一种花旗松素改性纤维支架及其制备方法和应用与流程

文档序号:16746446发布日期:2019-01-28 13:40阅读:147来源:国知局
一种花旗松素改性纤维支架及其制备方法和应用与流程

本发明属于组织工程支架材料及其制备技术领域,尤其涉及一种花旗松素改性纤维支架及其制备方法和应用。



背景技术:

各种组织的生理性或者病理性损伤,如关节软骨损伤等给越来越多的人造成了困扰,由于其难以自我修复,因此,寻求一种适合的治疗方案迫在眉睫。组织再生修复支架的应用给软骨组织的修复带来了新希望。组织再生修复支架是细胞黏附、生长、增殖以及分化的场所,而支架材料的选择对细胞的生命活动起着至关重要的作用;同时,细胞与支架材料复合物植入体内后,面临着各种炎症因子的威胁,但是目前的组织再生修复支架难以满足长效抗炎的需求。因此,如何设计并制备出一种适合细胞生长与增殖,同时解决植入机体后能维持细胞健康生长的组织再生修复支架已经成为构建软骨组织工程的技术关键。



技术实现要素:

本发明所要解决的技术问题是,克服以上背景技术中提到的不足和缺陷,提供一种花旗松素改性纤维支架,该花旗松素改性纤维支架具有良好的生物相容性以及生物活性,对生物体无毒性,并能在炎症环境下维持细胞表型,同时还提供花旗松素改性纤维支架的制备方法和应用。

为解决上述技术问题,本发明提出的技术方案为:

一种花旗松素改性纤维支架,所述花旗松素改性纤维支架的微观结构为多孔纤维状,其平均纤维直径为0.51-5μm,所述花旗松素改性纤维支架中花旗松素以化学接枝方式负载或者直接负载于基质材料上,所述基质材料为聚-羟基丁酸酯-共聚-羟基戊酸酯、聚乙醇酸、聚乳酸、聚乳酸-羟基乙酸共聚物、丝素蛋白中的至少一种,所述花旗松素的负载量为0.0016wt%-5wt%。

本发明的花旗松素改性纤维支架,采用高分子材料聚己内酯(pcl)、聚丙交酯(pla)、聚乙交酯(pga)、丙交酯-乙交酯共聚物(plga)、聚(3-羟基丁酸酯-co-3-羟基戊酸酯)(phbv)、丝素蛋白作为软骨组织工程支架的基质材料,与中药提取物花旗松素复合构建载中药成分改性纤维支架。所选取的基质材料具有良好的生物相容性、生物可降解性、热稳定性和力学性能,且其降解产物对细胞无毒副作用;而中药有效成分花旗松素是一种典型的二氢黄酮醇类化合物,黄酮结构使花旗松素分子上的酚羟基具有更强的极性,从而促进了花旗松素与电子的结合作用,使其具有较强的抗炎抗氧化性;花旗松素还具有抗菌、抗辐射、抗癌、抗病毒、调节免疫力、清除黑色素、改善微循环等广谱的生物活性和药理活性,且花旗松素存在于多种植物成分中,来源广泛。两者复合后得到的花旗松素改性纤维支架具有调控软骨细胞生长过程的作用,将普通的组织工程支架转变成功能化组织工程支架。

本发明的花旗松素改性纤维支架,将花旗松素的负载量控制在本发明的范围内,如果低于本发明的范围,则所得支架材料的生物活性差、药效差,如果高于本发明的范围,则药物浓度过高可能会有一些副作用。

本发明的花旗松素改性纤维支架,可以通过任意裁剪来改变形状、大小,以使其适应不同部位、不同形状的软骨缺损修复情况。

作为一个总的发明构思,本发明还提供一种上述的花旗松素改性纤维支架的制备方法,包括以下步骤:

(1)将基质材料采用有机溶剂溶解,获得基质溶液;

(2)将步骤(1)后的基质溶液采用静电纺丝法制备纤维支架;

(3)将步骤(2)后的纤维支架加入到过氧化物溶液中活化,然后再加入含引发剂a的溶液和含接枝中间体的溶液,进行聚合反应;

(4)将步骤(3)后的纤维支架加入到花旗松素溶液中,再加入引发剂b,进行接枝反应,得到花旗松素改性纤维支架。

上述的制备方法,优选的,所述过氧化物为过氧化苯甲酰、过氧化氢、过氧化钾中的至少一种;所述过氧化物溶液的质量分数为7.5wt%-30wt%。

上述的制备方法,优选的,所述接枝中间体为甲基丙烯酸、丙烯酸、甲基丙烯酸乙酯中的至少一种;所述含接枝中间体的溶液中,接枝中间体的含量为1-4mg/ml。

上述的制备方法,优选的,所述引发剂a为有机过氧类引发剂、偶氮类引发剂、无机过氧类引发剂、亚铁盐类引发剂中的至少一种,具体为过氧化二苯甲酰、偶氮二异丁腈、过硫酸钾、硫酸亚铁中的至少一种;所述含引发剂a的溶液中,引发剂a的浓度为0.01-5mol/l。

上述的制备方法,优选的,所述引发剂b为碳化二亚胺和4-二甲氨基吡啶的混合溶液;所述引发剂b中,碳化二亚胺的含量为4-10mg/ml,4-二甲氨基吡啶的含量为4-10mg/ml;

上述的制备方法,优选的,所述花旗松素溶液中花旗松素的含量为1-100mg/ml。

上述的制备方法,优选的,所述活化在紫外光下进行,活化温度为20-50℃,活化的时间为10-40min;所述聚合反应的温度为20-50℃,时间为10-40min;所述接枝反应的温度为18-37℃,时间为0.5d-2d。

作为一个总的发明构思,本发明还提供另一种上述的花旗松素改性纤维支架的制备方法,包括以下步骤:

(s1)将基质材料采用有机溶剂溶解,获得基质溶液;

(s2)向步骤(s1)后的基质溶液中加入花旗松素溶液,混合均匀后获得纺丝液,然后采用静电纺丝法将所述纺丝液制备成所述花旗松素改性纤维支架。

上述的制备方法,优选的,所述步骤(s2)中,向纺丝液中加入助剂以减缓溶剂蒸发速率,所述助剂为n,n-二甲基甲酰胺;花旗松素溶液中花旗松素的含量为0.001-200mg/ml,纺丝液中花旗松素的含量为0.001-100mg/ml。

上述的制备方法,优选的,所述有机溶剂为二氯甲烷、三氯甲烷、n,n-二甲基甲酰胺、六氟异丙醇中的至少一种;所述花旗松素溶液是花旗松素粉末溶于二甲基亚砜中得到的混合溶液;所述基质材料的质量与所述有机溶剂的体积的比为(1-400):1,比值的单位为mg/ml。

上述的制备方法,优选的,所述静电纺丝的参数条件为:纺丝距离为10-20cm、纺丝电压为10-25kv、纺丝速度为0.5-10ml/h。将静电纺丝的参数条件控制在本发明的范围内,可以使支架材料具有均匀的纤维直径,可以提高细胞附着力、支架载药量和传质性能,更好地协助调控细胞生长组织修复。

本发明的技术方案,将中药提取物花旗松素与高分子材料复合,通过物理共混或者化学接枝方法将生物活性因子改性到纤维支架上,赋予纤维支架生物活性,利用中药有效成分花旗松素抗炎的优势,实现炎症环境下软骨细胞表型维持,同时实现药物的原位与长效缓释,很好地应对软骨损伤中的炎症环境下的组织缺损修复。通过合理控制制备过程的参数条件,将药物接枝率以及支架结构参数控制在合适范围内,同时提升支架结构稳定性,使花旗松素改性纤维支架具备良好的生物活性及生物相容性,在制备缺损软骨组织的修复材料或替代材料中能很好地适应体内渗透压环境,起到长效缓释、诱导软骨组织构建修复的作用。

作为一个总的发明构思,本发明还提供一种上述的花旗松素改性纤维支架或者根据上述的制备方法制备得到的花旗松素改性纤维支架在制备缺损软骨组织的修复材料或替代材料中的应用。通过将本发明的花旗松素改性纤维支架用于细胞培养实验,以及由实验所证明的其具有良好的生物活性和生物相容性等效果,我们发现该可以将花旗松素改性纤维支架应用于制备缺损软骨组织的修复材料或替代材料。

与现有技术相比,本发明的优点在于:

(1)本发明通过将具有抗炎抗氧化作用的中药提取物花旗松素引入到软骨组织工程支架中,改善了软骨组织工程支架的性能,将这一载药的支架材料直接植入到缺损部位,不仅提高了药物的利用率,而且降低了药物对其它细胞、组织的毒副作用,降低了炎症环境对细胞的影响,为软骨细胞的增殖和表型维持提供适合的生长微环境,使软骨细胞可以在支架内外良好的黏附、增殖并维持其表型;

(2)本发明的花旗松素改性纤维支架的制备过程无需在高温高压的环境下进行,不会影响药物的活性;且制备过程中所涉及的溶剂均具有易挥发性或者可以通过清洗去除,不会在改性支架材料中残留,也不会影响药物活性。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1是本发明实施例1中制备的花旗松素改性纤维支架的红外光谱;

图2是本发明实施例1中制备的花旗松素改性纤维支架的羧基密度测试结果;

图3是本发明实施例2中制备的花旗松素改性纤维支架的扫描电镜(sem)图;

图4是本发明实施例2中制备的花旗松素改性纤维支架在炎症环境下对软骨细胞增殖影响图;

图5是本发明实施例2中制备的花旗松素改性纤维支架在炎症环境下对软骨细胞表型维持作用图。

具体实施方式

为了便于理解本发明,下文将结合说明书附图和较佳的实施例对本文发明做更全面、细致地描述,但本发明的保护范围并不限于以下具体实施例。

除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。

除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。

实施例1:

一种本发明的花旗松素改性纤维支架,该花旗松素改性纤维支架在扫描镜下的微观结构为多孔纤维状,其平均纤维直径为1.2μm,该花旗松素改性纤维支架中花旗松素以化学接枝方式负载于基质材料phbv上,其负载量为0.004wt%。

一种本发明的花旗松素改性纤维支架的制备方法,包括以下步骤:

(1)将phbv粉末溶于二氯甲烷中,并在60℃水浴下超声处理20min至phbv完全溶解,获得基质溶液;其中,phbv的质量与二氯甲烷的体积的比为1:20,比值的单位为g/ml;

(2)向步骤(1)后的基质溶液加入助剂n,n-二甲基甲酰胺以减缓溶剂蒸发速率,然后在60℃水浴下超声处理5min,获得纺丝液;待纺丝液冷却至室温后抽入至玻璃注射器中,采用静电纺丝法制备phbv纤维支架,静电纺丝的条件参数为:纺丝距离15cm,电场电压15kv,纺丝速率5ml/h,负极接于玻璃注射器针头,正极接于接收板;静电纺丝完成后,获得phbv纤维支架;

(3)将步骤(2)后的纤维支架裁成一定规格,加入到20ml质量分数为30%的h2o2溶液中活化,在50℃水浴下加热搅拌10min,活化在紫外灯辐射下进行,获得活化的phbv纤维支架,即phbv-ooh纤维支架;其中,phbv纤维支架裁定规格为将phbv-ooh纤维支架用蒸馏水充分冲洗,干燥后待用;

(4)将步骤(3)后的phbv-ooh纤维支架加入到20mlmaa水溶液中(maa的含量为2mg/ml),再加入2ml浓度为0.0015mol/l的feso4溶液搅拌,在室温下进行聚合反应,反应时间为40min,获得phbv-g-pmaa纤维支架;

(5)将步骤(4)后的phbv-g-pmaa纤维支架加入到花旗松素溶液中,该花旗松素溶液中花旗松素的含量为1mg/ml,再加入碳化二亚胺和4-二甲氨基吡啶的混合溶液,其中,碳化二亚胺的含量为5mg/ml,4-二甲氨基吡啶的含量为5mg/ml,室温下于摇床上摇晃反应24h,获得花旗松素改性纤维支架,即phbv-g-pmaa(taxifolin)纤维支架;将该phbv-g-pmaa(taxifolin)纤维支架用无水乙醇进行洗涤至薄膜颜色不发生变化为止,随后干燥,并用密封袋进行保存。

将本实施例制备得到的花旗松素改性纤维支架进行红外光谱定性分析,测试羧基密度进行定量分析,以及视频光学水接触角测试。

红外光谱分析结果如图1所示,与纯phbv的ftir图比较,phbv-g-pmaa在波数为3500-3700cm-1的位置出现了大量的波峰,可以判断出现了大量羟基(-oh)的伸缩振动;在波数为2935cm-1处波峰显著增强,说明甲基(-ch3)的不对称伸缩强度有了明显的增加,即制备的样品比原样品相比甲基含量有所增加;且在波峰为1730cm-1处出现了明显的增强峰,可以判断是碳氧双键(c=o)的峰。结果表明,pmaa已经成功被接枝在phbv纤维支架上。

与phbv-g-pmaa纤维支架样品的ftir图相比较,phbv-g-pmaa(taxifolin)在3500-3700cm-1的位置趋于平缓,说明羟基被大量消耗,花旗松素与phbv-g-pmaa发生了酯化反应;而且在波数为1100cm-1处有明显的波峰,可以判断为醚(-o-)的特征吸收峰。这两点都可以说明花旗松素已经成功接枝于纤维支架上。phbv-g-pmaa(taxifolin)纤维支架样品和纯phbv的纤维支架样品的ftir图相比较,phbv-g-pmaa(taxifolin)在指纹区的波峰较为简单,只有一个比较宽的峰,原因是由于花旗松素分子上苯环的影响,位阻效应以及各个基团之间的相互影响导致指纹区的吸收峰被覆盖,成为一个宽峰。

羧基密度测试结果如图2所示,phbv-g-pmaa薄膜上的羧基密度比纯phbv薄膜上的羧基密度显著增加,说明pmaa已经成功接枝于纯phbv薄膜表面。phbv-g-pmaa(taxifolin)薄膜上的羧基密度与phbv-g-pmaa薄膜相比明显降低,且比纯phbv薄膜上的羧基密度还要小,说明接枝上了花旗松素,且花旗松素中的羟基不仅与maa基团中的羧基发生酯化反应,同时由于花旗松素药物过量的缘故,还与纯phbv薄膜上的羧基也发生了酯化反应导致羧基密度显著下降。且从图中看出,用pmaa作为花旗松素与纯phbv接枝的“桥梁”,可使花旗松素的接枝量增加,且接枝maa的量越多则载花旗松素的量也越多,可使纯phbv支架材料的亲水性和生物活性得到良好的改善。

视频光学水接触角测试如表1所示。

表1频光学水接触角测试结果

由表1可知,通过视频光学水接触角测量发现,与纯phbv薄膜相比,化学接枝改性后制备的phbv-g-pmaa薄膜和phbv-g-pmaa(taxifolin)薄膜的亲水角有显著减小,说明改性后phbv薄膜支架的亲水性得到了改善。由此证实,利用uv辐射引发/feso4水溶性氧化还原体系辅助引发和edac羧基活化体系化学接枝改性成功。

实施例2:

一种本发明的花旗松素改性纤维支架,该花旗松素改性纤维支架在扫描镜下的微观结构为多孔纤维状,其平均纤维直径为1.14μm,该花旗松素改性纤维支架中花旗松素直接负载于基质材料phbv上,其负载量为0.032wt%。

一种本发明的花旗松素改性纤维支架的制备方法,包括以下步骤:

(1)将phbv粉末溶于二氯甲烷中,并在60℃水浴下超声处理20min至phbv完全溶解,获得基质溶液;其中,phbv的质量与二氯甲烷的体积的比为1:20,比值的单位为g/ml;

(2)将花旗松素溶于二甲基亚砜中,获得花旗松素溶液,该花旗松素溶液中花旗松素的含量为100mg/ml,保存于-4℃下备用;

(3)将步骤(1)后的基质溶液和步骤(2)后的花旗松素溶液混合,使两者混合的纺丝液中花旗松素的含量为0.0016mg/ml,再向其中加入助剂n,n-二甲基甲酰胺以减缓溶剂蒸发速率,然后在60℃水浴下超声处理5min,获得纺丝液;

(4)待步骤(3)后的纺丝液冷却至室温后抽入至玻璃注射器中,采用静电纺丝法制备花旗松素改性纤维支架,静电纺丝的条件参数为:纺丝距离15cm,电场电压15kv,纺丝速率5ml/h,负极接于玻璃注射器针头,正极接于接收板;静电纺丝完成后,获得花旗松素改性纤维支架。

本实施例的花旗松素改性纤维支架的扫描电镜图如图3所示。将本实施例制备得到的花旗松素改性纤维支架用于细胞培养实验,种植兔关节软骨细胞后观察细胞的生长情况。

采用alamarblue检测方法检测在炎症环境下软骨细胞在支架材料上的增殖情况,检测结果如图4所示,由图4可知,花旗松素改性纤维支架对软骨细胞的增殖无明显作用,呈现出良好的生物安全性。

采用二醋酸荧光素对活细胞进行染色,观察在炎症环境下软骨细胞在载花旗松素phbv静电纺丝薄膜上的表型。种植并培养细胞6天/加入炎症因子il-1β3天后,细胞形貌如图5所示:由炎症环境的阴性对照组(a)可见,正常环境下的软骨细胞载培养6天后黏附、生长和增殖正常,并且其表型为正常软骨细胞的微宽、长条形并且具有较丰满伪足的表型;由炎症环境的阳性对照组(b)可见,软骨细胞在培养6天/加入炎症因子il-1β3天后,其表型已发生病变,发展为肥大化、细长型且伪足萎缩成丝状;而花旗松素改性纤维支架实验组(c),与炎症环境的阴、阳性对照组相比,在培养6天/加入炎症因子il-1β3天后,对软骨细胞有明显的表型维持作用。可见,本发明的花旗松素改性纤维支架具有良好的生物相容性以及生物活性。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1