一种含有凹槽结构的穿刺器密封膜及穿刺器密封组件的制作方法

文档序号:11393056阅读:307来源:国知局
一种含有凹槽结构的穿刺器密封膜及穿刺器密封组件的制造方法与工艺

本实用新型涉及微创手术器械,尤其涉及一种穿刺器密封结构。



背景技术:

穿刺器是一种微创手术中(尤其是硬管腔镜手术),用于建立进入体腔的人工通道的手术器械。通常由套管组件和穿刺针组成。其临床的一般使用方式为:先在患者皮肤上切开小口,再将穿刺针贯穿套管组件,然而一起经皮肤开口处穿透腹壁进入体腔。一旦进入体腔后穿刺针被取走,留下套管组件作为器械进出体腔的通道。

硬管腔镜手术中,通常需建立并维持稳定的气腹,以获得足够的手术操作空间。套管组件通常由套管,外壳,密封膜(亦称器械密封)和零密封(亦称自动密封)组成。所述套管从体腔外穿透至体腔内,作为器械进出体腔的通道。所述外壳将套管、零密封和密封膜连接成一个密封系统。所述零密封通常不提供对于插入器械的密封,而在器械移走时自动关闭并形成密封。所述密封膜在器械插入时箍紧器械并形成密封。

一种典型的内窥镜手术中,通常在患者腹壁建立4个穿刺通道,即2个小内径套管组件(通常5mm)和2个大内径套管组件(通常10~12mm)。通常经由小内径套管组件进入患者体内的器械仅完成辅助操作;其中一个大内径套管组件作为内窥镜通道;而另一个大内径套管组件作为医生进行手术的主要通道。在此所述主要通道,约80%的时间应用5mm 器械;约20%的时间应用其他大直径器械;且手术中5mm器械与大直径器械需频繁切换。应用小直径器械时间最长,其密封可靠性较重要;应用大直径器械时往往为手术中的关键阶段(例如血管闭合和组织缝合),其切换便捷性和操作舒适性较重要。

图1和图2描绘了现有一种典型的12mm规格的套管组件700。所述套管组件700 包含下壳710,上壳720和夹在所述上壳720和下壳710之间密封膜730,鸭嘴密封750。所述下壳710包含细长管711限定的中心通孔713。所述上壳720包含内壁721限定的近端孔723。所述密封膜730包含近端开口732,远端孔733,密封唇734,截圆锥密封壁735,凸缘736和外部浮动部分737。所述远端开口733由密封唇734形成。定义密封唇的轴线为 741,定义大体垂直于轴线741的横平面742;定义截圆锥密封壁735的回转母线与所述横平面742的夹角为导向角ANG1。

如图1,插入5mm器械时,近似认为仅密封唇734变形产生的环箍紧力保证对于器械的可靠密封。而进行手术时,常需从各个极限的角度操作器械。5mm器械在12mm套管中有很大径向活动空间,这使得密封唇734径向受力较大。因此密封唇734对于插入的5mm 器械应有足够的环箍紧力才能保证其密封可靠性。

如图2,作一个直径为Di(Di>5mm)的圆柱与所述密封壁735相交,形成直径为 Di的交线738。本领域技术人员一定可以理解,若插入直径为Di的器械,则所述密封壁735 从密封唇734到交线738的区域的应变(应力)较大,称此区域为密封唇临近区域(或应力集中区域);而所述密封壁735从交线738到凸缘736的区域其应变(应力)较小。插入器械的直径Di不同,所述密封唇临近区域(应力集中区域)的边界范围大小不同。为方便量化,定义当Di为设计通过密封膜的手术器械的最大直径时,从密封唇734到所述交线738 的区域为密封唇临近区域。

如图3,插入大直径器械时(例如12.8mm),所述密封唇734将胀大到合适的尺寸以容纳插入的器械;所述密封壁735被分成圆锥壁735c和圆柱壁735d两部分;所述圆柱壁735d包裹在器械外表面上,形成应力高度集中的包裹区域。定义圆锥壁735c和圆柱壁 735d的交线为738a;当移除器械后,恢复为自然状态下的所述密封壁735,定义所述交线 738a回弹为半径为Dx的圆环738b(图中未示出);所述交线738b即插入大直径器械时的弯曲分界线。定义所述圆锥壁735c的回转母线与所述横平面742的夹角为ANG2,且ANG2 >ANG1;即插入大直径器械时所述密封壁735以凸缘736和密封壁735的交线为支点旋转舒张。定义所述圆柱壁735d的高度为Ha。所述Ha不是定值,所述远端孔大小不同,所述密封唇尺寸不同,所述密封壁壁厚不同,所述导向角不同或插入器械直径不同等因素都将导致Ha不同。

当手术中操作插入密封膜中的器械移动时,所述包裹区域与插入器械之间存在较大摩擦阻力。所述较大摩擦阻力通常容易造成密封膜内翻,操作舒适性差,操作疲劳,甚至导致套管组件在患者腹壁上固定不牢靠等缺陷,影响套管组件的使用性能。

所述摩擦阻力较大导致的缺陷中,密封膜内翻是影响套管组件使用性能最严重的问题之一。如图4,当向外拔出大直径器械时,容易发生密封膜内翻。内翻后的所述密封壁 735被分成圆柱壁735e,圆锥壁735f,圆锥壁735g;所述圆柱壁735e包裹在器械外表面,形成应力高度集中的包裹区域。定义所述圆柱壁735e的高度为Hb,通常Hb大于Ha;即拔出器械时的摩擦阻力大于插入器械时的摩擦阻力;这种差异影响手术医生操作体验甚至导致手术医生产生错觉。更严重的,内翻后的密封膜可能进入近端孔723,即密封膜堆积在器械与所述内壁721之间导致卡死。美国专利US7112185,US7591802中分别披露了防止密封膜内翻的措施;这些措施可有效的降低内翻概率但不能彻底解决内翻问题。

减小所述摩擦阻力,最简单的方法是采用润滑脂降低两接触面间的摩擦系数。但该措施的可靠性不好。临床应用时,由于器械长期的反复的与密封膜刮擦,以及多种器械的反复切换,容易使润滑脂从密封膜表面脱离并被带走,从而导致润滑不良。

美国专利US5342315中披露了一种紧贴密封膜的保护片。所述保护片既可避免器械的锋利边损坏密封膜,又因保护片表面摩擦系数小于密封膜表面摩擦系数,因此能一定程度的降低所述摩擦阻力。但所述密封唇临近区域通常不能被保护片完全覆盖。

美国专利US5827228中披露了一种含筋的密封膜,即密封膜从中心孔附近开始,具有数个径向发散的筋,所述筋减小插入器械与密封膜之间的接触面积,从而减小所述摩擦阻力。欧洲专利EP0994740中披露了一种近似的加强筋具有减小接触面积和增加密封膜轴向抗拉强度的作用。

美国专利US7842014中披露了一种褶皱形密封膜,其主要特征是具有波浪形的密封唇和波浪形褶皱密封体。所述褶皱结构能够增大环向周长,一定程度的降低环箍紧力。

中国实用新型申请CN101480354A(目前已被驳回)中披露了一种含有易变形槽的密封膜,其特征在于从密封唇开始,在密封膜的圆锥面上具有数个易变形槽;所述易变形槽的壁厚远小于所述圆锥面的壁厚;主要由易变性槽的伸长变形来容纳插入的大直径器械。

虽然现有技术中已披露很多减小所述摩擦阻力的方案,但已披露的技术方案基本上仅从影响摩擦阻力的某一个因素着眼提出解决方案,其降低摩擦阻力的效果较小或不明显。一些方案中甚至因改善一个因素而引入其他缺陷。例如密封膜上增加加强筋可减少接触面积,但同时会增加环箍紧力;例如采用厚度远小于截圆锥面的易变形槽,会导致易变形槽处容易被损坏;例如若采用波浪形密封唇增加了密封膜开口处的环向周长,从而牺牲了应用5mm器械时的密封可靠性,若采用波浪形的密封唇却不增加密封膜开口处的环向周长,则波浪密封唇相对于纯圆形的密封唇已经失去改善作用。总之。影响所述摩擦阻力的因素很多,须从力学和摩擦学的角度考量各个因素的综合作用。

密封膜通常由天然橡胶、硅橡胶、异戊橡胶等橡胶材料制成,橡胶材料具有超弹性和粘弹性。虽然橡胶变形过程的力学模型很复杂,但仍可近似的用广义胡克定律描述其弹性行为;用牛顿内摩擦定律描述其粘性行为。研究表明,影响橡胶与器械接触产生摩擦力的主要因素包括:两接触面的摩擦系数越小则摩擦力越小;两接触面间的润滑条件越好则摩擦力越小;两接触面间的真实接触面积越小则摩擦力越小;两接触面间的法向压力越小则摩擦力越小。本实用新型综合考虑上述因素,提出更完善的减小密封膜与插入器械之间摩擦阻力的解决方案。

除了前述摩擦阻力较大影响套管组件使用性能之外,密封膜粘滑也是影响穿刺器使用性能的另一重要因素。所述粘滑,即器械在套管中轴向移动时,密封膜的密封唇及其临近区域时而相对静止地粘附于器械之上(此时器械与密封膜之间的摩擦力主要是静摩擦力);时而又与器械产生相对滑动的现象(此时器械与密封膜之间的摩擦力主要是动摩擦力);且所述静摩擦力远大于所述动摩擦力。所述静摩擦和动摩擦交替出现,这导致器械在密封膜中移动的阻力不稳定和移动速度不平稳。本领域技术人员可以理解,微创手术中,医生只能使用器械触及患者内脏器官,并借助内窥镜影像系统监视器械工作头部的局部范围。在这种视野受限,触觉阻断的情况下,手术医生通常把移动器械时的阻力反馈作为判定手术操作是否正常的信息之一。密封膜粘滑影响了操作的舒适性、定位准确性,甚至诱发医生错误的判断。

在套管组件的使用过程中,所述粘滑很难完全避免,但可以被减小。研究表明,所述粘滑受两个主要因素影响:其一是最大静摩擦力和动摩擦力差值越小则粘滑越微弱;其二是密封膜的轴向抗拉刚度越大则粘滑越微弱。避免密封膜与器械之间的环箍紧力过大,减小密封膜和器械间的真实接触面积,保持密封膜与器械之间的良好润滑,均可以减小最大静摩擦力与动摩擦力的差值,从而减小粘滑。同时增加密封膜的轴向抗拉刚度,也有助于减轻粘滑现象。本实用新型同时提出了改善粘滑的措施。

综上所述,到目前为止,还没有一种能有效解决前述问题的套管组件。



技术实现要素:

因此,本实用新型的一个目的是提供一种穿刺器密封膜,所述密封膜包括近端开口和远端孔以及从远端孔延伸至近端开口的密封壁。所述远端孔由密封唇形成,用于容纳插入的器械并形成密封。所述密封壁具有近端面和远端面。该密封膜能在确保对于插入的5mm 器械可靠密封的前提下,降低应用大直径器械时的摩擦阻力和改善粘滑。

如背景所述,密封唇及其临近区域在插入大直径器械时形成的包裹区域是造成摩擦阻力较大的根源。要降低所述摩擦阻力,应综合考虑减小器械与密封膜之间的径向应力,减小器械与密封膜之间的包裹区域,减小器械与密封膜的真实接触面积。本领域技术人员可以理解,根据广义胡克定律和泊松效应可知,增加环向周长可以降低环向应变(应力),从而降低径向应变(应力)。但应注意到不可通过增加环向周长的方法来降低密封唇的应变 (应力),这将导致应用5mm器械时的密封可靠性降低。而由于密封唇临近区域在应用大直径器械时的应力高度集中,因此应该快速的增大密封唇临近区域的环向周长;对于密封唇临近区域之外的区域,由于应变(应力)较小,可以不必采用增大环向周长的措施。另外,增大环向周长的同时还应增加密封唇临近区域的轴向抗拉刚度和保持良好润滑(减小最大静摩擦力和动摩擦力的差值),从而改善密封唇临近区域的粘滑。

在本实用新型的一个方面,所述密封膜包括近端开口和远端孔以及从远端孔延伸至近端开口的密封壁,所述密封壁具有近端面和远端面;所述远端孔由密封唇形成,用于容纳插入的器械并形成密封,所述密封唇包含中心轴线和大致与所述轴线垂直的横平面。在密封唇临近区域,所述密封壁包含主体回转壁和多个凹槽;所述凹槽从密封壁的近端面向远端面凹陷并将主体回转壁分成多个区域。在密封唇临近区域内,每一个所述凹槽包含两个侧壁,且所述侧壁是两边限定的从密封唇开始横向向外延伸的逐渐增宽的面域。所述凹槽可起到增大密封唇临近区域的环向周长,增大轴向抗拉刚度,减小包裹区域,减小器械与密封膜的真实接触面积的作用。一种实施方案中,所述密封唇是圆环形的;所述凹槽的截面是近似U型的;所述凹槽在密封唇临近区域内的内部宽度B,其中0.5mm≤B≤1mm。所述密封膜还包括与所述主体回转壁延伸相交,或同时与主体回转壁和所述凹槽延伸相交的凸缘,以及从凸缘延伸至近端开口的具有至少一个横向褶皱的外部浮动部分。

又一种可选的实施方式中,在密封唇临近区域的所述凹槽侧壁的两边之间夹角的几何关系符合下述公式:

其中:

θ=所述凹槽的侧壁在密封唇临近区域内其两边之间的夹角

α=所述主体回转壁的母线与横平面的夹角(导向角)

arctan=反正切函数

cos=余弦函数

π=圆周率

R=半径

Ri=设计通过密封膜的手术器械的最大半径

R0=密封唇的半径

P=凹槽的数目。

而在密封唇临近区域之外,所述侧壁的两边之间的夹角不符合上述公式,所述侧壁的宽度是逐渐减小的。这样可以简化模具加工和提高密封膜的生产效率,并减小了密封膜组件横向移动占据的空间从而可将穿刺器的尺寸设计得更小。

在本实用新型的另一个方面,所述密封膜包括近端开口和远端孔以及从远端孔延伸至近端开口的密封壁,所述密封壁具有近端面和远端面;所述远端孔由密封唇形成,用于容纳插入的器械并形成密封。所述密封壁包含主体回转壁和多个凹槽,在密封唇临近区域内,每一个所述凹槽包含两个侧壁,且所述侧壁是两边限定的从密封唇开始横向向外延伸的沿着密封唇轴线方向逐渐增宽的面域;密封唇临近区域之外,所述侧壁的宽度先快速减小再保持宽度不变的情形下横向向外延伸。即在本实施例中所述凹槽沿着密封唇轴线方向其深度是先逐渐增大,再快速减小至某一深度,然后保持深度不变的情形下横向向外延伸,即凹槽呈台阶状。所述台阶状凹槽可增强密封膜的轴向抗拉刚度,从而减小所述粘滑;而且当密封膜发生内翻后,可较大程度的减小器械与密封膜间的真实接触面积。

在本实用新型的又一个方面,所述密封膜包括近端开口和远端孔以及从远端孔延伸至近端开口的密封壁;所述远端孔由密封唇形成,用于容纳插入的器械并形成密封。所述密封壁由8个V型褶皱和8个U型凹槽相间排列而成。所述V型褶皱有益于增强密封膜的轴向抗拉刚度和减小器械与密封膜间的真实接触面积;而所述U型凹槽可增加密封唇临近区域的环向周长。

在本实用新型的又一个方面,所述密封膜包括近端开口和远端孔以及从远端孔延伸至近端开口的密封壁;所述远端孔由密封唇形成,用于容纳插入的器械并形成密封。在密封唇临近区域,所述密封壁包含主体回转壁和多个凹槽;所述凹槽从密封壁的近端面向远端面凹陷并将主体回转壁分成多个区域;在密封唇临近区域内,每一个所述凹槽包含两个侧壁,且所述侧壁是两边限定的从密封唇开始横向向外延伸的沿着密封唇轴线方向逐渐增宽的面域。在本实施例中所述凹槽的其中一部分的截面形状是近似U型的,而另一部分所述凹槽的截面形状是近似V型的。本实例中所述密封唇是圆柱形的。

本实用新型的另一个目的是提供一种穿刺器密封组件。所述密封组件包含下固定环,密封膜,保护装置,上固定环,上壳体和上盖;所述密封膜和保护装置被夹在上固定环和下固定环之间,所述保护装置用于保护密封膜免受插入器械的锋利边损害;所述密封膜还包括与所述主体回转壁延伸相交的凸缘,以及从凸缘延伸至近端开口的具有至少一个横向褶皱的外部浮动部分;所述密封膜的近端被夹在上壳体和上盖之间,所述外部浮动部分使得所述密封膜及保护片可在上壳体和上盖形成的密封仓内横向浮动。

当参考附图及详细说明时,本实用新型的上述的或其他的目的,特征和优点将变得更加清楚。

附图说明

为了更充分的了解本实用新型的实质,下面将结合附图进行详细的描述,其中:

图1是现有技术的套管组件插入5mm器械时的模拟变形图;

图2是现有技术的密封膜730的详图;

图3是现有技术的套管组件插入12.8mm器械时的模拟变形图;

图4是现有技术的套管组件拔出12.8mm器械时的模拟变形图;

图5是本实用新型套管组件的立体的局部的剖视图;

图6是图5所述套管组件中的密封膜组件的分解图;

图7是图6所示密封组件的立体局部剖视图;

图8是图6所示密封膜略去近端和浮动部分之后的密封膜立体图;

图9是图8所示密封膜的反向立体图;

图10是图8所示密封膜的10-10剖视图;

图11是图8所示密封膜的11-11剖视图;

图12-13是图9所示密封膜环向切割分离之后的图形;

图14是本实用新型的实施例二的密封膜立体图;

图15是图14所示密封膜的反向立体图;

图16是图15所示密封膜的16-16剖视图;

图17是图15所示密封膜的17-17剖视图;

图18是本实用新型的实施例三的密封膜立体图;

图19是图18所示密封膜的反向立体图;

图20是图19所示密封膜的20-20剖视图;

图21是图19所示密封膜的21-21剖视图;

图22-23是图19所示密封膜环向切割分离之后的图形;

图24是本实用新型的实施例四的密封膜立体图;

图25是图24所示密封膜的25-25剖视图;

图26是图24所示密封膜的26-26剖视图;

图27是图28所示密封膜的27-27局部剖视图;

图28是图24所示密封膜的反向立体图;

图29是图28所示密封膜倒圆角后的相同视角的立体图;

在所有的视图中,相同的标号表示等同的零件或部件。

具体实施方式

这里公开了本实用新型的实施方案,但是,应该理解所公开的实施方案仅是本实用新型的示例,本实用新型可以通过不同的方式实现。因此,这里公开的内容不是被解释为限制性的,而是仅作为权利要求的基础,以及作为教导本领域技术人员如何使用本实用新型的基础。

图5描绘了穿刺器的整体结构。一种典型穿刺器包含穿刺针10(未示出)和套管组件 20。套管组件20具有开放的近端192和开放的远端31。一种典型的应用中,穿刺针10贯穿套管组件20,然后一起经皮肤开口处穿透整个腹壁进入体腔。一旦进入体腔,穿刺针10 被取走并留下套管组件20作为器械进出体腔的通道。所述近端192处于患者体外而所述远端31处于患者体内。一种优选的套管组件20,可划分成第一密封组件100和第二密封组件 200。所述组件100的卡槽39和所述组件200的卡勾112配合扣紧。所述卡勾112和卡槽 39的配合是可单手快速拆分的。这主要为了手术时方便取出患者体内的组织或异物。所述组件100和组件200之间的快锁连接有多种实现方式。除本实施例展示的结构外,还可采用螺纹连接,旋转卡扣或者其他快锁结构。可选择的,所述组件100和组件200可以设计成不可快速拆分的结构。

图5描绘了第一密封组件100的组成和装配关系。下壳体30包括一细长管32,该细长管限定出贯穿远端31的套管33并与外壳34相连。所述下壳体30具有支撑鸭嘴密封的内壁36和与内壁联通的气阀安装孔37。阀芯82安装在阀体80中并一起安装在所述安装孔37中。鸭嘴密封50的凸缘56被夹在所述内壁36和下盖60之间。所述下盖60与下壳体30之间的固定方式有多种,可采用过盈配合,超声波焊接,胶接,卡扣固定等方式。本实施例中所述下盖60的4个安装柱68与所述下壳体30的4个安装孔38过盈配合,这种过盈配合使鸭嘴密封50处于压缩状态。所述套管32,内壁36,鸭嘴密封50,阀体80和阀芯82共同组成了第一腔室。本实施例中,所述鸭嘴密封50是单缝,但也可以使用其他类型的闭合阀,包括舌型阀,多缝鸭嘴阀。当外部器械贯穿所述鸭嘴密封50时,其鸭嘴53 能张开,但是其通常不提供相对于所述器械的完全密封。当所述器械移走时,所述鸭嘴53 自动闭合,从而防止第一腔室内的流体向体外泄露。

图5描绘了第二密封组件200的组成和装配关系。密封膜组件180夹在上盖110和上壳体190之间。所述密封膜组件180的近端132被固定在所述上盖110的内环116和所述上壳体190的内环196之间。所述上壳体190和上盖110之间的固定方式有多种,可采用过盈配合,超声焊接,胶接,卡扣固定等方式。本实施例展示连接方式为的所述上壳体 190的外壳191与所述上盖110的外壳111之间通过超声波焊接固定。这种固定使得所述密封膜组件180的近端132处于压缩状态。所述上盖110的中心孔113,内环116和密封膜组件180一起组成了第二腔室。

图6-7描绘了密封膜组件180的组成和装配关系。所述密封膜组件180包含下固定环120,密封膜130,保护装置160和上固定环170。所述密封膜130和保护装置160被夹在下固定环120和上固定环170之间。而且所述下固定环120的柱子121与所述组件180 中其他部件上相应的孔对准。所述柱子121与上固定环170的孔171过盈配合,从而使得整个密封膜组件180处于压缩状态。所述保护装置160包含4个顺序搭接的保护片163,用于保护所述密封膜130的中心密封体,使其免受插入的手术器械的锋利边造成的穿孔或撕裂。

所述密封膜130包括近端开口132,远端开孔133以及从远端向近端延伸的密封壁,所述密封壁具有近端面和远端面。所述远端孔133由密封唇134形成,用于容纳插入的器械并形成气密封。所述密封唇134可以是非圆形的,本实例中所述密封唇134是近似圆环形的,定义其半径为Rlip,则密封唇周长近似等于2*Rlip*π(π=3.14159),通常密封唇周长为11.8~13.8mm。所述密封唇的截面为圆形,其半径通常为0.35~0.5mm。

所述密封膜130还包括凸缘136;密封壁135一端连接密封唇134而另一端连接凸缘136;浮动部分137一端连接凸缘136而另一端连接所述近端132。所述凸缘136用于安装保护装置160。所述浮动部分137包含一个或多个径向(横向)褶皱,从而使得整个密封膜组件180能够在所述组件200中浮动。

所述组件180可以由很多具有不同特性的材料制成。例如密封膜130采用硅胶,异戊橡胶等超弹性材料;保护装置160采用半刚性的热塑性弹性体;而下固定环120和上固定环170采用聚碳酸酯等相对较硬的塑胶材料制成。

图8-11更细致的描绘了本实用新型的第一个实施例密封膜130。为降低生产成本,密封膜130最好设计成一个整体,但也可以设计成从凸缘136处分开的内部密封体和外部浮动部分两个零件。实施例一主要针对所述内部密封体进行改进。为简化表述,后续描述密封膜时均不展示外部浮动部分和近端。定义所述密封唇134的轴线为158。定义基本垂直于轴线158的横平面159。

所述密封壁135可以是近似截圆锥形,近似半球形,或不规则的旋转曲面。本实例中密封壁135以近似圆锥的方式围绕密封唇134排列形成。所述密封壁135包含主体回转壁138和多个凹槽140。所述凹槽140从主体回转壁138的近端面向远端面的方向凹陷,且凹槽的开口朝向近端面。所述凹槽140从密封唇134处开始横向向外延伸,且在密封唇临近区域,所述凹槽140横向向外延伸时其深度逐渐增大;而在密封唇临近区域之外,所述凹槽140的深度快速减小。所述凹槽深度的测量方法为:沿着轴线方向测量所述凹槽凹陷底部某点到主体回转壁的最短距离。在密封唇临近区域,所述多个凹槽140将所述主体回转壁138近似均分成多个部分。

所述凹槽140包含下壁141,侧壁142和斜壁143。所述侧壁142的一边与所述主体回转壁138相交形成交线145a,145b;所述侧壁142的另一边与所述下壁141相交形成交线146a,146b;所述侧壁142的第三边与所述斜壁143相交形成交线147a,147b;所述斜壁143与所述下壁141相交形成交线148a,148b;所述斜壁143与所述主体回转壁138相交形成交线149a,149b。定义所述交线145a(145b)与横平面159的夹角为α,称为导向角α,且0°≤α<90°(0°的时候回转壁与横平面平行,实际可以出现这种情况;α接近90°时,回转壁与横平面就是近似垂直了,此时应用大直径器械时所述包裹区域较大,α角上限值通常<50°)。定义所述交线145a和146a(或145b和146b)相交形成的夹角为θ;所述两交线的交点(即θ角的顶点)可以存在密封唇134上;或者所述两交线的虚拟延长线相交于密封唇134的内侧。

如图12-13,在一种可选的实施方案中,所述密封壁135的厚度是基本均匀的,即所述主体回转壁138,所述下壁141,所述侧壁142的壁厚基本相等。所述基本均匀的壁厚,使得所述密封壁135的变形是基本均匀的。但所述的基本均匀的壁厚不应被限制为数值的绝对相等。凹槽数目较多时,为了方便制造(例如为了增强凹槽处的模具强度),或者考虑误差因素,所述侧壁143的厚度可比所述内侧壁141(或外侧壁142)的厚度薄0.05~0.25mm。而所述内侧壁141,外侧壁142和侧壁143的壁厚数值较小,为方便量化,定义所述内侧壁 141(或外侧壁142)与所述侧壁143的壁厚比值在1~1.5之间,仍然近似认为密封壁135 的壁厚是基本均匀的,仍然没有脱离本实用新型的范围。

本实例的密封壁135包含8个线性的凹槽,然而也可以采用更多数目的或较少数目的或者非线性的凹槽。本实例的侧壁142与所述轴线158基本平行,在密封唇临近区域内作任意平行于轴线158并同时垂直任意一个所述侧壁142的剖面,所述剖面与被剖切的所述凹槽140相交形成的截面为近似U型(其他凹槽的截面也按此方法定义)。然而为方便制造,例如方便脱模,所述侧壁142可以与所述轴线158不平行;即所述凹槽140的截面为近似梯形,甚至为近似V型。

以轴线158为旋转轴,作一个半径为R1的圆柱面与所述主体回转壁138相交,再过其交线作垂直于所述主体回转壁138的回转母线的切断面M1(以轴线158为旋转轴)。所述切断面M1将所述密封膜130分割成内侧部分156(如图12)和外侧部分157(图13)。所述切割面M1与所述主体回转壁138相交形成多段交线151a和151b。所述切割面M1与所述侧壁142相交形成多段交线152a和152b。所述切割面M1与所述下壁141相交形成多段交线153a和153b。所述多段线151a,152a,153a形成环形交线155a;所述多段线151b, 152b,153b形成环形交线155b。所述环形交线155a和155b限定了截面155。

如图12-13,显然所述交线155a(155b)的周长L1远大于2*π*R1,即凹槽起到了增加环向周长的作用。而且L1与2*π*R1之差,近似等于交线153a(153b)的长度L2的2*P 倍(P为凹槽的数目)。即真正起到增加环向周长作用的是所述侧壁143。即在凹槽宽度满足可制造的前提条件下,增加凹槽宽度并不能更大程度的增加环向周长。

本领域技术人员可以理解,必然存在某个R1值,使切断面M1分割的外侧部分157 从所述截面155开始,其形状的改变主要表现为密封膜局部弯曲变形和宏观位移,而非总体的微观分子链伸长和整体拉伸变形。而所述内侧部分156,从密封唇134到所述截面155,其形状的改变表现密封膜的局部弯曲变形和整体拉伸变形的综合作用。可见,所述凹槽增大了环向周长,减小了应用大直径器械时的环向应变(应力),从而减小了环箍紧力和所述摩擦阻力。

所述凹槽140可用于储存润滑脂。插入大直径器械时,所述凹槽变形形成的包裹区域较小,凹槽140只有较小段被展平。接近包裹区域的未展平的凹槽,有较好的储备润滑脂的功能。当器械在密封膜中移动时,所述包裹区域的润滑脂首先被刮擦带走,而临近包裹区域的未被展平的凹槽中的润滑脂将会补充到器械表面,进而随着器械运动补充到包裹区域。一种可选的方案中,在密封唇临近区域的所述凹槽的内部宽度为B1,其中0.5mm≤ B1≤1mm。当密封唇临近区域的凹槽的内部宽度小于0.5mm时,凹槽结构难以被制造;而凹槽的内部宽度越大储脂效果越差;研究表明当凹槽的内部宽度≤1mm时,其储脂效果较好。所述凹槽的储脂作用改善了背景所述的润滑不可靠的问题。有助于减小背景所述的粘滑。

所述侧壁142具有类似背景所述的加强筋的作用,所有侧壁142共同加强了密封唇临近区域的轴向抗拉刚度;且所述侧壁142增加轴向抗拉刚度的同时并没有增加环向刚度,因此增加轴向刚度的同时并没有增加环箍紧力,可有效的减小背景所述粘滑。本实例中包含16个所述侧壁142,然而更多或较少的侧壁也可以起到增加轴向抗拉刚度的作用。

综上所述,所述凹槽具有增加环向周长,减小包裹区域,减小器械与密封膜之间的真实接触面积,改善润滑可靠性,增加轴向抗拉刚度等功能,从而可较大的减小所述摩擦阻力和减小粘滑,同时也减小了发生内翻的概率并改善应用舒适性。

应用大直径器械时,密封唇临近区域,特别是所述包裹区域应力高度集中。本领域的技术人员容易理解,越是接近密封唇的区域其环向应变(应力)越大。前文已经阐述不能采用增加环向周长的方法来降低密封唇的环向应变(应力),但是可通过增加密封唇临近区域的环向周长的方式来降低密封唇临近区域的环向应变(应力);而且有必要快速的增大密封唇临近区域的环向周长以使得密封唇临近区域的环向应变(应力)快速的减小至接近零。前文已经阐述所述侧壁142起到增加环向周长的作用,所述侧壁142从密封唇横向向外延伸时其宽度增加的速率越快则密封唇临近区域的环向周长增加速率越快,即前述夹角θ取值越大,则密封唇临近区域的环向周长增加速率越快。在一种可选方案中,所述凹槽 140的几何形状设计成符合下述公式:

其中:

θ=在密封唇临近区域的凹槽的侧壁的两条边之间的夹角

α=密封唇临近区域的主体回转壁的母线与横平面的夹角(导向角)

arctan=反正切函数

cos=余弦函数

π=圆周率

R=半径

Ri=设计通过密封膜的手术器械的最大半径

R0=密封唇的半径

P=凹槽的数目。

合理的θ值使得密封唇临近区域的环向周长快速增加。而根据上述公式可知,通常 Ri和R0是定值;而变量α,P和R共同影响环向周长增加的速率。通常选取0°≤α≤50°,通过理论分析和相关研究表明,减小所述导向角α的值,有利于减小所述包裹区域的长度,但太小的导向角α将牺牲密封膜的导向性能,因此确定α取值时应在满足导向性的前提下尽量取较小的值。通常2.5mm≤R≤(Ri+R0)/2。R取值小于2.5mm则导致密封唇处的过渡区域太大;R取值大于(Ri+R0)/2则导致增加密封唇临近区域环向周长降低环箍紧力的效果不明显。α,P和R的合理取值既能保证良好导向性,又能使应用最大直径器械时的所述包裹区域降至最小,则所述密封唇临近区域的环箍紧力快速降低至很小或者不存在。经研究发现,R=3.5,P=8,α=35°时可以保证良好的导向性,并降低所述包裹区域和环箍紧力。近似功效的或可能更有效的参数组合可以通过理论计算和简单试验验证获得。

所述凹槽的设计,只要符合上述公式的本质,就可认为是基本符合上述公式的。例如,本领域技术人员容易想到,将所述主体回转壁138,下壁141或侧壁142设计成非线性曲面;或者刻意将主体回转壁138,下壁141或侧壁142设计成复杂多面拼接曲面;所形成的所述交线可以不是直线,但只要所述两交线从整体看,其在密封唇临近区域的夹角基本符合上述公式,则认为没有脱离本实用新型的范围。

前文已经详细阐述密封唇临近区域属于应力高度集中的区域,所述密封唇临近区域之外的应变(应力)相对较小。只要所述密封唇临近区域的凹槽基本符合上述公式即可。密封唇临近区域之外的凹槽可以不必符合上述公式。本实例中在密封唇密封唇临近区域外,所述侧壁142是两边限定的横向向外延伸并逐渐变窄的面域;即在在密封唇临近区域之外,所述凹槽140的深度快速减小,不符合上述公式。本领域技术人员一定可以理解,如此凹槽设计既确保所述凹槽具有增加环向周长,减小包裹区域包裹区域,减小器械与密封膜之间的真实接触面积,改善润滑可靠性,增加轴向抗拉刚度等功能;又很大程度的简化模具设计和提高密封膜加工制造效率,并减小了密封组件横向移动占据的空间,从而可将穿刺器的尺寸设计得更小的。

图14-17细致的描绘了本实用新型的第二个实施例密封膜230。所述密封膜230包括远端开孔233,密封唇234,密封壁235和凸缘236。所述远端孔233由密封唇234形成。所述密封壁235一端连接密封唇234而另一端连接凸缘236。所述密封膜230具有近端面和远端面。定义所述密封唇234的轴线为258。定义垂直于轴线258的横平面259。

所述密封壁235包含主体回转壁238和多个凹槽240。所述凹槽240从密封唇234 处开始横向向外延伸,且在密封唇临近区域,所述凹槽240的深度沿着密封唇轴向方向逐渐增大。所述凹槽240的开口朝向近端面。在密封唇临近区域内,所述多个凹槽240将所述主体回转壁238近似均分成多个部分。即所述密封壁235是由主体回转壁238和多个凹槽240围绕密封234以近似圆锥方式排列形成的无缝隙的密封体。本实例的所述密封壁235 包含8个线性的凹槽,然而也可以采用更多数目或较少数目或者非线性的凹槽。所述凹槽的截面是近似U型的。

所述凹槽240包含下壁241,侧壁242,第一斜壁243和第二斜壁244组成。所述侧壁242的一边与所述主体回转壁238相交形成交线245a,245b;所述侧壁242的另一边与所述下壁241相交形成交线246a,246b;所述侧壁242的第三边与所述第一斜壁243相交形成交线247a,247b;所述侧壁242的第四边与所述第二斜壁244相交形成交线248a,248b。所述下壁241,所述第一斜壁243和所述第二斜壁244形成一个近似台阶状。定义所述交线 245a(245b)与横平面159的夹角为κ,称为导向角κ且0≤κ<90°。定义所述交线 245a和246a(或245b和246b)相交形成的夹角为γ。所述两交线的交点(即γ角的顶点) 可以存在密封唇234上;或者所述两交线的虚拟延长线相交于密封唇234的内侧。

因此在密封唇临近区域,所述侧壁242是两边限定的从密封唇234开始横向向外延伸并逐渐增宽的面域。而远离密封唇临近区域,所述侧壁242的宽度先快速减小再保持不变的延伸至凸缘。即所述凹槽240横向向外延伸时,在密封唇临近区域的凹槽深度沿着密封唇轴线方向的逐渐增大,但在密封唇临近区域之外,其深度快速减小至某一深度后再平行延伸至凸缘;即所述凹槽240为近似台阶状。在密封唇临近区域内,所述凹槽240基本等同于所述凹槽140;二者区别仅在于密封唇临近区域之外。所述台阶状的凹槽240有助于减小插入大直径器械时的密封唇临近区域之外的整体舒张变形。由于所述台阶状的凹槽240 具有台阶状的侧面243,能增强密封壁235的轴向抗拉刚度从而减小粘滑。同时,当密封膜发生内翻时,台阶状的凹槽240具有明显的减小器械与密封膜之间真实接触面积的作用。同样的,所述凹槽240具备所述凹槽140的其他相关优点。在一个可选的方案中,所述夹角γ和导向角κ也近似符合前述θ角公式,使得所述凹槽较快的增加环向周长(即用γ替换前述公式的θ,用κ替换前述公式的α)。

图18-21细致的描绘了本实用新型的第三个实施例密封膜330。所述密封膜330包括远端开孔333,密封唇334,密封壁335和凸缘336。所述远端孔333由密封唇334形成。所述密封壁335一端连接密封唇334而另一端连接凸缘336。所述密封膜330具有近端面和远端面。定义所述密封唇334的轴线为358。定义垂直于轴线358的横平面359。

所述密封壁335包含内侧壁341,外侧壁342,侧壁343和斜壁344。所述内侧壁341 从密封唇334开始横向延伸至所述凸缘336;所述外侧壁342从密封唇334开始横向延伸至所述斜壁344而所述斜壁344延伸至凸缘336。所述侧壁343的第一边与所述内侧壁341相交形成交线345a,345b;所述侧壁343的第二边所述外侧壁342相交形成交线346a,346b;所述侧壁343的第三边与所述斜壁344相交形成交线347a,347b。所述两相邻的内侧壁341 相交形成交线348a,348b。

在密封唇334的临近区域,所述2个相邻的侧壁343及其之间的所述外侧壁342相交形成一个开口朝向近端面的近似U型凹槽,定义为U型凹槽340。两相邻的所述内侧壁 341相交形成开口朝向近端面的近似V型褶皱,定义为V型褶皱350。

以轴线358为旋转轴,作一个半径为R2的圆柱面与所述内侧壁341相交,再过其交线作垂直于所述内侧壁341的切断面M2(以轴线358为旋转轴)。所述切断面M2将所述密封膜330分割成内侧部分356(如图22)和外侧部分357(图23)。所述切割面M2与所述内侧壁341相交形成多段交线351a和351b。所述切割面M2与所述侧壁343相交形成多段交线353a和353b。所述切割面M2与所述外侧壁342相交形成多段交线352a和352b。所述多段线351a,352a,353a形成环形交线355a;所述多段线351b,352b,353b形成环形交线355b。所述环形交线355a和355b限定出截面355。

如图22-23,显然所述交线355a(355b)的周长L2远大于2*π*R2,凹槽起到了增加环向周长的作用。本实例包含8个所述U型凹槽340和8个所述V型褶皱350。所述U 型凹槽340的侧壁343起到了增大密封唇临近区域环向周长的作用。两两相交的内侧壁341 形成的所述V型褶皱350也具有增大密封唇环向周长的作用;但所述V型褶皱350相对于所述凹槽340,其增大环向周长的作用可以忽略。所述V型褶皱350主要起到减小密封唇真实接触面积和增大密封膜轴向抗拉刚度的作用。

本领域技术人员应该可以理解,必然存在某个R2值,使切断面M2分割的外侧部分 357从所述截面355开始,其形状的改变主要表现为密封膜局部弯曲变形和宏观位移,而非总体的微观分子链伸长和整体拉伸变形。而所述内侧部分356,从密封唇334到所述截面 355,其形状的改变表现密封膜的局部弯曲变形和整体拉伸变形的综合作用。可见,所述凹槽增大了环向周长,减小了应用大直径器械时的环向应变(应力),从而减小了环箍紧力和所述摩擦阻力。

本领域技术人员应该可以理解,理论上密封唇临近区域可包含无数个凹槽,但实际上由于密封唇的环向周长很小,围绕密封唇无法设计太多的凹槽数目;而在占据同样的尺寸空间的前提下,U型凹槽比V型凹槽具有更大的增加环向周长的能力。通常所述U型凹槽的侧壁343的壁厚≥0.4mm,而所述凹槽340的内部宽度≥0.5mm,则密封膜包含的所述 U型凹槽340的数目通常不超过8个,太多所述U型凹槽将导致模具制造困难或生产过程不良率提高。虽然难以制造更多的凹槽,在所述内侧壁341或所述外侧壁342上,可以设计深度较浅的V型褶皱,用于减小应用大直径器械时的真实接触面积和增强轴向抗拉刚度。本实例的密封膜330包含8个U型凹槽340和8个V型褶皱350。

图24-28细致的描绘了本实用新型的第四个实施例密封膜430。所述密封膜430包括远端开孔433,密封唇434,密封壁435和凸缘436。所述远端孔433由密封唇434形成,且所述密封唇434是圆柱形的。所述密封壁435一端连接密封唇434而另一端连接凸缘436。所述密封膜430具有近端面和远端面。定义所述密封唇434的轴线为458。定义垂直于轴线 458的横平面459。

所述密封壁435包含主体回转壁438,多个U型凹槽440和多个V型凹槽450。所述凹槽440和所述凹槽450从密封唇234处开始横向延伸,且在密封唇临近区域,所述凹槽的深度沿着密封唇轴线方向逐渐增大。所述凹槽的开口朝向近端面。在密封唇临近区域内,所述多个凹槽将所述主体回转壁438近似均分成多个部分。即所述密封壁435是主体回转壁438和多个凹槽围绕密封唇434以近似圆锥方式排列形成的无缝隙的密封体。本实例的所述密封壁435包含4个线性的U型凹槽和4个线性的V型凹槽,然而也可以采用更多数目或较少数目或者非线性的凹槽。

所述U型凹槽440包含下壁441,侧壁442和斜壁443。所述侧壁442的一边与所述主体回转壁438相交形成交线445a,445b;所述侧壁442的另一边与所述下壁441相交形成交线446a,446b;所述侧壁442的第三边与所述斜壁443相交形成交线447a,447b。所述斜壁443与主体回转壁438相交形成交线448a,448b。所述V型凹槽450包含侧壁451 和斜壁453。所述两相邻侧壁451相交形成交线455a,455b。所述侧壁451的另一边与所述主体回转壁438相交形成交线456a,456b;所述侧壁451与所述斜壁453相交形成交线 457a,457b。所述斜壁453与主体回转壁438相交形成交线458a,458b。虽然本实例中所述斜壁443和所述斜壁453相对于所述轴线458不平行,然而可以与所述轴线458平行。

本领域技术人员可以理解,理论上密封唇临近区域可包含无数个凹槽,但实际上由于密封唇的环向周长很小,围绕密封唇无法设计太多的凹槽数目;而在占据同样的尺寸空间的前提下,U型凹槽比V型凹槽具有更大的增加环向周长的能力。通常所述U型凹槽的侧壁442的壁厚≥0.4mm,而所述凹槽440的内部宽度≥0.5mm,太多的所述U型凹槽将导致模具制造困难或生产过程不良率提高。而所述V型凹槽相对于所述U型凹槽,其模具制造简单经济且生产效率更高。因此可以采用同时包含U型凹槽和V型凹槽的密封膜,从而获得功能性能优异且成本更经济的密封膜。本实例的密封膜430包含4个U性凹槽和4个 V型凹槽,所述U型凹槽和V型凹槽相间排列,然而也可以采用较少数目的U型槽和V型槽;或者U型凹槽和V型凹槽随意组合;或者全部采用V型凹槽。密封膜430同样具有增加环向周长,减小包裹区域包裹区域,减小器械与密封膜之间的真实接触面积,改善润滑可靠性,增加轴向抗拉刚度等功能,从而可较大的减小所述摩擦阻力和减小粘滑,同时也减小了发生内翻的概率并改善应用舒适性。

本领域技术人员很容易想到,合理的圆角过渡可以避免应力集中或使得某些区域变形更容易。由于密封膜的尺寸较小,尤其是密封唇临近区域的尺寸更小,如此微小的尺寸,倒角不同,则密封膜的外形看起来差异较大。例如图28描绘了密封膜430未倒圆角的立体图,而图29描绘了密封膜430同样视角的倒圆角后的立体图。显然图28更清新的表达出了组成密封体430的各个几何元素之间的关系。为了清晰的展示个元素之间的几何关系,本实用新型描述之实例,通常为去掉圆角之后的图形。

已经展示和描述了本实用新型的很多不同的实施方案和实例。本领域的一个普通技术人员,在不脱离本实用新型范围的前提下,通过适当修改能对所述方法和器械做出适应性改进。例如本实用新型中的实例中使用了美国专利US7789861中披露的保护片结构及其固定方式,然而也可以采用美国授权实用新型专利US5342315,US7988671,或美国实用新型申请US20050131349A1披露的保护片结构;或将保护片的固定方式做简单的适应性修改;某些应用情形下也可以不包含保护片结构。例如本实例中描述的近似U型槽和近似V型槽,不能被限制为其形状必须为U型或V型。例如本实用新型中多次提到所述凹槽从密封唇处开始横向向外延伸,所谓“横向向外延伸”不应被限制为其延伸轨迹为直线,所述横向向外延伸时的轨迹也可以是螺旋线,折线段,多段圆弧线等曲线。例如本实用新型的实例中详细描述了组成所述凹槽的各相交面的位置关系及其交线,也可以采用增加曲面形成多面拼接或者采用高次曲面的方式使其交线和凹槽外形看起来与实例有较大差异,但只要总体符合本实用新型的思想,仍然认为没有脱离本实用新型的范围。好几种修正方案已经被提到,对于本领域的技术人员来说,其他修正方案也是可以想到的。因此本实用新型的范围应该依照附加权利要求,同时不应被理解为由说明书及附图显示和记载的结构,材料或行为的具体内容所限定。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1