手术机器人系统、方法和装置与流程

文档序号:23470192发布日期:2020-12-29 13:11阅读:268来源:国知局
手术机器人系统、方法和装置与流程

相关申请的交叉引用

本申请是2019年3月22日提交的美国专利申请16/361,863的部分继续,其全部内容通过引用结合于此。

本公开涉及医疗装置,更具体地涉及神经导航配准和机器人轨迹引导系统、机器人手术及相关方法和装置。



背景技术:

用于机器人辅助手术的位置辨识系统用于以三维(3d)方式确定特定对象的位置且跟踪特定对象。举例来说,在机器人辅助手术中,例如当机器人或医生定位和移动器械时,需要高度精确地跟踪某些对象,例如手术器械。

位置辨识系统可使用无源和/或有源传感器或标记来配准和跟踪对象的位置。使用这些传感器,系统可以基于来自或关于一个或多个摄像机、信号或传感器等的信息,以几何方式解析传感器的3维位置。因此,这些手术系统可以利用位置反馈来精确地引导机器人臂和工具相对于患者手术部位的运动。因此,需要一种在手术环境中有效且准确地提供神经导航配准和机器人轨迹引导的系统。

机器人手术中使用的末端执行器可能限于仅在某些程序中使用,或可能遭受其他缺点或劣势。



技术实现要素:

根据一些实施方式,手术机器人系统被配置用于在患者的解剖特征上进行手术,并且包括手术机器人、连接至这种手术机器人的机器人臂以及连接至该机器人臂的末端执行器。末端执行器具有与其连接的工具插入锁定机构。工具插入锁定机构配置成相对于患者的解剖特征将多个手术工具中的任何一个固定在各自的预定高度、取向角度和旋转位置处。手术机器人系统同样可以包括工具止挡件,该工具止挡件也位于并连接到末端执行器上。所述工具止挡件具有包括止挡机构并且还包括传感器的组件。止挡机构可在两个位置之间有选择地移动-防止手术工具连接到末端执行器的接合位置和可将手术工具选择性地连接到这种末端执行器的脱离位置。传感器能够检测止挡机构处于接合位置还是分离位置。当传感器确定止挡机构处于分离位置时,处理器执行适当的指令,该指令防止末端执行器相对于解剖特征移动。

根据其他实施方式,末端执行器包括在末端执行器的近侧表面与远侧表面之间延伸的圆柱形管孔,其中工具插入锁定机构位于近侧表面上,而工具止挡件位于远侧表面上。在该实施方式中,工具止挡件和工具插入锁定机构具有与所述管孔轴向对准的圆形孔。这样,管孔上的圆形孔的尺寸和形状设计成可穿过其中接收与末端执行器一起使用的一组手术工具中的任何期望工具。

在又一实施方式和相关的变型中,止挡机构可以包括也与管孔轴向对准的环。所述环被安装成使得当需要使所述止挡机构在前述接合位置与脱离位置之间移动时可以手动旋转。

在又一变型中,上述止挡机构可以被配置为使得其包括位于并安装到环上的制动机构。这样,制动机构可以相对于环和止挡机构固定,以便当止挡机构处于接合位置时锁定环以防止旋转运动。此外,止挡机构可以被释放或以其他方式手动致动以将环从其先前的锁定位置解锁,使得环可以被手动旋转以从接合位置移动到脱离位置。

在另一实施方式中,上述手术机器人系统和变型中的任何一个的工具止挡件可包括可枢转的杠杆臂。杠杆臂邻近末端执行器的管孔安装,并且工作或以其他方式可操作地连接至止挡机构,从而当止挡机构进入接合位置时,杠杆臂移动以关闭止挡机构的孔。在关闭位置,杠杆臂可防止工具固定在末端执行器上。相反,响应于止挡机构移动到脱离位置,杠杆臂可枢转以打开所述孔,并且可以将选定的一种手术工具附接到末端执行器。

前述实施方式中的任何一种都可以同样包括霍尔效应传感器形式的传感器,该传感器与磁体结合操作。例如,霍尔效应传感器和磁体可以相对于彼此定位和移动以产生可由传感器检测到并分别对应于环的接合位置和脱离位置的相应磁场。当感测到脱离位置时,杠杆臂不阻塞孔,允许工具连接,并且传感器向系统100发出信号以防止末端执行器112移动。当感测到接合位置时,杠杆臂阻塞孔,并且由于无法将工具插入到末端执行器管孔中而允许末端执行器运动。

在本公开的又一实施方式中,上述任何系统的工具插入锁定机构可包括连接器,该连接器配置成与多个手术工具中的选定一个在连接的工具相对于患者的解剖特征期望的或优选的高度、定向角度和旋转角度上配接并固定。工具插入锁定机构的连接器可包括可旋转的凸缘,该凸缘具有狭槽,该狭槽适于穿过其中接收与多个工具中的选定一个相关联的对应的榫舌。

在其他实施方式中,狭槽和榫舌的配接特征可以采取适合于允许工具连接至工具插入锁定机构并进而连接至末端执行器的其他形式。因此,例如,与工具相关联的配接部分可以直接连接到这种工具,或者在其他合适的实施方式中,配接部分可以连接到适配器。这种适配器可以被配置为通过一方面将适配器选择性地附接到工具插入锁定机构,以及另一方面选择性地将一个或多个手术工具附接到适配器而使多个手术工具中的至少一个与末端执行器互连。

在其他实施方式中,工具插入锁定机构可利用呈套环形式的可旋转凸缘,该套环具有朝近侧定向的表面和在该朝近侧定向的表面上径向间隔开的多个狭槽。在这样的实施方式中,多个狭槽被配置成通过其接收相应的榫舌,该相应的榫舌或者直接连接到多个工具中的任何一个,或者代替地连接到可移除地容纳在可旋转凸缘中的适配器。以这种方式,仅当这样的工具相对于患者的解剖特征处于预定的定向角度和旋转位置时,相应的榫舌中的狭槽才允许固定多个工具中的所选一个。

在当前公开的其他实施方式中,可旋转凸缘可适于在打开位置和关闭位置之间手动旋转。打开位置是其中适配器或工具的一个或多个榫舌通过相应的一个或多个狭槽接收的位置。通过在通过狭槽接收榫舌之后旋转凸缘,从而使可旋转的凸缘的一部分与相应的榫舌接合,并从而固定所选工具之一或将工具接收在其中的适配器,在相对于患者的解剖特征的相应的预定高度、定向角度和旋转位置,实现所述闭合位置。

在利用适配器的那些实施方式中,可旋转凸缘具有内周边缘,而适配器作为外周边缘,每个的尺寸被选择为使得当将适配器容纳在可旋转凸缘中时,所述边缘彼此相对。如先前讨论的一些实施方式所提到的,适配器具有榫舌,并且还包括适于将所选工具之一连接到这种适配器的工具接收器。这样,当适配器的榫舌被容纳在可旋转凸缘的狭槽中并锁定在其上时,并且当选定的工具之一连接到适配器的工具接收器时,然后将这选定的工具在相对于解剖特征的预定高度、方向角度和旋转位置固定。

在另外的实施方式中,手术系统可以包括多个适配器,所述适配器被配置为以可互换的插入物的形式。这样的插入物具有基本上相同的预定的外周,该外周的大小被设置成可容纳在可旋转凸缘的前述内周内。此外,这种可互换的插入物具有延伸穿过其中的管孔,这些管孔具有不同的相应直径,这些直径被选择为在其中容纳多个工具中的相应工具。以这种方式,取决于与这种适配器相关联的工具,以及对于针对患者解剖学特征的给定程序而将这种工具安装到末端执行器的需要,可以将插入物选择性地连接到工具插入锁定机构或从工具插入锁定机构移除。

在其他变型中,末端执行器同样可以配备有至少一个照明元件,该照明元件安装在末端执行器的远侧表面上。在某些实施方式中,照明元件安装在与工具止挡件间隔开的位置处,使得当接收在工具插入锁定机构中时,容纳在其中的工具不阻碍照明。

根据本发明构思的一些实施例,一种系统包括处理器电路和耦合至处理器电路的存储器。存储器包括机器可读指令,该机器可读指令被配置为使处理器电路基于包括患者的解剖特征的第一图像体积确定相对于患者的解剖特征固定的配准固定装置,以及相对于配准固定装置固定的第一多个基准标记,对于第一多个基准标记中的每个基准标记,确定基准标记相对于所述图像体积的位置。机器可读指令还被配置为使处理器电路基于所确定的第一多个基准标记的位置确定配准固定装置相对于解剖特征的位置和取向。机器可读指令还被配置为使处理器电路基于来自包括相对于配准固定装置固定的第二多个跟踪标记的跟踪系统的数据帧,针对第二多个跟踪标记的每个跟踪标记,确定跟踪标记的位置。机器可读指令还被配置为使处理器电路基于所确定的第二多个跟踪标记的位置确定配准固定装置相对于手术机器人的机器人臂的位置和取向。机器可读指令还被配置为使处理器电路基于所确定的配准固定装置相对于解剖特征的位置和取向以及所确定的配准固定装置相对于机器人臂的位置和取向,确定解剖特征相对于机器人臂的位置和取向。机器可读指令还被配置为使处理器电路基于所确定的解剖特征相对于机器人臂的位置和取向控制机器人臂。

根据本发明概念的一些其它实施例,公开一种计算机执行的方法。该计算机执行的方法包括基于包括患者的解剖特征的第一图像体积、相对于患者的解剖特征固定的配准固定装置、以及相对于配准固定装置固定的第一多个基准标记,对于第一多个基准标记中的每个基准标记,确定基准标记的位置。该计算机执行的方法还包括基于所确定的第一多个基准标记的位置确定配准固定装置相对于解剖特征的位置和取向。该计算机执行的方法还包括基于来自包括相对于配准固定装置固定的第二多个跟踪标记的跟踪数据帧,针对第二多个跟踪标记的每个跟踪标记,确定跟踪标记的位置。该计算机执行的方法还包括基于所确定的第二多个跟踪标记的位置确定配准固定装置相对于手术机器人的机器人臂的位置和取向。该计算机执行的方法还包括基于所确定的配准固定装置相对于解剖特征的位置和取向以及所确定的配准固定装置相对于机器人臂的位置和取向,确定解剖特征相对于机器人臂的位置和取向。该计算机执行的方法还包括基于所确定的解剖特征相对于机器人臂的位置和取向控制机器人臂。

根据本发明概念的一些其它实施例,公开一种手术系统。该手术系统包括具有处理器电路和存储器的术中手术跟踪计算机。该存储器包括被配置为使处理器电路提供限定图像空间的医学图像体积的机器可读指令。医学图像体积包括患者的解剖特征、相对于患者的解剖特征固定的配准固定装置、以及相对于配准固定装置固定的多个基准标记。机器可读指令还被配置为使处理器电路基于医学图像体积,针对多个基准标记中的每个基准标记,确定基准标记相对于图像空间的位置。机器可读指令还被配置为使处理器电路基于所确定的多个基准标记的位置确定配准固定装置相对于解剖特征的位置和取向。机器可读指令还被配置为使处理器电路提供限定跟踪空间的跟踪数据帧,该跟踪数据帧包括相对于配准固定装置固定的第一多个被跟踪标记的位置。机器可读指令还被配置为使处理器电路基于跟踪数据帧确定解剖特征相对于跟踪空间中的第一多个被跟踪标记的位置。手术系统还包括手术机器人,该手术机器人具有被配置为定位手术末端执行器的机器人臂。手术机器人还包括连接至机器人臂的控制器。控制器被配置为执行操作,包括基于跟踪数据帧,确定机器人臂相对于跟踪空间的位置。控制器被配置为执行操作,包括基于所确定的解剖特征相对于跟踪空间的位置和取向以及所确定的机器人臂相对于跟踪空间的位置和取向,确定解剖特征相对于机器人臂的位置和取向。控制器被配置为执行操作,包括基于所确定的解剖特征相对于机器人臂的位置和取向控制所述机器人臂的运动,以相对于患者上的位置定位所述手术末端执行器,以便于在患者上进行手术。

在审阅以下附图和详细描述之后,对于本领域技术人员将或变得显而易见的是根据实施例的其它方法和相关装置和系统以及对应的方法和计算机程序产品。预期的是所有此类装置和系统以及对应的方法和计算机程序产品包含在本说明书内、在本公开的范围内且受所附权利要求书保护。此外,预期本文中所公开的所有实施例可单独地实施或者以任何方式和/或组合而组合。

附图说明

被包含以提供对本公开的进一步理解且被并入在本申请的一部分中并构成本申请的一部分的附图示出了本发明概念的某些非限制性实施例。在附图中:

图1a是根据一些实施例的用于机器人系统、患者、外科医生和其它医务人员在手术过程期间的位置布置的俯视图;

图1b是根据一些实施例的用于机器人系统、患者、外科医生和其它医务人员在颅骨手术过程期间的另一位置布置的俯视图;

图2示出了根据一些实施例的包含手术机器人和摄像机相对于患者的定位的机器人系统;

图3是示出根据一些实施例的用于确定患者的解剖特征相对于手术机器人的机器人臂的位置和取向的计算机执行的操作的流程图;

图4是示出根据一些实施例的用于确定患者的解剖特征相对于手术机器人的机器人臂的位置和取向的数据的处理的图;

图5a-5c示出了根据一些实施例的用于使用计算机断层扫描(ct)定位器、帧参考阵列(fra)和动态参考基座(drb)来配准患者的解剖特征的系统;

图6a和6b示出了根据一些实施例的用于使用荧光检查(荧光)成像来配准患者的解剖特征的系统;

图7示出了根据一些实施例的用于使用术中ct固定装置(ict)和drb来配准患者的解剖特征的系统;

图8a和8b示出了根据一些实施例的用于使用drb和x射线锥束成像装置配准患者的解剖特征的系统;

图9示出了根据一些实施例的用于使用导航探针和基准来对患者的解剖特征进行配准的系统,以用于解剖特征的点对点映射;

图10示出根据一些实施例的中心点-弧机构的调节范围的二维可视化;

图11示出了根据一些实施例的虚拟点旋转机构的二维可视化;

图12是根据本公开的末端执行器的一种可能的实施方式的等距视图;

图13是本公开的末端执行器的另一种可能的实现方式的等距视图;

图14是根据本公开的末端执行器的又一可能实施方式的局部等距剖视图;

图15是根据本公开的末端执行器的另一可能的实现方式的仰角等距视图;

图16是根据本公开的与末端执行器一起使用的一种可能的工具止挡件的等距视图;

图17和图18是根据本公开的末端执行器的工具插入锁定机构的一种可能实施方式的俯视图;和

图19和20是图16的工具止挡件的俯视图,分别示出了打开位置和关闭位置。

具体实施方式

应该理解的是,本公开在其应用方面不限于在本文的描述中阐述的或者在图中示出的组件的构造和布置的细节。本公开的教导可以在其它实施例中使用和实践,并且以各种方式实践或实行。并且,应理解,本文所使用的措词和术语是出于描述的目的且不应被视为是限制性的。本文中使用“包含”、“包括”或“具有”及其变化形式意在涵盖其后列出的项目和其等效物以及额外项目。除非另外指定或限制,否则术语“安装”、“连接”、“支撑”和“联接”及其变型广泛地使用,并且涵盖直接和间接安装、连接、支撑和联接。此外,“连接”和“联接”不限于物理或机械连接或联接。

呈现以下讨论以使所属领域的技术人员能够制造和使用本公开的实施方案。所属领域的技术人员将容易了解对所示出的实施例的各种修改,且本文的原理可应用于其它实施例和应用,而不脱离本公开的实施例。因此,实施例并不意图限于所示出的实施例,而是应被赋予与本文中所公开的原理和特征相一致的最广范围。以下详细描述应参考附图来阅读,其中不同图中的相似元件具有相似参考标号。不一定按比例的图描绘了所选择的实施例并且并不打算限制实施例的范围。本领域的技术人员将认识到,本文提供的实施例具有许多有用的替代方案并且落入实施方案的范围内。

根据一些其他实施例,公开了用于神经导航配准和机器人轨迹引导的系统以及相关的方法和设备。在一些实施例中,分析具有患者的解剖特征的第一图像体积、相对于患者的解剖特征固定的配准固定装置、以及相对于配准固定装置固定的第一多个基准标记,并且对于第一多个基准标记中的每个基准标记,确定位置。接下来,基于所确定的第一多个基准标记的位置,确定配准固定装置相对于解剖特征的位置和取向。还分析包括相对于配准固定装置固定的第二多个跟踪标记的数据帧,并且针对第二多个跟踪标记的每个跟踪标记,确定位置。基于第二多个跟踪标记的确定的位置,确定配准固定装置相对于手术机器人的机器人臂的位置和取向。基于所确定的配准固定装置相对于解剖特征的位置和取向以及所确定的配准固定装置相对于机器人臂的位置和取向,确定解剖特征相对于机器人臂的位置和取向,这允许基于确定的解剖特征相对于机器人臂的位置和取向来控制机器人臂。

该实施例和其他实施例的优点包括将神经导航和机器人轨迹对准结合到一个系统中的能力,并支持多种不同的配准硬件和方法。例如,如下面将详细描述的,实施例可以支持计算机断层扫描(ct)和荧光检查(荧光)配准技术,并且可以利用基于框架的和/或无框架的手术布置。此外,在许多实施例中,如果由于配准固定装置的移动而损害了初始(例如术前)配准,则可以在术中重新建立配准固定装置(以及延伸的解剖特征)的配准,而无需暂停手术并重新捕获术前图像。

现转而参看附图,图1a示出了根据实施例的手术机器人系统100。手术机器人系统100可包含例如手术机器人102、一个或多个机器人臂104、基座106、显示器110、例如包含引导管114的末端执行器112,以及一个或多个跟踪标记118。响应于来自使用者的输入、从处理装置接收的命令,或其他方法,机器人臂104可以沿着和/或围绕相对于基座106的轴线是可移动的。手术机器人系统100可包含患者跟踪装置116,所述患者跟踪装置116也包含一个或多个跟踪标记118,所述跟踪标记118适于被直接地固定到患者210(例如固定到患者210的骨骼)。如在下文将更详细地讨论的,跟踪标记118可以固定到或可以是相对于患者210的解剖特征固定的立体定向框架的一部分。立体定向框架还可以被固定到固定装置,以防止在手术过程中患者210的移动。

根据替代实施例,图1b是用于机器人系统100、患者210、外科医生120和其它医务人员在颅骨手术过程期间的另一位置布置的俯视图。在颅骨手术中,例如机器人102可定位在患者210的头部128后面。机器人102的机器人臂104具有末端执行器112,其可在手术过程中保持手术器械108。在该实例中,立体定向框架134相对于患者的头部128固定,以及患者210和/或立体定向框架134也可以固定到患者基座211以防止患者头部128相对于患者基座211的运动。此外,患者210、立体定向框架134和/或患者基座211可以被固定到机器人基座106,诸如经由辅助臂107,以防止手术过程中患者210相对于机器人102的组件相对运动。不同的装置可以相对于患者的头部128和/或患者基座211按需要定位,以有利于该过程,诸如术中ct装置130、麻醉站132、擦洗站136、神经调节站138和/或用于在手术过程中控制机器人102和/或其他装置或系统的一个或多个远程挂件140。

图1a和/或图1b的实例中的手术机器人系统100还可使用传感器,例如摄像机200,其例如定位于摄像机支架202上。摄像机支架202可具有任何合适的构造以将摄像机200移动、定向并支撑在期望的位置。摄像机200可包含任何合适一个或多个摄像机,例如一个或多个摄像机(例如,双焦或立体摄影测量摄像机),所述摄像机能够在从摄像机200的视角可检视的给定测量体积中识别例如有源或无源跟踪标记118(展示为图2中的患者跟踪装置116的一部分)。在该实例中,摄像机200可扫描给定测量体积并且检测来自跟踪标记118的光,以便识别和确定跟踪标记118在三维中的位置。举例来说,有源跟踪标记118可包含由电信号激活的红外发射标记(例如,红外发光二极管(led)),和/或无源跟踪标记118可包含反射红外光或其他光的回射标记(例如,其将传入的ir辐射反射到入射光的方向中),所述红外光由摄像机200或其它合适的传感器或其它装置上的照明器发射。

在许多外科手术程序中,一个或多个手术目标,例如大脑内的目标,被定位在外部参考框架上。例如,立体定向神经外科手术可以使用外部安装的立体定向框架,该框架有利于患者通过框架固定弧进行定位和植入物插入。神经导航用于基于术前或术中成像在脑内配准(例如映射)目标。使用这种术前或术中成像,可以在手术环境中在成像与实际解剖结构之间建立链接和关联,并且这些链接和关联可以在手术期间由机器人轨迹系统利用。

根据一些实施例,可以组合各种软件和硬件元件以创建可用于规划、配准、放置和验证大脑中的器械或植入物的位置的系统。这些系统可整合手术机器人,诸如图1a和/或图1b的手术机器人102,并且可以使用手术导航系统和规划软件对手术机器人进行编程和控制。另外地或替代地,手术机器人102可以被远程地控制,例如通过非无菌人员。

机器人102可以定位在患者210的附近或旁边,并且应当理解,机器人102可以位于患者210附近的任何合适的位置,这取决于患者210正在进行手术的区域。摄像机200可以与手术机器人系统100分离并且也以在允许摄像机200对手术区域208具有直接视线的任何合适位置中定位在患者210附近或旁边。在所示的配置中,外科医生120可以定位在机器人102的对面,但仍然能够操纵末端执行器112和显示器110。手术助理126可以再次与外科医生120对置地定位,并且可以触及末端执行器112和显示器110两者。如果需要,外科医生120与助理126的位置可以颠倒。麻醉师122和护士或擦洗技术人员124的传统区域可保持不受机器人102和摄像机200的位置阻碍。

关于机器人102的其它组件,显示器110可附接到手术机器人102,并且在其它实施例中,显示器110可与手术机器人102分开,不管是在具有手术机器人102的手术室内,还是在远程位置。末端执行器112可以联接到机器人臂104并且由至少一个发动机控制。在一些实施例中,末端执行器112可包括导管114,所述导管能够收纳并定向用于对患者210执行手术的手术器械108。如本文所使用,术语“末端执行器”与术语“末端施行器”和“施行器元件”可互换使用。虽然通常用引导管114示出,但应理解,末端执行器112可以用适用于外科手术的任何合适的仪器代替。在一些实施例中,末端执行器112可包括任何已知结构,所述任何已知结构用于以所要方式实现手术器械108的移动。

手术机器人102能够控制末端执行器112的平移和定向。机器人102能够例如沿着x轴、y轴和z轴移动末端执行器112。末端执行器112可以配置成用于围绕x轴、y轴和z轴中的一个或多个选择性旋转,使得与末端执行器112相关联的一个或多个欧拉角(例如滚动、倾斜和/或偏航)可以被选择性地控制。在一些实施例中,与使用例如仅包括旋转轴的六自由度机器人臂的常规机器人相比,对末端执行器112的平移和定向的选择性控制可准许医疗手术的执行具有显著提高的准确度。举例来说,手术机器人系统100可以用于在患者210上操作,并且机器人臂104可以被定位在患者210的身体上方,末端执行器112选择性地相对于z轴朝向患者210身体成角度。

在一些实施例中,手术仪器108的位置可动态更新,使得手术机器人102可在手术过程期间始终知道手术器械108的位置。因此,在一些实施例中,手术机器人102可将手术器械108快速移动到所要位置,而无需医师的任何进一步帮助(除非医师需要)。在一些其它实施例中,手术机器人102可配置成在手术器械108偏离选定的预先规划的轨迹的情况下校正手术器械108的路径。在一些实施例中,手术机器人102可配置成准许停止、修改和/或手动控制末端执行器112和/或手术器械108的移动。因此,在使用中,在一些实施例中,医师或其它使用者可操作系统100,并且可选择停止、修改或手动地控制末端执行器112和/或手术器械108的自主移动。包含手术机器人102对手术器械108的控制和移动的手术机器人系统100的进一步细节可以查阅第2013/0345718号共同待决美国专利公开,其全部内容以引用的方式并入本文中。

如下文将更详细地描述,手术机器人系统100可包括一个或多个跟踪标记,其配置成跟踪机器人臂104、末端执行器112、患者210和/或手术器械108在三维中的移动。在一些实施例中,多个跟踪标记可安装(或以其它方式固定)在机器人102的外表面上,例如但不限于机器人102的基座106上、机器人臂104上,和/或末端执行器112上。在一些实施例中,例如下文的图3的实施例,例如一个或多个跟踪标记可安装或以其它方式固定到末端执行器112。一个或多个跟踪标记可进一步安装(或以其它方式固定)到患者210。在一些实施例中,多个跟踪标记可定位在患者210上与手术视野208间隔开,以减少被外科医生、手术工具或机器人102的其它部分遮挡的可能性。此外,一个或多个跟踪标记可进一步安装(或以其它方式固定)到手术工具108(例如螺丝刀、扩张器、植入物插入器等)。因此,跟踪标记使得被标记对象中的每一个(例如,末端执行器112、患者210和手术器械108)能够被手术机器人系统100跟踪。在一些实施例中,系统100可使用从被标记对象中的每一个收集的跟踪信息以计算例如末端执行器112、手术器械108(例如,定位于末端执行器112的管114中)的定向和位置以及患者210的相对位置。包含手术机器人102和手术器械108的控制、移动和跟踪的手术机器人系统100的其它细节可查阅美国专利公开第2016/0242849号,所述专利公开的全文以引用的方式并入本文中。

在一些实施例中,术前成像可用于识别手术中要靶向的解剖结构。如果外科医生需要,则规划包将允许限定重新格式化的坐标系。重新格式化的坐标系将具有锚固到特定解剖学界标的坐标轴,例如神经外科手术的前联合(ac)和后联合(pc)。在一些实施例中,多个术前检查图像(例如,ct或磁共振(mr)图像)可以被共同配准,使得可以将解剖学上的任何给定点的坐标转换为所有其他术前检查图像上的对应点。

如本文所使用的,配准是确定从一个坐标系到另一坐标系的坐标变换的过程。例如,在术前图像的共同配准中,将ct扫描共同配准到mr扫描意味着可以将解剖点的坐标从ct扫描转换为mr扫描中的相应解剖位置。也可能有利的是将至少一个检查图像坐标系配准到共同配准固定装置的坐标系,例如动态参考基座(drb),其可允许摄像机200实时保持患者位置在摄像机空间中的轨迹,使得在手术室的患者上的解剖点的任何术中移动可由机器人系统100检测和由手术机器人102的补偿运动弥补。

图3是示出根据一些实施例的用于确定患者的解剖特征相对于手术机器人的机器人臂的位置和取向的计算机执行的操作300的流程图;操作300可包括在第一时间从术前图像捕获装置接收第一图像体积,例如ct扫描(框302)。第一图像体积包括患者的解剖特征和相对于患者的解剖特征固定的配准固定装置的至少一部分。配准固定装置包括相对于配准固定装置固定的第一多个基准标记。操作300进一步包括对于所述第一多个基准标记中的每个基准标记确定相对于第一图像体积的基准标记的位置(框304)。操作300进一步包括,基于所确定的第一多个基准标记的位置,确定配准固定装置上的跟踪标记阵列(基准配准阵列或fra)相对于解剖特征的位置(框306)。

操作300还可以包括在晚于所述第一时间的第二时间从包括多个跟踪摄像机的术中跟踪装置接收跟踪数据帧(方框308)。跟踪帧包括相对于配准固定装置(fra)固定的多个跟踪标记和相对于机器人固定的多个跟踪标记的位置。操作300还包括基于配准固定装置的跟踪标记的位置,确定解剖特征相对于跟踪摄像机的位置和取向(框310)。操作300进一步包括确定,基于在机器人上多个跟踪标记的确定的位置,确定手术机器人的机器人臂相对于跟踪摄像机的位置和取向(方框312)。

操作300还包括基于所确定的解剖特征相对于跟踪摄像机的位置和取向以及所确定的机器人臂相对于跟踪摄像机的位置和取向,确定解剖特征相对于机器人臂的位置和取向(框314)。操作300还包括基于所确定的解剖特征相对于机器人臂的位置和取向,控制机器人臂相对于解剖特征的运动,例如沿着一个或多个限定的轴线和/或绕一个或多个限定的轴线旋转(框316)。

图4是示出根据一些实施例的能够确定患者的解剖特征相对于手术机器人的机器人臂的位置和取向的多个坐标转换系的数据流程400的图。在该实例中,可以转换基于多个检查图像的来自多个检查图像空间402的数据并组合成共同检查图像空间404。来自共同检查图像空间404的数据和来自基于验证图像的验证图像空间406的数据可以被转换和组合为配准图像空间408。来自配准图像空间408的数据可以被转换成患者基准坐标410,其被转换成用于drb412的坐标。跟踪摄像机414可以检测drb412(由drb412'表示)的移动,并且还可以检测探针跟踪器416的位置以随着时间跟踪drb412的坐标。机器人臂跟踪器418基于来自机器人规划系统(rps)空间420或类似建模系统的转换数据,和/或来自跟踪摄像机414的转换数据,确定机器人臂的坐标。

应当理解,可以以不同方式使用和组合这些和其他特征,以实现图像空间(即,来自图像体积的坐标)到跟踪空间(即,供手术机器人实时使用的坐标)的配准。如以下将详细讨论的,这些特征可能包括基于基准的配准,例如带有ct定位器的立体定向框架,使用术中荧光镜检查配准的术前ct或mri,校准的扫描器配准——其中任何获取的扫描的坐标相对于跟踪空间进行了预先校准,和/或使用跟踪探针的表面配准。

在一实例中,图5a-5c示出了用于配准患者的解剖特征的系统500。在该实例中,立体定向框架基座530固定于患者例如患者的头部的解剖特征528。如图5a所示,立体定向框架基座530可以在配准前使用销夹紧颅骨或其他方法固定到患者的头部528。立体定向框架基座530既可以用作固定平台,以将患者的头部528固定在固定位置,也可以用作配准和跟踪平台,以交替地固定ct定位器536或fra固定装置534。ct定位器536包括多个基准标记532(例如,n-图案不透射线的杆或其他基准),其使用图像处理在图像空间中被自动检测。由于ct定位器536到基座530的精确附接机制,这些基准标记532相对于立体定向框架基座530处于已知的空间中。拍摄附接有ct定位器536的患者的3dct扫描,其具有的图像体积同时包括患者的头部528和ct定位器536的基准标记532。该配准图像可以例如在手术室或放射线中术中或术前拍摄。捕获的3d图像数据集被存储到计算机内存中。

如图5b所示,在配准图像被捕获之后,将ct定位器536从立体定向框架基座530移去并且将框架参考阵列固定装置534附接到立体定向框架基座530。然而,立体定向框架基座530保持固定到患者的头部528,以及用于在手术过程中固定患者,并且用作框架参考阵列固定装置534的连接点。框架参考阵列固定装置534包括框架参考阵列(fra),其是三个或更多个被跟踪标记539的刚性阵列,其可以是用于光学跟踪的主参考。通过定位fra的被跟踪标记539在相对于立体定向框架基座530的固定的已知位置和取向,患者的头部528的位置和取向可以被实时跟踪。在fra固定装置534和立体定向框架基座530上的安装点可以被设计为使得fra固定装置534以最小的(即亚毫米级)的变化再现地附接到立体定向框架基座530。立体定向框架基座530上的这些安装点可以是ct定位器536所使用的相同的安装点,其在进行扫描后除去。辅助臂(如图1b的辅助臂107)或其他附接机构也可以用来牢固地固定患者到机器人基座,以确保机器人基座不允许相对于患者移动。

如图5c所示,动态参考基座(drb)540也可附接至立体定向框架基座530。drb540在该实例中包括三个或多个被跟踪标记542的刚性阵列。在该实例中,drb540和/或其它被跟踪的标记可以使用辅助安装臂541、销或其他附接机构附接至立体定向框架基座530和/或直接至患者头部528。不同于fra固定装置534——其仅以用于立体定向框架基座530的明确定位的一种方式安装,drb540一般可以根据需要附接,以允许不受阻碍的手术和设备接入。一旦drb540和fra固定装置534被附接,最初与fra的跟踪标记539相关的配置可任选地转移至或与drb540的跟踪标记542相关。例如,如果fra固定装置534的任何部分阻碍手术进入,外科医生可以仅使用drb540移除fra固定装置534和导航。但是,如果fra固定装置534不阻碍手术,则外科医生可以选择从fra标记539导航,而无需使用drb540,或者可以同时使用fra标记539和drb540导航。在该实例中,fra固定装置534和/或drb540使用光学标记,其被跟踪的位置在相对于立体定向框架基座530的已知位置,类似于ct定位器536,但应当理解,可以使用许多其他附加和/或替代技术。

图6a和6b示出了根据一些实施例的用于使用荧光检查(荧光)成像来配准患者的解剖特征的系统600。在本实施例中,使用利用被跟踪的配准固定装置644拍摄的多个术中荧光镜检查(荧光)图像,图像空间被配准到跟踪空间。患者的解剖特征(例如,患者的头部628)被放置并牢固地固定在夹紧设备643中的静止位置,以进行其余的手术。用于刚性患者固定的夹紧设备643可以是三销固定系统,如mayfield夹具、连接到手术台的立体定向框架基座、或根据需要的另一种固定方法。夹紧设备643还可以用作患者跟踪阵列或drb640的支撑结构。可以使用辅助安装臂641或其他方式将drb附接在夹紧设备上。

一旦患者被定位,所述荧光固定装置644附接荧光单元的x射线采集图像增强器(未示出),并通过拧紧夹紧脚632进行固定。荧光固定装置644包含基准标记(例如,在该实例中跨两个平面布置的金属球,未示出),其在由荧光图像捕获装置捕获的2d荧光图像上可见,并且可以使用标准针孔摄像机模型用于计算x射线源相对于图像增强器的位置,其通常与患者对侧相距约1米。对由荧光图像捕获装置捕获的荧光图像中的金属球的检测还使得软件能够使荧光图像去扭曲(即,去除针垫形和s形失真)。此外,荧光固定装置644含有3或多个跟踪标记646,用于确定跟踪空间中荧光固定装置644的位置和取向。在一些实施例中,软件可以基于先前捕获的ct图像,通过ct图像体积投影矢量,以基于ct图像中的对比度水平生成合成图像,所述合成图像看起来类似于实际的荧光图像(即,数字重建射线照片(drr))。通过迭代通过荧光束的理论位置,直到drr匹配实际荧光拍摄,可在荧光图像和drr之间在两个或更多的视角发现匹配,并基于此匹配,计算患者的头部628相对于x射线源和探测器的位置。因为在荧光固定装置644上的跟踪标记646跟踪图像增强器的位置并且从投影在2d图像上的荧光固定装置644上的金属基准计算x射线源相对于图像增强器的位置,因此x射线源和检测器在跟踪空间中的位置是已知的,并且该系统能够实现图像到跟踪的配准。

如图6a和6b所示,两个或更多个拍摄从两个不同的视角由荧光图像捕获装置对患者的头部628进行,同时跟踪drb640的阵列标记642和荧光固定装置644上的跟踪标记646,所述阵列标记经由安装臂641被固定到配准固定装置630。基于跟踪数据和荧光数据,一种算法计算头部628或其他解剖特征相对于跟踪空间的位置以用于手术过程。通过图像到跟踪的配准,可以计算出任何被跟踪工具在图像体积空间中的位置。

例如,在一个实施例中,可以将从第一荧光视角拍摄的第一荧光图像与从第一视角通过ct图像体积构造的第一drr进行比较,并且可以将从第二荧光视角拍摄的第二荧光图像与从第二视角通过相同的ct图像体积构造的第二个drr进行比较。基于比较,可以确定相对于解剖特征的投影视图,第一drr基本等效于第一荧光图像,并且相对于解剖特征的投影视图,第二drr基本等效于第二荧光图像。等效性确认在摄像机空间中跟踪的实际荧光机上从发射器到收集器的x射线路径的位置和取向与在ct空间中生成drr时指定的从发射器到收集器的x射线路径的位置和取向相匹配,因此实现了跟踪空间到ct空间的配准。

图7示出了根据一些实施例的用于使用术中ct固定装置(ict)和drb来配准患者的解剖特征的系统700。如图7所示,在一个应用中,可以利用基于基准的图像到跟踪的配准,其使用术中ct固定装置(ict)750,其具有多个跟踪标记751和不透射线的基准参考标记732,以将ct空间配准到跟踪空间。在使用夹紧装置730例如三销mayfield框架和/或立体定向框架稳定解剖特征728(例如患者头部)后,外科医生将ict750固定到解剖特征728、drb740或夹紧设备730,使得其相对于drb740的跟踪标记742在静止位置,其可以由安装臂741或其他刚性手段保持到位。ct扫描被捕获,其包括ict750的基准参考标记732,同时捕获解剖特征728的相关解剖结构。一旦将ct扫描加载到软件中,系统就会自动(通过图像处理)识别ict体积中ict的基准参考标记732的位置,这些位置相对于tct750的跟踪标记处于固定位置,提供了图像到跟踪的配准。最初基于ict750的跟踪标记751的该配准然后涉及或转移到drb740的跟踪标记742并且然后可以移除ict750。

图8a示出了根据一些实施例的用于使用drb和x射线锥束成像装置配准患者的解剖特征的系统800。术中扫描器852,例如x光机或其他扫描装置,可以具有安装在其上用于配准的跟踪阵列854,其带有跟踪标记855。基于扫描装置上跟踪阵列854的固定的已知位置,该系统可被校准,以直接映射(配准)跟踪空间到系统获取的任何扫描的图像空间。一旦实现配准,最初基于扫描器的阵列854的跟踪标记855(例如台架标记)的配准涉及或转移到drb840的跟踪标记842,其可以通过安装臂841或其它刚性手段被固定到夹紧固定装置830,从而保持患者的头部828。转移配准后,不再使用扫描器上的标记,并且可以根据需要将其移除、停用或覆盖。在一些实施例中,以这种方式将跟踪空间配准到由扫描器获取的任何图像可以避免在图像空间中需要基准或其他参考标记。

图8b示出了替代性系统800',其使用便携式术中扫描器,在本文中称为c型臂扫描器853。在该实例中,c型臂扫描器853包括c形臂856,其联接到可动基座858以允许c型臂扫描器853被移动到位,并根据需要去除,而不干扰手术的其他方面。臂856在术中被定位在患者头部828的周围,并且臂856相对于患者头部828旋转和/或平移,以捕获x射线或其他类型的扫描以实现配准,该点处c型臂扫描器853可以从患者中移除。

根据一些实施例,用于患者例如患者头部的解剖特征的另一种配准方法可以是使用该解剖特征的表面轮廓图。可以使用被导航或跟踪的探针或其他测量或传感装置(例如激光指示器、3d摄像机等)构造表面轮廓图。例如,外科医生可以用被导航的探针拖动或依次触摸头部表面上的点,以捕获独特突起(例如颧骨、超睫状弓、鼻梁、眉等)上的表面。然后,系统将所得的表面轮廓与从ct和/或mr图像检测到的轮廓进行比较,以寻找提供最近匹配的轮廓的位置和取向。为了考虑患者的运动并确保相对于同一解剖特征获取所有轮廓点,每个轮廓点都与记录时患者身上drb上的跟踪标记相关。由于轮廓图的位置在跟踪空间中是从被跟踪的探针和被跟踪的drb已知的,因此一旦在图像空间中找到了相应的轮廓,就可以获得跟踪与图像的配准。

图9示出了根据一些实施例的用于使用被导航霍跟踪的探针和基准来对患者的解剖特征进行配准的系统900,以用于解剖特征928(例如患者头部)的点对点映射。软件将指示使用者使用被跟踪的探针指向可以在ct或mr图像中找到的一系列解剖界标点。当使用者指向软件指示的界标时,系统将捕获被跟踪数据的帧以及跟踪标记在探针和drb上的跟踪位置。根据标记在探针上的被跟踪位置,可以计算出探针尖端的坐标,并与drb上标记的位置相关。一旦在两个空间中找到3个或更多点,就实现了跟踪与图像的配准。作为指向天然解剖学界标的替代,也可以使用基准954(即基准标记),如贴纸基准或金属基准。外科医生将基准954附加至患者,其由对成像不透明的材料构成,例如,如果与ct一起使用,其包含金属,如果与mr一起使用,其包含维生素e。成像(ct或mr)在放置基准954之后进行。然后,外科医生或使用者将在图像体积中手动找到基准的坐标,或者软件将通过图像处理自动找到它们。将具有跟踪标记942的drb940与患者通过连接到夹紧设备930或其它刚性装置的安装臂941附连之后,外科医生或使用者也可以通过用被跟踪的探针触摸基准954,在物理空间中相对于drb940定位基准954,同时在探针和drb940上记录跟踪标记(未示出)。因为在图像空间和跟踪空间中相同点的坐标是已知的,所以实现了配准。

本文描述的实施例的一种用途是规划轨迹并控制机器人移动到期望的轨迹,此后,外科医生将通过机器人保持的导管放置诸如电极的植入物。其他功能包括导出与现有的立体定向框架(例如leksell框架)一起使用的坐标,该框架使用五个坐标:x、y、z、环形角和圆弧角。这五个坐标是使用在规划阶段相对于图像空间确定的目标和轨迹并知道圆环和圆弧相对于立体定向框架基座或其他配准固定装置的位置和取向来建立的。

如图10所示,立体定向框架允许解剖特征1028(例如,患者的头部)的目标位置1058被当作球体的中心处理并且所述轨迹可绕目标位置1058旋转。到目标位置1058的轨迹由立体定向框架(例如leksell框架)的环和弧角度调整。可以手动设置这些坐标,并且在机器人发生故障或无法成功跟踪或配准时,可以将立体定向框架用作备用或冗余系统。线性x、y、z向中心点(即目标位置1058)偏移经由所述框架的机制调节。锥体1060绕目标位置1058居中,并且示出了可以通过改变leksell框架或其他类型框架的环和弧角度来实现所述调节区。该图说明具有环和弧调整的立体定向框架非常适合在更改进入颅骨的进入点的同时从一定角度范围到达固定目标位置。

图11示出了根据一些实施例的虚拟点旋转机构的二维可视化。在该实施例中,机器人臂能够创建不同类型的点旋转功能,该功能使得能够实现新的运动模式,该运动模式使用5轴机械框架不容易实现,但是可以使用本文所述的实施例来实现。通过使用本文所述的配准技术对机器人的轴进行协调控制,此模式允许使用者围绕空间中的任何固定点旋转机器人的导管。例如,机器人可围绕入口点1162旋转到解剖特征1128(例如患者的头部)。此入口点旋转是有利的,因为它允许使用者进行小的钻孔,但不限制其在术中调整目标位置1164的能力。锥体1160表示可以通过单个入口孔到达的轨迹范围。此外,入口点枢转是有利的,因为它允许使用者通过相同的小入口钻孔到达两个不同的目标位置1164和1166。替代地,机器人可以绕颅骨内的目标点(例如,图10所示的位置1058)枢转以从不同的角度或轨迹到达目标位置,如图10所示。这种内部机器人式枢转具有与立体定向框架相同的优点,因为它允许使用者从多种途径接近相同的目标位置1058,例如在照射肿瘤时或在调节路径时,使得关键结构诸如血管或神经当超过它们到达目标时不会交叉。与依靠固定的环形和弧形铰接来保持目标/枢轴点固定的立体定向框架不同,机器人通过轴的受控激活来调整枢轴点,因此机器人可以动态地调整其枢轴点并根据需要在模式之间进行切换,如图10和11所示。

在使用机器人或环形和弧形固定装置插入植入物或器械之后,这些和其他实施例可以允许使用术中成像来验证植入物的位置。可以定性和/或定量地向使用者显示器械或植入物相对于规划轨迹的放置精度。比较规划的位置和放置的位置的一种选择是将术后验证ct图像合并到任何术前图像。一旦合并了术前和术后的图像并显示了规划覆盖,就可以将术后ct上的植入物阴影与规划进行比较,以评估放置的准确性。可以通过图像处理自动执行术后ct上的阴影伪影的检测,并在以尖端和入口处的毫米偏移和沿路径的角度偏移方面数字地显示偏移。由于基于骨骼解剖轮廓执行图像到图像配准,因此该选项不需要在验证图像中出现任何基准。

比较规划的位置和最终放置的第二种选择是使用术中荧光,无论是否连接荧光固定装置。将拍摄两个平面外的荧光图像,并将这些荧光图像与术前ct或mr生成的drr进行匹配,如上所述,以进行配准。但是,与上述某些配准方法不同,跟踪荧光图像可能不太重要,因为关键信息是电极相对于荧光图像中的解剖结构所处的位置。可以在荧光图像上找到电极的线性或略微弯曲的阴影,并且一旦找到了与该荧光照片相对应的drr,就可以在ct图像体积中复制该阴影作为面向荧光图像的射线方向和drr内或向外定向的平面或片。也就是说,系统可能不知道电极在给定的照片上位于荧光图像平面内或外的深度,但是可以计算出可能位置的平面或片,并在3d体积上表示该平面或片。在第二荧光视图中,可以确定不同的平面或片并将其覆盖在3d图像上。这两个平面或片在3d图像上相交的位置是检测到的电极路径。系统可以将该检测到的路径表示为3d图像体积上的图形,并允许使用者重新切分图像体积以从任意期望视角显示该路径和规划路径,还允许自动或手动计算与电极的规划路径与放置位置之间的偏差。跟踪荧光固定装置是不必要的,但可以这样做以帮助使荧光图像变形并计算x射线发射器的位置以提高drr计算的准确性,迭代查找匹配的drr和荧光镜头时的收敛速度,以及在3d扫描中放置代表电极的片/平面的位置。

在该实例和其他实例中,期望保持导航完整性,即,确保在整个过程中配准和跟踪保持准确。建立和维护导航完整性的两种主要方法包括:跟踪监视标记相对于drb上标记的位置,以及检查图像中的界标。在第一种方法中,如果此位置由于例如drb碰撞而发生变化,则系统可能会警告使用者导航完整性可能会损失。在第二种方法中,如果界标检查显示屏幕上显示的切片中表示的解剖结构与探针尖端指向的解剖结构不匹配,那么外科医生也将意识到导航完整性的损失。在这两种方法中,如果使用ct定位器和框架参考阵列(fra)的配准方法,则外科医生可以选择重新连接fra,该fra仅以一种可能的方式安装到框架基座上,并根据fra跟踪标记和来自ct定位器536的存储基准,恢复跟踪与图像的配准。然后可以转移此配准或与重新定位的drb上的跟踪标记相关联。转移配准后,可以根据需要移除fra。

现在总体上参考图12-18,参考图1a所示的手术机器人系统100,末端执行器112可以配备有组件、配置或以其他方式包括特征,使得一个末端执行器可以保持附接到给定的机器人臂104之一,而无需针对多种不同的外科手术程序而改变为另一末端执行器,仅作为示例例如深脑刺激(dbs)、立体脑电图(seeg)或内窥镜导航和肿瘤活检。如前所述,末端执行器112可以定向成以与患者的解剖特征可操作接近并且能够接收一个或多个手术工具的方式与患者的解剖特征相对,以便进行在靠近末端执行器112的解剖特征上考虑的操作。末端执行器112的运动和定向可以通过本文讨论的导航、轨迹引导或其他方法的任一种实现,或者可以是适合于特定操作的其他方式。

末端执行器112被适当地配置成允许多个手术工具129可选择性地连接到末端执行器112。因此,例如,通管针113(图13)可以被选择性地附接以便将切口点定位在患者的解剖特征上,或者电极驱动器115(图14)可以被选择性地附接至同一末端执行器112。

参考机器人外科手术系统100的先前讨论,处理器电路以及可由该处理器电路访问的存储器包括各种子例程和其他机器可读指令,这些子例程和其他机器可读指令被配置为在执行时引起末端执行器112移动,例如,在相关的外科手术的预定阶段,无论是术前、术中还是术后,通过相对于解剖特征的gps运动而进行。

末端执行器112包括各种组件和特征,用于根据是否以及哪些工具129(如果有)连接到末端执行器112来阻止或允许末端执行器运动。更具体地参考图12,末端执行器112包括位于并连接至近侧表面119的工具插入锁定机构117。工具插入锁定机构117被配置为固定多个手术工具中的任何选定一个,例如前述的通管针113、电极驱动器115,或者用于先前提到的或本公开的其他应用可能想到的用于不同手术的任何其他工具。通过工具插入锁定机构117对工具的固定使得对于能够固定到锁定机构117的多个工具中的任何一个,每个这样的工具可操作且适当地固定在相对于患者的解剖特征的预定高度、定向角度和旋转位置上,使得可以将多个工具固定在同一末端执行器112上适合于所考虑手术的相应位置。

末端执行器112的另一特征是位于末端执行器112的远侧表面123即与患者大致相对的表面上的工具止挡件121。工具止挡件121具有止挡机构125和与其可操作地相关联的传感器127,如参考图16、19和20所见。止挡机构125被安装到末端执行器112,从而可相对于末端执行器选择性地在接合位置和脱离位置之间移动,接合位置用于防止任何工具连接到末端执行器112,脱离位置允许任何工具129被选择性地连接到末端执行器112。传感器127可以在任何合适的位置(图12、14、16)位于末端执行器112的壳体上或内部,以使传感器127检测止挡机构125处于接合位置还是脱离位置。传感器127可以采取适合于这种检测的任何形式,例如任何类型的机械开关或任何类型的磁传感器,包括磁簧开关、霍尔效应传感器或其他磁场检测装置。在一种可能的实施方式中,传感器127具有两个部分,霍尔效应传感器部分(未示出)和磁性部分131,这两个部分相对于彼此移动,以产生并检测与各自的接合和脱离位置相对应的两个磁场。在示出的实施方式中,磁性部分包括两个稀土磁体131,稀土磁体131相对于互补感测部分(未示出)移动,该互补感测部分在磁体131的可操作附近安装在末端执行器112的壳体中,以检测与止挡机构125在接合位置和脱离位置之间的运动相关的磁场的变化。在该实施方式中,霍尔效应传感器是双极的,并且可以检测磁体的北极或南极是否与传感器相对。磁体131被配置为使得一个磁体的北极面对传感器的路径,而另一磁体的南极面对传感器的路径。在这种配置中,当传感器靠近一个磁体(例如,处于脱离位置)时,传感器感测到增加的信号;当传感器靠近另一个磁体(例如,处于接合位置)时,传感器感测到减小的信号;当传感器不靠近任何磁体时,传感器感测到不变的信号。在该实施方式中,响应于检测到止挡机构125处于图13和19所示的脱离位置,传感器127使手术机器人系统100的处理器执行适当的指令以防止末端执行器112相对于解剖特征的运动。这种防止运动可能由于多种原因而适当,例如当工具连接到末端执行器112时,这种工具潜在地与患者的解剖特征相互作用。

用于检测接合的或脱离的工具止挡机构125的传感器127的另一种实现方式可以包括在壳体(未示出)后面的单个磁体和位于优选实施例中示出磁体131的位置处的两个霍尔效应传感器。在这样的配置中,单极霍尔效应传感器是合适的并且将被配置为使得当磁体由于锁定机构脱离而接近时传感器1检测到信号,而传感器2当同一磁体由于锁定机构被接合而接近时检测到信号。当磁体在两个位置之间或不与任一传感器不接近时,两个传感器都不会检测到信号。尽管可以想到其中传感器对于接合位置是活动的而对于脱离位置是不活动的配置,但是优选具有三个信号指示接合、脱离或过渡的配置,以确保在电源故障的情况下的正确行为。

末端执行器112、工具止动件121和工具插入锁定机构117各自具有同轴对准的管孔或孔,使得多个手术工具129中的任何选定的一个可以通过这些管孔和孔被接收。在该实施方式中,末端执行器具有管孔133,并且工具止挡件121和工具插入锁定机构117具有相应的孔135和137。止挡机构125包括与工具止动件121的管孔133和孔135轴向对准的环139。环139可选择性地沿箭头a(图16)所示的方向手动旋转,以使止挡机构125在接合位置和脱离位置之间移动。

在一种可能的实施方式中,环139的选择性旋转包括使环139能够被锁定在脱离位置或接合位置的特征。因此,例如,如图所示,制动机构141以任何合适的方式位于环139上并安装到环139上,以将环139锁定为防止某些旋转运动移出预定位置,在这种情况下,所述预定位置是当止挡机构125处于接合位置时。尽管本文中设想了各种形式的制动机构,但是一种合适的布置具有可手动接近的头部,该头部从环139沿周向向外延伸,并具有轴向向内弹簧加载以与相应的凹形制动部分(未示出)接合的凸出突起(未示出)。这样,制动机构141可手动地致动以将环139从其接合位置解锁,以允许环139手动旋转,以使止挡机构125从接合位置(图20)移动至脱离位置(图19)。

工具止挡件121包括枢转地安装在工具止挡件121的孔135附近的杠杆臂143,因此杠杆臂143的端部选择性地沿箭头b所示的方向枢转(图16、19和20)。杠杆臂143可操作地连接到止挡机构125,这意味着它响应于止挡机构125处于接合位置而关闭工具止动件121的孔135,如图20所示。杠杆臂143也可操作地连接,以响应于止挡机构125处于脱离位置而沿箭头b的方向向后枢转以打开孔135。这样,止挡机构125在接合位置和脱离位置之间的运动分别导致杠杆臂143关闭或打开孔135。

在该实施方式中,杠杆臂143不仅可枢转地安装在孔135附近,而且可平行于在末端执行器112的远侧表面123的最远侧处限定的远侧平面枢转。以这种方式,试图被插入穿过管孔133和孔135的任何一种手术工具129都被阻止插入穿过杠杆臂143在其中旋转以闭合孔135的远侧平面。

现在转到工具插入锁定机构117(图13、17、18),连接器145被配置以会接并将手术工具129的任何一个固定在相对于患者的解剖特征的其适当高度、方向角度和旋转位置。在所示的实施方式中,连接器145包括可旋转的凸缘147,该凸缘具有形成在其中的至少一个狭槽149,以通过其接收与多个工具129中的选定一个相关联的对应的榫舌151。因此,例如,在图14中,特定的电极驱动器115具有多个榫舌,其中示出了榫舌151之一。在一些实施方式中,可旋转凸缘147可包括套环153,该套环又具有在近侧定向的表面155上径向间隔开的多个狭槽149,如图12中最佳所示。设置在套环153周围的多个狭槽147的尺寸为或以其他方式构造为,以便穿过其中接收与多个工具129中的选定的一个相关联的多个榫舌151中的相应榫舌。因此,如图13所见,可以布置多个狭槽149和对应的榫舌151,以仅在所选工具相对于患者的解剖特征处于正确的预定的方向角度和旋转位置时才允许固定多个工具129中的所选一个。类似地,关于图14中所示的电极驱动器,榫舌151(其中一个在图14的剖视图中示出)已经被接收在径向间隔开的狭槽149中,该狭槽被排列成使得电极驱动器115以适当的方向角度和旋转位置被接收。

在该实施方式中,可旋转凸缘147具有把手173,以促进在打开位置和关闭位置之间的手动旋转,分别如图17和18所示。如图17所示,多组配接狭槽149和榫舌151被布置在不同的角度位置,在本情况下,在可以关于圆的单个直径弦对称但在径向上不对称的位置,并且狭槽的至少一个与其他狭槽相比具有不同的尺寸或延伸的弧长不同。在这种狭槽-榫舌布置中,以及本公开考虑的任何数量的变型中,当可旋转凸缘147处于图17所示的打开位置时,工具129(或稍后讨论的适配器155)只有一个旋转位置被容纳在工具插入锁定机构117中。换句话说,当系统100的使用者将选定的工具129(或工具适配器155)移动到单个适当的旋转位置时,可以通过狭槽149接收对应的榫舌151。在将榫舌151放置到狭槽149中时,榫舌151面对可旋转凸缘147的连接器145内的底表面175。在将榫舌151接收到狭槽149中并且将它们搁置在下面的底表面175上时,选择榫舌151和狭槽149的尺寸,尤其是相对于可旋转凸缘147的高度,以便当可旋转凸缘147旋转到关闭位置时凸缘部分157径向平移以覆盖或接合榫舌151的部分,这种接合在图18示出并且将容纳在连接器145中的工具129(或适配器155)固定在相对于患者的解剖特征的期望的预定的高度、定向角度和旋转位置。

被描述为与工具129相关联的榫舌151可以直接连接到这样的工具129,和/或榫舌151可以位于并固定在上述适配器155上,例如图12、17和18所示的,这种适配器155被配置为将多个手术工具129中的至少一个与末端执行器112互连。在所描述的实施方式中,适配器155包括两个操作部分-工具接收器157,其适于连接所选择的一个或多个手术工具129,第二操作部分是一个或多个榫舌151,在该实施方式中,该榫舌可以被安装和连接到适配器155的远端。

适配器155具有外周边159,在此实施方式中,该外周边的尺寸设置为与可旋转凸缘147的内周边161相对。适配器155分别在近端和远端163、165之间延伸,并具有在端部163、165之间延伸的适配器孔167。适配器孔167的尺寸设计成可容纳多个手术工具129中的至少一个,并且类似地,选择近端和远端163、165之间的距离以使得工具129中的至少一个在预定的适当高度处固定至末端执行器112,用于与容纳在适配器孔167中的这种工具相关的外科手术。

在一种可能的实施方式中,系统100包括多个适配器155,其被配置为可互换的插入物169,其具有基本相同的预定外周边159,以被容纳在可旋转凸缘147的内周边161内。更进一步地,在这种实施方式中,可互换插入物169具有不同的、相应的直径的管孔,可以选择该管孔以在其中容纳相应的工具129。管孔167可包括具有多个外科工具129共有的内径的圆柱形衬套。管孔167的一组可能的直径可以是12、15和17毫米,适用于多种机器人手术操作,例如本公开中确定的那些。

在所示的实施方式中,可旋转凸缘147的内周边161和适配器155的外周边159是圆形的,具有中心、对准的轴线和相应的半径。在所示的实施方式中,可旋转凸缘147的狭槽149从可旋转凸缘147的中心轴线径向向外延伸,而适配器155的榫舌151从适配器155径向向外延伸。

在其他实施方式中,末端执行器112可以配备有至少一个照明元件171(图14和15),该照明元件171可以朝向要对其进行操作的解剖特征定向。照明元件171可以是位于适配器167内的led177环(图14)的形式,该适配器是固定在工具锁定机构117上的衬套的形式。照明元件171也可以是安装在末端执行器112的远侧表面123上的单个led179。无论是以led环177的形式还是安装在末端执行器112的远端表面上的单个元素led179的形式,还是任何其他变化形式,都可以选择一个或多个照明元件171的间距和位置,以使穿过末端执行器112的管孔133被接收的工具129不会投射阴影或以其他方式干扰元件171对进行操作的解剖特征的照明。

根据前面的描述,末端执行器112的操作和相关特征是显而易见的。工具止挡件121是可旋转的、可选择性地锁定的,并且可在接合位置和脱离位置之间移动,并且处于这种脱离位置时传感器防止末端执行器112移动,这是由于在这种脱离位置过程中可能不建议移动的工具的潜在存在。工具插入锁定机构117同样可在打开位置和关闭位置之间旋转,以接收多个可互换插入物169之一和这种插入物的榫舌151,其中选定的工具129可以容纳在这种插入物169中;替代地,榫舌151可以以其他方式与工具129相关联,例如通过使榫舌151直接连接至这样的工具129,配备有榫舌的工具同样可以被容纳在工具插入锁定机构117的对应狭槽149中。工具插入锁定机构117可以从其打开位置旋转,在该打开位置,榫舌151已经被接收在狭槽149中,以固定相关联的适配器155和/或工具129,使得它们相对于患者解剖特征处于适当的相应的高度、定向角度和旋转角度。

对于具有多个适配器155的那些实施方式,选择这样的适配器155的尺寸,包括孔径、高度和其他合适的尺寸,使得单个或最小数量的末端执行器112可以用于多种手术工具129。诸如可互换的插入物169或圆柱形衬套形式的适配器155可有助于将一组扩展的手术工具129连接至末端执行器112,并因此使用同一末端执行器112同样有利于对应的一组扩展的相关联的手术特征。

在本发明构思的各种实施例的上述描述中,应理解,本文使用的术语仅用于描述特定实施例的目的,并不意图限制本发明构思。除非另外定义,否则本文使用的所有术语(包含技术和科学术语)具有与本发明构思所属领域的普通技术人员通常理解的含义相同的含义。将进一步理解的是,例如在常用词典中定义的那些术语应被解释为具有与其在本说明书的上下文和相关领域中的含义一致的含义,并且除非本文明确定义,否则不应在理想化或过度正式的意义上解释。

当一个元件被称为“连接”、“联接”、“响应”(或其变型)于另一元件时,它可以直接连接、耦合或响应于另一元件,或者可以存在中间元件。相比之下,当元件被称为“直接连接”、“直接联接”、“直接响应”(或其变型)于另一元件时,不存在中间元件。相同的数字始终指代相同的元件。此外,本文使用的“耦合”、“连接”、“响应”或其变型可以包含无线耦合、连接或响应。如本文所使用,单数形式“一”、“一个”和“所述”也希望包含复数形式,除非上下文另有明确说明。为了简洁和/或清楚起见,可能未详细描述众所周知的功能或配置。术语“和/或”包含一个或多个相关所列项目的任何和所有组合。

应当理解,尽管本文可以使用术语第一、第二、第三等来描述各种元件/操作,但是这些元件/操作不应受这些术语的限制。这些术语仅用于将一个元件/操作与另一元件/操作区分开。因此,在不脱离本发明构思的教示的情况下,在一些实施方案中的第一元件/操作可以在其它实施方案中被称为第二元件/操作。在整个说明书中,相同的附图标记或相同的参考标记表示相同或相似的元件。

如本文所使用,术语“包括”、“包含”、“具有”或其变型是开放式的,并且包含一个或多个所陈述的特征、整数、元件、步骤、组件或功能,但不排除一个或多个其它特征、整数、元件、步骤、组件、功能或其群组的存在或添加。此外,如本文所使用,源自拉丁语短语“例如(exempligratia)”的通用缩写“eg”可用于引入或指定先前提及的项目的一个或多个一般实例,并且不希望限制此项目。源自拉丁语短语“即(idest)”的通用缩写“ie”可用于依据更一般的叙述指定特定项目。

本文参考计算机实施的方法、设备(系统和/或装置)和/或计算机程序产品的框图和/或流程图图示来描述示例实施例。应当理解,框图和/或流程图图示的框以及框图和/或流程图图示中的框的组合可以由一个或多个计算机电路执行的计算机程序指令来实施。这些计算机程序指令可以被提供给通用计算机电路、专用计算机电路和/或其它可编程数据处理电路的处理器电路,以产生机器,使得指令经由计算机的处理器和/或其它可编程数据处理设备、转换和控制晶体管、存储在存储器位置中的值,以及此电路内的其它硬件组件执行,以实施在框图和/或流程图框中指定的功能/动作,从而创建用于实施框图和/或流程图框中指定的功能/动作的构件(功能性)和/或结构。

这些计算机程序指令还可以存储在有形计算机可读媒体中,所述有形计算机可读媒体可以指示计算机或其它可编程数据处理设备以特定方式起作用,使得存储在计算机可读媒体中的指令产生包含实施框图和/或流程图框中指定的功能/动作的指令的制品。因此,本发明构思的实施例可以体现在例如数字信号处理器之类的处理器上运行的硬件和/或软件(包含固件、常驻软件、微代码等)中,这些处理器可以统称为“电路”、“模块”或其变型。

还应注意,在一些替代实施例中,框中提到的功能/动作可以不按流程图中所示的顺序发生。例如,连续示出的两个框实际上可以基本上同时执行,或者这些框有时可以以相反的顺序执行,这取决于所涉及的功能/动作。此外,流程图和/或框图的给定框的功能性可以分成多个框,且/或流程图和/或框图的两个或两个以上框的功能性可以至少部分地集成。最后,可以在所示的框之间添加/插入其它框,且/或可以省略框/操作而不脱离本发明构思的范围。此外,尽管一些图包含通信路径上的箭头以示出通信的主要方向,但是应该理解,通信可以在与所示箭头相反的方向上发生。

虽然在前面的说明书中已经公开了本发明构思的几个实施例,但应该理解,在受益于前述说明和相关附图中呈现的教示的情况下,将能够设想出本发明构思所涉及的本发明构思的许多修改和其它实施例。因此应该理解,本发明构思不限于上文公开的特定实施例,并且许多修改和其它实施例希望包含在所附权利要求书的范围内。进一步设想,来自一个实施例的特征可以与来自本文描述的不同实施例的特征组合或一起使用。此外,虽然在本文以及在所附权利要求书中使用了特定术语,但是它们仅在一般和描述性意义上被使用,而不是为了限制所描述发明构思或所附权利要求书的目的。本文引用的每个专利和专利公开的全部公开内容全文以引用的方式并入本文中,如同每个此专利或公开个别地以引用的方式并入本文中。本发明构思的各种特征和/或潜在优点在所附权利要求书中陈述。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1