本发明属于生物人工肝技术领域,尤其涉及一种四合一式人工肝生物反应器。
背景技术:
生物人工肝支持系统是在体外利用具有肝脏代谢功能的细胞,对肝衰竭患者血液进行净化,实现体外肝脏支持的功能,为肝脏再生或者等待肝脏移植赢得宝贵时间,具有重要临床应用价值。生物人工肝支持系统中,生物反应器作为核心装置,为细胞群提供充足的氧气、适当的营养物质及适宜的pH环境,使细胞能够最大限度的发挥其生物活性,为实现高效的肝功能表达水平提供保障。
目前,已用于临床试验或治疗的生物人工肝支持系统主要包括血浆分离器,氧耦合器及生物反应器三部分。病人血液导出体外后,首先经血浆分离器将血浆及血细胞分离;分离出的血浆经氧耦合器负荷足够氧后进入生物反应器;在生物反应器中细胞群以血浆为基本营养进行物质代谢及交换;去除生物毒素后的血浆再与血浆分离器分离出血细胞混合,回输至患者体内,实现体外人工肝支持功能。血浆分离器,氧耦合器及生物反应器三部分成本较高,操作较繁琐,有待进一步优化。并且,目前常用生物反应器为中空纤维型反应器,该反应器中纤维管排列紧密,纤维管间容积较小,中心部位不易装载入细胞,易造成细胞分布不均,导致系统解毒性能降低。同时,目前已有的生物反应器只是利用增温器进行增温,并不能对生物人工肝反应器进行恒温均匀的加热,加热不稳定,影响生物人工肝反应器的效率。
理想的人工肝生物反应器应具备以下特点:能为细胞提供适宜代谢环境,保障细胞活性;可装载足够数量细胞,灌充细胞分布均匀,细胞能与血浆充分接触进行物质交换;能对反应器进行恒温加热且加热稳定均匀,系统结构简洁,操作便捷。
技术实现要素:
本发明的目的就是要克服现有的生物人工肝支持系统中血浆分离器、氧耦合器、生物反应器及保温箱等四个部分成本较高、操作较繁琐、结构复杂的缺陷,提供一种实现血浆分离、氧耦合、生物反应器及保温箱四合一且同时实现pH调控、细胞灌充均匀、物质交换充分、对反应器进行恒温加热的操作简单的四合一式人工肝生物反应器。
为实现上述目的,本发明所设计的四合一式人工肝生物反应器,包括恒温水箱及置于其内部的三合一生物反应器;
所述三合一生物反应器包括腔体及设置在所述腔体内的第一隔板和第二隔板;第一隔板和第二隔板将所述腔体分隔为从左到右的三个独立空间,依次为血浆分离器、氧合器和反应器;
所述血浆分离器与所述氧合器通过器室连接管从外侧将两者内腔连通,所述器室连接管上设有分离泵;所述反应器与所述氧合器通过第二隔板上开设的连通孔将两者内腔连通;
位于所述血浆分离器处的左侧腔体上端设有血液/预充液入口,下端设有血细胞出口,所述血液/预充液入口和血细胞出口之间以设于所述血浆分离器的内部的中空纤维束连通;
位于所述氧合器处的中间部分的腔体上端设有氧气/二氧化碳入口,所述氧合器的内部设有与所述氧气/二氧化碳入口相连通的透气纤维膜管;
位于所述反应器处的右侧腔体上设有营养液/肝细胞悬浮液入口、营养液/肝细胞悬浮液出口及血浆/预充液出口,所述连通孔和血浆/预充液出口以设于所述反应器的内部的中空纤维膜管连通;
所述恒温水箱包括水箱壳及设于所述水箱壳上的热水入口和热水出口;所述水箱壳包裹住所述三合一生物反应器,所述水箱壳上还开设有多个用于三合一生物反应器上各个出入口穿出的孔洞,且所述三合一生物反应器上各个出入口为管口,其管口外壁与所述孔洞的内壁密封连接。
进一步地,所述器室连接管的进液口端位于所述血浆分离器的侧壁下端,出液口端位于所述氧合器的下端;所述连通孔位于第二隔板的上端。
再进一步地,所述氧合器内部沿其横截面方向还设有用于阻隔血浆/预充液的密封支架板,所述密封支架板位于连通孔的上方;所述密封支架板上开设有多个小孔,所述透气纤维膜管的上端卡设在小孔内,且通过密封支架板与氧合器内腔顶部形成的空间,与氧气/二氧化碳入口相连通。
上述再进一步方案的有益效果是:通过密封支架板将透气纤维膜管固定于氧合器内,既可以保证氧气/二氧化碳入口与透气纤维膜管连通,气体不受阻隔,又能起到阻隔血浆/预充液的作用。
优选地,所述血浆分离器内部沿其横截面方向还设有两个用于阻隔细胞及液体通过的聚氨酯树脂支架板,两个聚氨酯树脂支架板分别位于血浆分离器上下两端且与血浆分离器端部内腔保持距离,所述聚氨酯树脂支架板上开设有多个通孔,所述中空纤维束的两端分别卡设于不同聚氨酯树脂支架板的通孔内,所述器室连接管的进液口端位于两个聚氨酯树脂支架板之间。设置聚氨酯树脂支架板可以实现中空纤维束在血浆分离器内部均匀分布的目的,而不是将中空纤维束的端部全部塞入血液/预充液入口和血细胞出口。
进一步地,所述反应器内部沿其横截面方向还设有两个用于阻隔细胞及液体通过的聚氨酯树脂支架片,两个聚氨酯树脂支架片分别位于反应器上下两端且与反应器端部内腔保持距离,聚氨酯树脂支架片上开设有多个通孔,所述中空纤维膜管的两端分别卡设于不同聚氨酯树脂支架片的通孔内,所述连通孔位于聚氨酯树脂支架片的上方,营养液/肝细胞悬浮液入口和营养液/肝细胞悬浮液出口位于两个聚氨酯树脂支架片之间。设置聚氨酯树脂支架片可以实现中空纤维膜管在反应器内部均匀分布的目的。
可选地,位于所述血浆分离器处的左侧腔体在两个所述聚氨酯树脂支架板之间还设有与血浆分离器内腔连通的血浆分离器备用加样入口和血浆分离器加样出口;所述氧合器的下端设有氧合器加样出口;所述器室连接管的进液口端与所述血浆分离器加样出口连通;所述器室连接管的出液口端与所述氧合器加样出口连通。
进一步地,所述氧合器加样出口上还设有与其连通的微泵备用接口。用于补给葡萄糖等营养物质。
优选地,位于所述氧合器处的中间部分的所述腔体上端还设有氧合器备用加样入口,所述氧合器备用加样入口与所述密封支架板下方的空间相连通;位于所述氧合器处的中间部分的腔体的下端设有用于输液加药的输液加样入口。
优选地,所述透气纤维膜管曲折设置,其上端与所述氧气/二氧化碳入口连通,下端为封闭端。
进一步地,所述血浆/预充液出口设有聚醚砜过滤膜、聚乙烯过滤膜或聚乙烯乙烯醇过滤膜,其膜厚为100μm±25μm,膜孔径为0.5μm±0.1μm。
本发明的有益效果是:
1、通过将传统的血浆分离器、氧合器、加热器及常规生物反应器合四为一,使生物人工肝支持系统结构更为简洁,操作便捷;
2、血液进入血浆分离器后,被中空纤维束分离出的血浆依次进入氧合器和反应器,减少不必要的管路;
3、通过在氧合器的内部曲折设置有透气纤维膜,为反应器提供足量的氧气,同时向透气纤维膜适时适量参入二氧化碳实现pH调节,维持生物反应器内较稳定的pH环境,能为细胞提供适宜代谢环境,保障细胞活性;
4、通过恒温水箱的作用,恒温水箱包覆三合一生物反应器设置,使得三合一生物反应器中的细胞可以进行水浴恒温加热,加热均匀,加热稳定性好,且节省空间,使得系统结构简单。
附图说明
图1为本发明四合一式人工肝生物反应器的结构示意图。
图2为图1的剖视结构示意图。
图3为图2中三合一生物反应器的剖视结构示意图。
图中,三合一生物反应器1、血浆分离器1.1、血液/预充液入口1.1.1、血细胞出口1.1.2、血浆分离器备用加样入口1.1.3、血浆分离器加样出口1.1.4、氧合器1.2、氧气/二氧化碳入口1.2.1、输液加样入口1.2.2、氧合器备用加样入口1.2.3、氧合器加样出口1.2.4、反应器1.3、营养液/肝细胞悬浮液入口1.3.1、营养液/肝细胞悬浮液出口1.3.2、血浆/预充液出口1.3.3、腔体1.4、第一隔板1.5、第二隔板1.6、恒温水箱2、水箱壳2.1、孔洞2.1.1、热水入口2.2、热水出口2.3、中空纤维束3、透气纤维膜管4、中空纤维膜管5、器室连接管6、连通孔7、聚氨酯树脂支架板8、聚氨酯树脂支架片9、聚醚砜过滤膜10、密封支架板11、分离泵12、微泵备用接口13。
具体实施方式
以下结合附图和具体实施例对本发明作进一步的详细描述。
如图1、图2、图3所示的四合一式人工肝生物反应器,包括恒温水箱2及置于其内部的三合一生物反应器1;
三合一生物反应器1包括腔体1.4及设置在腔体1.4内的第一隔板1.5和第二隔板1.6;第一隔板1.5和第二隔板1.6将腔体1.4分隔为从左到右的三个独立空间,依次为血浆分离器1.1、氧合器1.2和反应器1.3;
血浆分离器1.1与氧合器1.2通过器室连接管6从外侧将两者内腔连通,器室连接管6上设有分离泵12;反应器1.3与氧合器1.2通过第二隔板1.6上开设的连通孔7将两者内腔连通;
位于血浆分离器1.1处的左侧腔体1.4上端设有血液/预充液入口1.1.1,下端设有血细胞出口1.1.2,血液/预充液入口1.1.1和血细胞出口1.1.2之间以设于血浆分离器1.1的内部的中空纤维束3连通;
位于氧合器1.2处的中间部分的腔体1.4上端设有氧气/二氧化碳入口1.2.1,氧合器1.2的内部设有与氧气/二氧化碳入口1.2.1相连通的透气纤维膜管4;
位于反应器1.3处的右侧腔体1.4上设有营养液/肝细胞悬浮液入口1.3.1、营养液/肝细胞悬浮液出口1.3.2及血浆/预充液出口1.3.3,连通孔7和血浆/预充液出口1.3.3以设于反应器1.3的内部的中空纤维膜管5连通;
恒温水箱2包括水箱壳2.1及设于水箱壳2.1上的热水入口2.2和热水出口2.3;水箱壳2.1包裹住三合一生物反应器1,水箱壳2.1上还开设有多个用于三合一生物反应器1上各个出入口穿出的孔洞2.1.1,且三合一生物反应器1上各个出入口为管口,其管口外壁与孔洞2.1.1的内壁密封连接。
器室连接管6的进液口端位于血浆分离器1.1的侧壁下端,出液口端位于氧合器1.2的下端;连通孔7位于第二隔板1.6的上端。
氧合器1.2内部沿其横截面方向还设有用于阻隔血浆/预充液的密封支架板11,密封支架板11位于连通孔7的上方;密封支架板11上开设有多个小孔,透气纤维膜管4的上端卡设在小孔内,且通过密封支架板11与氧合器1.2内腔顶部形成的空间,与氧气/二氧化碳入口1.2.1相连通。通过密封支架板将透气纤维膜管固定于氧合器内,既可以保证氧气/二氧化碳入口与透气纤维膜管连通,气体不受阻隔,又能起到阻隔血浆/预充液的作用。
血浆分离器1.1内部沿其横截面方向还设有两个用于阻隔细胞及液体通过的聚氨酯树脂支架板8,两个聚氨酯树脂支架板8分别位于血浆分离器1.1上下两端且与血浆分离器1.1端部内腔保持距离,聚氨酯树脂支架板8上开设有多个通孔,中空纤维束3的两端分别卡设于不同聚氨酯树脂支架板8的通孔内,器室连接管6的进液口端位于两个聚氨酯树脂支架板8之间。设置聚氨酯树脂支架板可以实现中空纤维束在血浆分离器内部均匀分布的目的,而不是将中空纤维束的端部全部塞入血液/预充液入口和血细胞出口。
反应器1.3内部沿其横截面方向还设有两个用于阻隔细胞及液体通过的聚氨酯树脂支架片9,两个聚氨酯树脂支架片9分别位于反应器1.3上下两端且与反应器1.3端部内腔保持距离,聚氨酯树脂支架片9上开设有多个通孔,中空纤维膜管5的两端分别卡设于不同聚氨酯树脂支架片9的通孔内,连通孔7位于聚氨酯树脂支架片9的上方,营养液/肝细胞悬浮液入口1.3.1和营养液/肝细胞悬浮液出口1.3.2位于两个聚氨酯树脂支架片9之间。设置聚氨酯树脂支架片可以实现中空纤维膜管在反应器内部均匀分布的目的。
位于血浆分离器1.1处的左侧腔体1.4在两个聚氨酯树脂支架板8之间还设有与血浆分离器1.1内腔连通的血浆分离器备用加样入口1.1.3和血浆分离器加样出口1.1.4;氧合器1.2的下端设有氧合器加样出口1.2.4;器室连接管6的进液口端与血浆分离器加样出口1.1.4连通;器室连接管6的出液口端与氧合器加样出口1.2.4连通。
氧合器加样出口1.2.4上还设有与其连通用于补给葡萄糖等营养物质的微泵备用接口13。
位于氧合器1.2处的中间部分的腔体1.4上端还设有氧合器备用加样入口1.2.3,氧合器备用加样入口1.2.3与密封支架板11下方的空间相连通;位于氧合器1.2处的中间部分的腔体1.4的下端设有用于输液加药的输液加样入口1.2.2。
透气纤维膜管4曲折设置,形状可以是螺旋状、蛇形状或其他弯曲形状,其上端与氧气/二氧化碳入口1.2.1连通,下端为封闭端。
血浆/预充液出口1.3.3设有聚醚砜过滤膜10、聚乙烯过滤膜或聚乙烯乙烯醇过滤膜,其膜厚为100μm±25μm,膜孔径为0.5μm±0.1μm。
使用时,首先打开氧气/二氧化碳入口1.2.1,然后打开血液/预充液入口1.1.1和血浆/预充液出口1.3.3,并通过血液/预充液入口1.1.1注入生理盐水以预冲洗三合一生物反应器1;再关闭血液/预充液入口1.1.1,在无菌条件下将带有肝细胞微载体悬液从营养液/肝细胞悬浮液入口1.3.1注入反应器1.3,使整个反应器1.3充满微载体细胞悬液;随后将急性肝衰竭猪模型的血液从血液/预充液入口1.1.1引入血浆分离器1.1,血液经过中空纤维束3后,血细胞和部分血浆从血细胞出口1.1.2排出,剩余的血浆在分离泵12的作用下通过器室连接管6进入氧合器1.2内腔,并通过连通孔7进入反应器1.3内腔,最后经血浆/预充液出口1.3.3排出反应器1.3;血细胞出口1.1.2排出的血细胞和部分血浆与血浆/预充液出口1.3.3排出的血浆混合后回输至猪体内,形成一个治疗循环回路。在治疗过程中,氧气/二氧化碳入口1.2.1向氧合器1.2内腔充入气体,气体从透气纤维膜管4上端进入透气纤维膜管4内,由于透气纤维膜管4置于氧合器1.2内腔,从而在保证一定的溶氧、pH(二氧化碳调节)的情况下,可以维持血浆的循环治疗长达数十个小时,结束治疗,Kaplan-Meier生存分析显示此治疗可以显著延长受试动物的存活时间。