进例如植入物12的容易穿过。

在图17-20的配置中的外管层40仍然可以具有高弹性薄结构以适合常规c形护套内管层42。由于外管层40没有被粘附至内管层42,套筒和递送导管10之间存在自由移动。外管层40也是无缝的以防止血液渗漏。护套8在径向方向沿着所有部段均匀伸展——减小了撕裂或破裂的风险。并且,弹性外管层40将推动c形护套回到减小的轮廓配置。在构造期间,内层42容易安装在外层40的内侧而不需要修平或热包装。依赖于它们的横截面尺寸,实施可以包括大量的纵向杆:60-甚至100个或更多。纵向杆60可以包括进一步减小摩擦的微观结构图案。

图21和22显示护套8的又另一个实施方式,该护套8包括具有纵向杆60的分段的外管层40,其可以采用或不采用内管层42。如图21中显示,外管层40具有细长的切口或凹槽,其形成沿着内表面轴向延伸的细长的部段76。纵向杆60沿着凹槽形成或安装。在图21中显示了纵向杆60,其具有减小穿过植入物12的摩擦的弯曲的或弧形的顶表面。纵向杆60由相对高刚度材料诸如hdpe、氟聚合物和ptfe组成。外管层40可以由具有低拉力设定的高弹性材料构造(tpe、sbr、硅酮等)以促进膨胀之后的恢复。当在没有内管层42下使用时,外管层40可以具有另外降低的膨胀力——特别地因为较高强度材料(杆)在径向方向上不连接。其他变化可以包括改变杆60的数量和形状,并入粘结层或截槽/倒刺以加强杆至外层40的连接并且添加刚性材料的部分至外层的外侧用于改进刚度和推动能力。滑动添加剂被施加至表面以增加润滑性。图22显示了当植入物12穿过其中时护套8中的凸出。

图23-25显示另一个实施方式,其中管壁结构34的远端可以具有喇叭形部分78。喇叭形部分78的喇叭有助于在医学装置的取回期间减小常规护套所经历的取回期间的障碍或干扰。喇叭形部分78围绕插管器80的锥形远端被折叠或缠绕以保持用于推进的小轮廓,如图23和25中所显示。褶皱的数量和尺寸可以依赖于管壁结构34的尺寸和材料类型变化。例如,图25在横截面视图中显示了三个褶皱。在护套8的远端就位之后,插管器80被移除。然后,护套8准备好接收递送导管10和植入物12。当植入物12到达喇叭形部分78时,然后褶皱打开并且膨胀成喇叭形配置,如图24所显示。喇叭形部分78保持在该喇叭形配置用于植入物12的可能的取回。

图26-29显示了护套8的另一个实施方式。护套8包括管壁结构34,其从近端(如在图27的横截面中所显示)延伸至远端(图28和29)。一般地,管壁结构34包括内管层42、内尖端层81、应变消除管层82、外尖端层84和弹性外管层40。

可见,依赖于轴向位置,管壁结构34具有不同的层。壁结构34包括应变消除管层82,其终止于距离近端路径的大约2/3处,如图27中所显示。应力消除层82优选地由相对刚性的材料诸如hdpe组成,在其被结合至连接器20和用于接收递送设备10的初始插入的其他部件位置处其可以经受护套8的近端的应变。它在短于护套8的远端处终止以促进护套8的远端的更大的柔韧性和更小的轮廓。

延伸穿过应变消除管层82,管壁结构34下降至两层,内管层42和弹性外管层40。在图27中显示的护套8的部分的最近端,内管层以折叠配置分开(在横截面中)成其厚壁部分62和薄壁部分64。

在远端处,如图28和29中所显示,护套8包括尖端结构(包括内尖端层81和外尖端层84),其配置为逐渐减小壁结构34和密封层的自由端以防止血液或流体侵入。一般地,这些部件构成一定长度的壁结构34——其具有包括加强层的一些另外的层——的直径,并且然后在内管层42的远端自由端逐渐减小。

内管层42类似于以上所描述。它包括薄壁部分64,其配置为折叠成折叠的配置,回到厚壁部分62上。而且,弹性外管层40抑制内管层42膨胀。但是,外管层40的弹性也可以被克服以允许内管层至少部分地展开成更宽的中心管腔38以便植入物12或其他装置穿过。

如图28中所显示,内尖端层81仅延伸短的轴向长度。特别地,内尖端层81围绕可折叠的内管层42的最远端延伸并且延伸穿过可折叠的内管层42的最远端,在向远端延伸穿过可折叠内管层的自由端之后逐渐减小成更小直径自由端。如正交于图29的护套8的纵轴的横截面中所显示,内尖端层81具有c形横截面。(c形的顶端被稍微扩大以容纳壁结构34的重叠层——使得自由纵向边缘径向间隔开以形成间隙)。c形横截面允许内尖端层81的自由纵向边缘在内管层42的展开期间扩展开。有利地,内管层42具有相对刚性的材料构造,平滑、加强和逐渐减小护套8的远端以及为内管层42的自由端提供一些保护。内尖端层81也有利地在内管层42的远端上延伸,从而密封厚和薄壁部分62、64防止血液和流体侵入。

外尖端层84在内尖端层81和内管层42的远端部分上延伸并且粘附至内尖端层81和内管层42的远端部分上。外尖端层84覆盖内尖端层81的近端边缘,将其密封在内管层42上。外尖端层84是相对可弯曲的材料,并且当其被直接粘附至薄壁部分64时,可以如图28中所显示地折叠在自身上。有利地,然后,外尖端层84追踪厚和薄壁部分62、64的展开以继续密封内尖端81至内管层42。显著地,随着外尖端层84展开,c形内尖端层81的自由纵向边缘可以分开用于护套8的协调的管腔膨胀。但是,而且,同时内尖端层81的刚度和外尖端层84的额外增强有助于维持尖端刚度和稳定性。

弹性外管层40一直延伸至护套8的远端,包括在外尖端层84的远端上。此外,弹性外管层的内侧包括杆60,其轴向延伸并且通过降低表面积和增加润滑性减小展开阻力。

护套8也可以包括不透射线的标记带或层部分86,其在植入或其他医疗步骤期间在放射检查下提供取向和深度指示。

图30至38显示了用于护套8的另一个实施方式的装配加强的和密封的尖端的方法。图30-38显示了当其经历装配方法时相同护套8的不同视图。图30和31显示了处于展开配置的内管层42(向右)。另外的管层92(诸如应变消除或弹性层)(向左)在内管层42上延伸但是在短于内管层的自由端处停止。图31显示了附连至内管层42的不透射线的标记86的部分。

图32显示了内管层42,其具有切割到其自由端的窗口或v形凹口90以允许尖端膨胀。v形凹口90也促进植入物的收回。图32也显示了围绕内管层的外侧延伸的c形内尖端层81。图33显示了在内管层42的相对侧的第二凹口90。也在图33中,部分构造的护套8的远部尖端在心轴94上延伸以促进其他层的折叠和附连。

图34显示了通过施加近端密封层96形成近端止血密封,该近端密封层96围绕另外的管层92的远端自由端延伸并且在新出现的内管层42的远端上延伸并且穿过新出现的内管层42的远端。在图34中显示的实施方式中,近端密封层96是透明的,使得v形凹口90从密封层96的下面可见。密封层96的近端部分98被热处理以密封另外的管层92和内管层42之间的过渡,其在一些实施方式中可以给予近端部分98比密封层96的其余部分更光滑的外观。近端部分98阻止血液和其他流体进入两个层42、92之间。

图35显示了被折叠在自身上的层42、92和96。图36显示了弹性外管层40或套,其中杆60在现在折叠的层42、92和96上展开。图37显示了外管层40,其在远端处自身稍微折叠并且在其上施加远端密封层100。延伸穿过远端密封层100的近端密封层96的过量的自由端被切掉。远端密封层有利地推动层40、42和96的远端自由端成为锥形的配置并且为管壁结构34提供促进在导丝上插入和推进的圆形的远端。

考虑到可以应用所公开的发明的原理的许多可能的实施方式,应当认识到,图解的实施方式仅是本发明的优选实例,并且不应被认为是限制本发明的范围。相反,本发明的范围由权利要求限定。因此,我们要求保护在这些权利要求的范围和精神内的全部作为我们的发明。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1