医疗消融装置及其使用方法与流程

文档序号:13740206阅读:355来源:国知局
医疗消融装置及其使用方法与流程

相关申请的交叉引用

本申请要求提交于2015年4月29日的临时申请号62/154,595(代理人案卷号48428-704.101)的优先权,该申请的全部公开内容通过引用并入本文。

发明领域

1.发明领域本发明涉及用于向组织施加能量的医疗器械和系统,并且更具体地涉及适于在内窥镜手术中切割和抽取组织的电外科装置。

已经开发出用于利用射频(rf)能量、激光能量等向组织递送热能从而例如消融组织和切割组织的各种类型的医疗器械。关节镜和其他内窥镜电外科工具通常包括不同配置的治疗电极,其中该工具可以可选地与冲洗和/或抽吸工具相结合以进行特定的微创手术。电极的性质往往会限制特定工具的使用,并且在手术期间必须更换工具以执行不同的任务。

由于这些原因,期望提供电外科工具的新的和不同的设计,以允许在手术期间对工具进行重新配置从而执行不同的任务。下文所述发明将会满足这些目标中的至少一些目标。

2.

背景技术:
。本申请的公开内容与申请号13/857,068的公开内容相似。相关专利和出版物包括u.s.5,622,647、u.s.5,672,174和u.s.7,824,398。



技术实现要素:

在本发明的第一方面,一种电外科装置包括细长轴杆,通常为管状轴杆,所述细长轴杆具有轴线以及内部通道,所述内部通道沿着所述轴线延伸到所述轴杆的远端中的开口。所述通道被配置用于耦合到负压源,并且具有钩状远端部分的电极耦合到所述轴杆并可在第一位置与第二位置之间移动,在所述第一位置中所述电极的远侧尖端安置在所述开口的外围,而在所述第二位置中所述远侧尖端向远侧延伸超出所述开口。在所述电极的远端部分处于所述第一位置的情况下,所述工具对于诸如软骨等组织的表面消融特别有用。在所述电极的远端部分处于所述第二位置的情况下,所述工具对于切割组织结构特别有用。在一个应用中,所述钩状电极可以用于外侧松解(“lateralrelease”),所述外侧松解是用于松解髌骨的外侧或外侧面上的紧密囊状结构(例如,外侧支持带)的关节镜手术。由于与髌骨被拉到外部(外)侧而在膝盖弯曲和伸直时无法在股骨的凹槽中适当地移动相关的疼痛而进行这样的手术。

在本发明的第二方面,一种电外科装置包括细长轴杆,通常为管状,所述细长轴杆沿着轴线延伸,具有内部通道延伸到工作端中的外围的开口。所述通道适于耦合到负压源。具有带有近端和远端的导电部分的可移动式电极耦合到所述轴杆,使得当所述电极处于近侧缩回位置时所述导电部分的远端位于所述开口的外围附近,而当所述电极处于远侧延伸位置时所述电极的远端向远侧延伸超出所述外围。在所述电极的导电部分处于所述第一位置的情况下,所述工具对于组织的表面消融和烧灼特别有用。在所述电极的导电部分处于所述第二位置的情况下,所述工具对于捕获和切割组织结构特别有用。

通常,在全部两个方面中,所述电外科装置的电极被安装成在所述第一位置与所述第二位置之间轴向平移。在另一变型中,所述电极被安装成围绕所述第一位置与所述第二位置之间的轴线旋转。在另一变型中,所述电外科装置的所述电极被安装成在所述第一位置与所述第二位置之间轴向平移和/或关于所述第一位置与所述第二位置之间的轴线旋转。

在特定实施方式中,所述电外科装置还可以包括位于所述内部通道中的阀,所述阀用于控制从中流过的流体。所述电外科轴杆的外部可以包括第二电极。所述电外科装置还可以包括耦合到所述电极的旋转器,其中所述旋转器致使所述电极在其轴向平移时旋转。所述电外科装置的开口可以限定相对于所述轴杆的所述轴线成角度的平面,并且所述电极的钩状部分可被转动,使得当所述电极处于所述第一位置时所述钩部的背面在所述平面之上向外延伸。所述电外科装置还可以进一步包括靠近所述轴杆的远端的温度传感器和/或阻抗感测电极。备选地,或者除了所述传感器之外,所述电外科装置还可以包括与所述电极串联的温度响应式电流限制元件,以便抑制或防止治疗部位中的膨胀液过热。

在第一特定实施方式中,所述电外科装置的所述细长轴杆包括陶瓷或其他管状体,该陶瓷或其他管状体沿着轴线延伸并且在其远端部分中具有窗口。所述电极包括线状电极,所述线状电极被配置成在所述窗口的相对侧之间以弧形来回旋转,即,围绕所述轴杆的轴线旋转地振荡。马达可操作地连接到所述线状电极以使所述线状电极旋转或旋转地振荡,从而切割所述窗口中接收的组织。振荡弧通常将会在10°至210°的范围内,经常是在20°至180°的范围内。振荡周期可以在1至100cps(hz)的范围内,通常为5至50cps。振荡速率通常将会是可调整的,并且本发明的设备可以包括用于实现这样的调整的机构,并且/或者马达速度可以是可控的。在特定实施方式中,所述装置包括在第一旋转方向上提供旋转所述电极的第一速率和在相反的第二旋转方向上提供旋转所述电极的第二速率的机构。

在另外的实施方式中,所述电外科装置将被配置用于连接到射频(rf)源以将所述线状电极耦合到所述rf源。此外,所述轴杆的内部通路可以被连接成与负压源连通,从而帮助从所述通路移除所切除的组织。

在某些实施方式中,所述电外科装置的所述线电极可被配置成每个振荡弧的终点邻接所述窗口的相对侧。备选地,所述电极可被配置成在每个振荡周期的终点以剪切运动移动经过所述窗口的相对侧。所述电外科装置还可以包括将所述线状电极可操作地耦合到所述马达的可旋转式驱动轴杆,所述轴杆包括用以吸收旋转阻力的减震器机构。

在其他特定实施方式中,所述细长轴杆可以包括铰接轴杆,所述铰接轴杆被配置成由一个拉线致动以在使用期间允许切割端的转向。或者,所述线电极可被配置成相对于所述窗口轴向移动(除了所述振荡运动之外)。此外,所述线状电极通常将会具有钩状形状,并且所述细长轴杆通常将会具有被配置成可拆卸地连接到流体以将流体递送到所述轴杆的远端部分的通道。

在第二特定实施方式中,所述电外科装置包括细长轴杆,所述细长轴杆具有纵轴端和远侧工作端,所述远侧工作端包括陶瓷体,该陶瓷体具有位于其中的窗口。线状电极被安装在所述窗口附近,并被配置成在所述窗口的相对侧之间以弧形来回旋转地振荡,从而切割由所述窗口接收的组织。马达使所述线状电极振荡,并且负压源耦合到与所述窗口连通的所述轴杆中的通路。在特定实施方式中,所述窗口将会被面向或朝向为相对于所述细长轴杆的所述纵轴垂直或成锐角(大于45°,可选地大于60°)。可选地,所述细长轴杆的远侧工作端可被配置用于提供铰接(可转向的)工作端。

在第二实施方式的特定方面中,所述轴杆的铰接工作端可以包括由至少一个拉线致动的开槽管。射频(rf)电流源可以可操作地耦合到所述电极,并且所述细长轴杆通常将会具有被配置成连接到流体源以通过所述工作端中的开放端口递送流体的通道。

根据本发明的系统可以包括控制器,所述控制器适于基于反馈信号来控制马达操作参数、rf源、负压源和流体源中的至少一个。所述反馈信号可以由所述控制器响应于感测来自所述马达、所述rf源、所述负压源和所述流体源中的至少一个的操作参数来提供。在许多实施方式中,所述控制器将会被配置用于以下各项中的至少一项:(1)响应于来自所述rf源和所述负压源中的至少一个的反馈信号而调整所述马达操作参数,(2)响应于来自所述马达操作参数和所述负压源中的至少一个的反馈信号而调整所述rf参数,以及(3)响应于来自所述马达操作参数和所述rf源中的至少一个的反馈信号而调整负压参数。所述电极可被配置成在所述第一位置与所述第二位置之间轴向平移,并且所述电极通常具有钩状形状。

在第三特定实施方式中,一种用于切除组织的方法包括提供细长轴杆和马达驱动电极,所述细长轴杆具有工作端,所述工作端通常包括具有窗口的管状或其他陶瓷体。所述电极在所述窗口的相对侧之间以弧形来回振荡。所述工作端与组织相接合以致使一定体积的组织穿过所述窗口,并且rf源向所述电极递送rf电流以切割通过所述窗口接收的组织。所切除的组织穿入所述细长轴杆中的通路内。

在本发明的方法的特定方面,可以致动与所述细长轴杆中的内部通路连通的负压源,以通过所述细长轴杆中的所述内部通路从所述工作端抽取所切割的组织。可以将所述组织浸入液体中,所述液体可以可选地通过所述细长轴杆中的流动通道而从通向所述工作端的流体源递送到所述组织。或者,在切除所述组织时,可以保持所述组织存在于气体环境中。

附图说明

图1a是对应于本发明的电外科探头的侧视图,其包括细长轴杆,该细长轴杆沿着轴线延伸到具有可重新配置式电极的工作端。

图1b和图1c图示了图1的可重新配置式电极的各个实施方式。

图2a是图1的工作端的透视图,其中可移动式电极处于第一位置。

图2b是图1的工作端的透视图,其中可移动式电极处于第二位置。

图2c是图1的工作端的透视图,其中可移动式电极处于第三位置。

图3是图1的工作端的组件的分解图。

图4是与图1的电外科探头相似的电外科装置的工作端的透视图,该工作端具有温度传感器和控制器,所述温度传感器用于测量关节内的膨胀液的温度,而所述控制器可以发信号使led点亮以作为向医生发出的高温警报。

图5是与图1的电外科探头相似的电外科装置的工作端的透视图,该工作端具有第二电极布置,该第二电极布置被配置用于测量关节中的膨胀液中的阻抗以便确定膨胀液的温度。

图6a是与图1的电外科探头相似的的消融装置的工作端的剖开透视图,该工作端在返回电极组装件中具有ptcr(电阻正温度系数,positivetemperaturecoefficientofresistance)材料,该ptcr材料能够感测膨胀液温度以关断从返回电极到rf源的电通路。

图6b是图6a的工作端的另一剖开图,图中示出了承载工作端组装件的内套筒。

图7是与图1的电外科探头相似的电外科装置的另一变型的透视图,该电外科装置具有可旋转式电极,该电极由马达驱动以按弧形来回旋转。

图8是图7的装置的剖开图,图中示出了马达和驱动机构。

图9是图7的装置的工作端的透视图。

图10是图7的装置的电极的透视图,该电极从轴杆组装件拆开。

图11是图7的装置的电极和远侧陶瓷体的透视图。

图12a是沿着图9的线12-12截取的图9的装置的工作端的截面图,其中电极在其以弧形移动的终点邻接陶瓷体的边缘。

图12b是与图12a的工作端相似的工作端的截面图,其中电极在其弧形移动的终点以剪切运动移过陶瓷体的边缘。

图13是类似于图1和图7的电外科装置的工作端的透视图,该工作端具有铰接轴杆部。

图14是类似于图9的工作端的另一变型的透视图,该工作端具有用于向电极和工作端递送流体的流体源。

具体实施方式

现在参照附图和在其之上标记的附图标号,图1a和图2a-图2c图示了电外科探头100的一个实施方式,该电外科探头100包括手柄部104和关于纵轴108延伸的细长轴杆105。图1是探头的示意图,其中轴杆105由下文进一步描述的组装件构成,该组装件具有从约3.0mm至约6.0mm的直径以及用于关节镜术或其他内窥镜手术的任何合适的长度。工作端110承载电极布置,该电极布置包括可操作地耦合到rf源125和控制器130的可移动式第一极性或活性电极120和第二极性或返回电极122。在图1a中可以看出,轴杆105具有与负压源135连通的流体抽取通道132,该负压源135可以是手术室中的壁挂式吸引源或控制器130中的泵系统。在图2a中可以看出,流体通道132向远侧延伸至靠近电极120的工作端110中的开口140。

在图1a和图2a-图2c中的一个实施方式中,第一极性电极120具有细长中间部142,该细长中间部142穿过轴杆105中的通路144(或通道132)延伸到手柄104中的致动器机构146。电极120终止于没有绝缘的导电部,该导电部通常为钩状,如下文更详细描述。在图1a中可以看出,致动器146适于从位置a滑动到位置b再到位置c,从而将电极120从图2a的非延伸位置移动到图2b的延伸位置,并继而移动到图2c的延伸并旋转位置。可以使用本领域中已知的任何合适的致动器机构来轴向地和旋转地移动电极120,并且在图1中所示的一个变型中,具有位于其中的螺旋槽152的筒148可以将致动器机构146的线性运动转化为旋转运动。在另一实施方式中,致动器146可被固定到电极120的近端149,并且适于在图2a-图2c中所示的各个位置之间轴向地和旋转地移动电极120。可移动式致动器146可配置有棘爪,该棘爪与手柄104的一部分相接合,以将电极120可释放地保持在图2a-图2c的选定位置中之一。

再次参考图1a,手柄104中的第二致动器160适于调节流体抽取通道132中的流出。图1a示出了手柄104中的抽取通道部132'延伸到手柄104上的快速连接件162,流出管道164耦合到该快速连接件162且延伸到负压源135。致动器160可以操作任何类型的合适的阀165以控制来自诸如膝盖或肩膀等治疗部位的流出量。在这样的关节镜手术中,通过独立的流入路径提供流体流入,该流入路径可以通过内窥镜中的流体通道或通过进入治疗部位的另一独立的插管。

仍然参照图1a,电缆166从rf源125和控制器130延伸到手柄104,手柄中的引线耦合到第一电极和第二电极。该系统可以包括可操作地连接到控制器130的脚踏开关168,用于对通向电极布置的rf能量的打开-关闭致动。在另一变型中,用于rf能量致动的开关可以定位在探头手柄104中。rf源和控制器可以提供本领域已知的各种功率设置,并且可以使用本领域已知的任何射频来在电极120周围创造出等离子体以便切割组织。

参照图1b和图1c,包括从中间部142向远侧延伸的电极的导电部分的活性电极120通常为钩状,并且可以具有正方形或梯形轮廓,如图1b中所示,或者可以具有弯曲或弓形轮廓,如图1c中所示。钩部通常将会具有3mm至10mm范围内的长度l以及2mm至6mm范围内的深度x。钩状活性电极还将会包括背区或脊区121,该背区或脊区121在电极向近侧缩回并且电极的远侧尖端190接合或靠近围绕开口140的外围或周边192时保持暴露于开口140所限定的平面之上。远侧尖端190可以终止于电极的中心线123或者终止于其上方或下方,如图1b和图1c中的实线和虚线所示。

图3的探头的一部分的分解图图示了工作端110的组件和组装件。在图3中所示的一个变型中,轴杆105包括耦合到手柄104的细长金属套筒170(例如,不锈钢),该细长金属套筒170为轴杆105提供结构强度,并且还用作电导体以充当或连接到返回电极122。套筒170的近端通过手柄内的电连接器(未示出)固定到手柄104,该电连接器将套筒170耦合到电缆166和rf源125的极柱(参见图1)。

在图3中可以看出,套筒170的远端174与非导电陶瓷体175相耦合,该非导电陶瓷体175可以由选自氧化锆、氧化铝或其他类似的陶瓷的材料形成,例如,由氧化钇稳定的氧化锆、氧化镁稳定的氧化锆、二氧化铈稳定的氧化锆、氧化锆增韧的氧化铝或氮化硅形成。在一个变型中,陶瓷体175的直径减小的近端177可以与套筒170中的孔180配合。图3还示出了金属远端体或外壳185,该金属远端体或外壳185被配置用于作为支撑结构而在陶瓷体175上滑动,并继而焊接到套筒170的远端174,从而提供图2a-图2c的组装好的工作端。金属远端体或外壳185继而发挥第二极性电极122的作用,如可从图2a-图2c理解。在一个变型中,薄壁介电材料186诸如热缩材料(pfa、fep等)从远端金属外壳185向近侧到手柄104覆盖套筒170。

在图3中可以看出,第一极性电极120并且更具体地其中间部142延伸穿过陶瓷体175中的孔189。电极120的细长部分由诸如fep或pfa等材料的热缩绝缘体187所覆盖。电极120的远端部分配置有弯曲或曲率以提供具有最外电极表面188的钩状电极,该最外电极表面188大致位于图2a的位置中由轴杆105的圆柱形外围所限定的封包内。该配置允许医生跨组织表面移动或“绘制”电极120的最外表面188,以对这样的组织进行电外科表面消融。参照图2a和图3,在图2a中所示的位置处的电极120的远侧尖端190被配置成安置在工作端中的开口140的外围或周边192内或其附近。更具体地,在图2a的位置处的远侧尖端190被配置成搁置在陶瓷体175中的凹口194中。当远侧尖端190处于图2a的位置时,尖端190距金属体185的窗口195的最近边缘的距离d至少为0.010”(参见图2a)。在图2a-图2c中可以看出,金属体185的窗口边缘195被配置成具有比陶瓷体175中的凹口194更大的凹口200,以确保第一电极120和第二电极122在图2a中所示的电极位置处不很靠近。

在图2b和图2c中可以看出,电极120的钩状远端部分可以轴向延伸并且可选地旋转延伸,以便对远侧尖端190和末端钩部196进行定向,从而使用钩状电极工具进行本领域中已知的组织电外科切割。因此,电极120是可重新配置的,以进行电外科表面消融治疗或电外科切割治疗。电极120可以是由具有圆形、椭圆形或多边形横截面的钨、不锈钢或任何其他合适的材料形成的线。

再次参考图3,在一个变型中可以看出,套筒170中的孔180内衬有诸如(ptfe)、尼龙、pfa、fep、聚乙烯等薄壁介电材料198,该材料198防止套筒170的内壁起到电极的作用。在本发明的另一方面,图4图示了类似于图1-图3的探头的工作端220内承载的温度感测和信号发送系统。在关节镜手术中对膨胀液的温度感测十分重要,原因在于该膨胀液在任何电外科消融手术期间都可能被加热。如果膨胀液处于高温下达过长时间,整个关节的组织可能受损。在图4中可以看出,温度传感器225被提供于工作端的表面中,该温度传感器225可以包括任何形式的热电偶、热敏电阻或其他类型的传感器。传感器225被配置用于向控制器130发送温度信号,该控制器130可以发信号向操作者通知高温和/或终止从rf源向工作端220的能量递送。在图5中所示的一个变型中,控制器130可以通过点亮耦合到工作端220的任一侧的电源245的led灯240a和led灯240b来向医生发信号通知来自传感器225的高温信号。在这样的实施方式中,控制器130可以具有用于使led以增大的速率闪烁的算法,该闪烁速率随膨胀液的温度而增大。可以使用视觉、听觉和触觉信号的任何组合来警告医生膨胀液中的温度升高。在另一实施方式(未示出)中,温度传感器225可以致动控制器中的至少一个光源,该光源耦合到光纤,以将光传送到工作端中的光发射器。在另一变型中,控制器中的多个不同波长的光源可以向工作端中的一个或多个发射器发送不同的波长以指示出膨胀液的不同温度。

图5图示了可由如图5中的工作端220承载的另一温度感测系统。在图5中,间隔开的第一电极252a和第二电极252b被提供于探头轴杆255的绝缘表面254中。电极252a和电极252b耦合到电源255和控制器130,该控制器130被配置用于测量膨胀液的电参数,例如盐水膨胀液的阻抗或电容。继而可以将测得的电参数与查找表中处于各个温度下的盐水的已知值进行比较以确定流体温度。计算出的温度继而可以致动任何视觉、听觉或触觉信号,以警告医生盐水中升高的温度。

图6a-图6b图示了将温度感测机构与返回电极相集成以控制向组织的能量递送的另一系统实施方式。在图6a中可以看出,探头的工作端260类似于图1-图3的工作端。然而,远端金属外壳265不起到返回电极的作用。金属外壳265不焊接到细长套筒270,该细长套筒270电耦合到rf源125和控制器130。相反,具有短长度的独立返回电极套筒275定位在远端金属外壳265的近侧。在一个变型中,绝缘陶瓷套环277将远端金属外壳265与返回电极套筒275分开。工作端260的温度感测组件包括聚合物ptcr(电阻正温度系数)套筒280,其在返回电极套筒275与电耦合到rf源125的套筒270之间形成中间电连接器(参见图1)。返回电极套筒275、ptcr套筒280和套筒270可以安装在图6b中所示的绝缘支撑套筒285之上。套筒280的ptcr材料允许在选定的低温范围内让rf电流从中传导,但是可以防止在选定的高温下电流流过套筒。在图6a-图6b中可以看出,返回电极275的近端282、ptcr套筒280和细长套筒270覆盖有薄壁绝缘体288,从而防止导电盐水与探头的这部分相接触。从图6a-图6b中可以理解,薄壁绝缘体288允许从膨胀液经过绝缘体288向ptcr套筒280的热传递,这继而可以使ptcr套筒成为不导电的,以便终止从返回电极275到rf源125的电流流动。通过这种方式,ptcr机构可以响应于膨胀液中升高的温度而终止rf能量递送。可以选择ptcr材料以具有任何合适的开关温度,例如约40℃与约45℃之间的任何温度。合适的聚合物ptcr材料可以由bourns,inc.3910freedomcircle,ste.102,santaclara,calif.95954制造。

图7-图9图示了电外科装置400的另一变型,其具有类似的带有钩状电极415的工作端410,但该变型包括马达420,该马达420用于以弧形旋转地驱动电极从而切割工作端的窗口422(图9)中的组织。在该变型中,手柄部424连接到关于纵轴428延伸的细长轴杆425。图7-图9是装置的示意图,其中轴杆425再次由组装件构成,该组装件可以具有用于关节镜手术的从约3.0mm至约6.0mm的直径,并且对于其他内窥镜手术直径的范围可以高达10mm或15mm。如前文所述,工作端410再次具有线状电极425,该线状电极425可以轴向延伸以用作钩。工作端410包括陶瓷体426,该陶瓷体426可以是如前文所述的氧化锆、氧化铝或其他类似的陶瓷的形式。电极425包括第一极性或活性电极,并且第二极性或返回电极440可以是至少一部分轴杆425的外表面。电极415可操作地耦合到rf源445和控制器450。轴杆425再次具有与负压源455连通的流体抽取通道或通路452,该负压源455可以是手术室中的壁挂式吸引源或控制器450中的泵系统。在图9中可以看出,流体抽取通道452向远侧延伸到工作端410中位于电极415下方的窗口422。

通常,对应于本发明的电外科装置包括:耦合到细长轴杆425的近端手柄424,该细长轴杆425沿着轴线428延伸到形成轴杆的一部分的远端陶瓷体426中的窗口422;以及由马达420驱动的线状电极415以在窗口422的相对侧460a与460b之间来回以弧形旋转从而切割由窗口接收的组织。可以通过负压源455将组织吸引到窗口中。图8示出了在其中具有马达420的手柄424的剖开图。所述马达连接到机构464,该机构464将马达的旋转运动转换成图12中所示的弧形的电极的来回移动。在一个变型中,电极415可以在10°与210°之间的范围内以弧形移动,以便与具有对应尺寸的弧形的窗口422相协同。在另一变型中,电极弧范围在20°与180°之间。

马达420可以是电动的,并且适合于使电极415以每秒1周(cps或hz)与每秒100周之间的速率在来回循环中旋转或者旋转地振荡。系统可以由手柄424中的致动器或触发器470致动。在一个变型中,致动器可以包括用于调整来回旋转或振荡电极415的速率的变速机构。在另一变型中,电外科装置400可以包括用于提供在第一旋转方向上旋转电极的第一速率和在相反的第二旋转方向上旋转电极的第二速率的机构。在操作期间,可以在本领域已知的第一模式或切割模式下激活rf源和电极。

从图7-图9中可以理解,控制器450适于控制马达、rf源和负压源,并且在一个变型中,控制器被配置用于响应于来自马达的操作参数和负压源中的至少一个的反馈信号来调整rf参数。在另一变型中,控制器被配置用于响应于来自rf源和负压源中的至少一个的反馈信号来调整马达操作参数。在另一变型中,控制器被配置用于响应于来自马达操作参数和rf源中的至少一个的反馈信号来调整负压参数。

在另一变型中,装置400和控制器在致动器停用时将会使电极的旋转停止在相对于窗口的选定位置处,例如,在如图9中所示的窗口的中间或在窗口的边缘。在任一朝向上,可以在本领域已知的第二模式或“凝固”模式下激活电极,以凝固组织。

在如图12a中所示的另一变型中,电极415适于在窗口内旋转地振荡,使得电极在每个旋转弧的终点邻接窗口422的相对侧460a和460b。在如图12b中所示的另一变型中,电极415可被配置成在每个旋转弧的终点以剪切运动扫过窗口422的相对侧460a和460b。

图8、图10和图11示意性地示出了耦合到可旋转式驱动轴杆472的电极415,该可旋转式驱动轴杆472可操作地耦合到马达420,其中轴杆472包括减震器机构474以吸收旋转阻力,例如当电极旋转以邻接窗口的一侧时的旋转阻力。减震器机构474可以是本领域已知的弹簧或弹性驱动轴杆。

一般而言,本发明的用于切除组织的方法包括:提供细长构件或轴杆以及马达驱动电极,所述细长构件或轴杆具有陶瓷工作端,该陶瓷工作端具有横向安置的窗口,例如,细长构件的工作端的壁中的开口或切口或者远端陶瓷体中的开口,该远端陶瓷体中的开口相对于工作端的纵轴垂直或成锐角,而所述马达驱动电极适于在窗口的相对侧之间以弧形来回旋转;将工作端定位成与组织相接;以及致动马达和rf源,从而使用移动的电极来切割由窗口接收的组织,以便在工作端的内部产生所切割的组织的碎片或“碎屑”。该方法还可以包括致动负压源以通过细长轴杆中的内部通路从工作端抽取组织的碎片或“碎屑”。在一些实施方式中,该方法可以在将组织界面浸没在盐水或其他导电液体中的情况下进行。在其他实施方式中,该方法可以在气体环境中进行,其中通常通过细长轴杆中的流动通道从外部源向工作端递送盐水或其他导电液体。

图13示出了具有靠近工作端410的铰接轴杆部478的电外科装置的另一变型。如本领域中已知,铰接轴杆可以由开槽管中的拉线479来致动。

图14示出了电外科装置的另一变型,其中提供诸如盐水等流体源480与轴杆425中的流动通道482流体连通,以将流体递送到工作端和电极415。流体的流入可以提供流体流过装置以帮助抽取所切割的组织,或者如果在气体环境中操作,则可以用来浸润电极。在另一变型中,电极(未示出)可以是耦合到流体源480的中空管,其中电极415在对窗口中的组织进行切割的暴露的电极部分中具有用于让流体从中流过的一个或多个端口。

虽然上文已经详细描述了本发明的特定实施方式,但是应当理解,该描述仅仅是为了说明的目的,并且本发明的上述描述并不是穷尽性的。本发明的具体特征在一些附图中示出而未在其他附图中示出,这仅仅是为了方便,并且任何特征均可与根据本发明的另一特征相结合。许多变型和替代对于本领域普通技术人员将会是显而易见的。这样的替代和变型旨在包含于权利要求的范围内。从属权利要求中阐明的特定特征可以组合并且属于本发明的范围内。本发明还包括实施方式,如同从属权利要求替代地以参照其他独立权利要求的多项从属权利要求格式书写。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1