抑制5α-还原酶活性的方法和组合物的制作方法

文档序号:1058739阅读:2690来源:国知局
专利名称:抑制5α-还原酶活性的方法和组合物的制作方法
1.发明的背景本发明为继续1995年5月16日美国专利08/442055的部份连续申请案,该案又为1992年7月1日美国专利第07/904,443号专利申请案之部分连续申请案,该案又为1992年5月27日美国专利第07/889,589号专利申请案之部分连续申请案,公开的全部文件及图表并入此处以供参考。基於美国国立卫生研究院授予的第DK41670号对本案的赞助,美国政府拥有本发明的某些权利。
1.1.发明的领域本发明一般关於通过调整5α-还原酶(5-AR)的活性以调节雄性激素及其他的甾体激素作用的化合物、组合物及方法。更特定言之,本发明是关於这些化合物的使用,以治疗由于细胞或器官中不正常的雄激素的作用所造成的疾病。本发明也涉及天然及合成的脂肪酸及儿茶素的使用,特别是多不饱和脂肪酸及其衍生物和表儿茶素五倍子酸酯,作为5α-还原酶抑制剂和作为治疗剂。
1.2.相关技术的描述医学界所知的雄性激素的使用包括,举例来说,性腺机能减退及贫血的治疗(Synder,1984;Mooradian et al,1987)。在运动员中滥用雄激素以提高成绩已被广为人知(Strauss and Yesalis,1991)。也知道雄性激素可以促进良性前列腺增生(BPH)(Wilson,1980),前列腺癌(Huggins and Hodges,1940),秃头(Hamilton,1942),痤疮(Pochi,1990),多毛症,及皮脂溢(Hammerstein et al,1983;Moguilewsky and Bouton,1988)的发展。病理证据显示在美国大约有70%年龄在50岁以上的男性有BPH(Carter and Coffey,1990)。前列腺癌是美国男人癌症死亡的第二主要原因(Silverberg andLubera,1990;Gittes,1991)。男性模式的秃头在易受遗传影响的男人中能在十几岁时即开始,据估计其出现在年龄30的高加索男人的比率为30%,在年龄40的高加索男人为40%,在年龄50的高加索男人为50%。痤疮是医生最常见的皮肤疾病(Pochi,1990)而且影响至少85%的青少年。在女性,多毛症是过多雄性激素作用的证明之一(Ehrmann and Rosenfield,1990)。卵巢及肾上腺是妇女中雄性激素主要的来源。
1.2.1睾酮和5α-二氢睾酮(5α-DHT)之作用差别在男性,血液中主要循环的雄性激素为睾酮。血液中约98%的睾酮和血清蛋白结合(与性、甾体结合球蛋白高亲和地结合以及与白蛋白低亲和的结合),只有1-2%为游离形式(Liao and Fang,1969)。白蛋白结合的睾酮,该结合为易於可逆,而其游离形式被认为具生物有效性,约占全部睾酮的50%。睾酮显然是以扩散方式进入靶细胞。在前列腺、精囊、皮肤及一些其他靶器官中,它可被NADPH-依赖的5α-还原酶转变为更活泼的代谢物5α-DHT。然后5α-DHT在靶器官中与雄性激素受体(AR)结合(Anderson and Liao,1968;Bruchovskyand Wilson,1968;Liao,1975)。5α-DHT受体复合物与基因组的特异性部位结合以调节基因活性(Liao et al.,1989)。睾酮似乎与相同的AR结合,但它比5α-DHT具较低的亲和性。在组织中如肌肉及睾丸,那儿的5α-还原酶的活性低,睾酮可能是较为活泼的雄性激素。
在不同的雄性激素反应组织中睾酮和5α-DHT活性间的差异,还由于发现5α-还原酶缺乏的病人而得到进一步的启示。5α-还原酶缺乏的男性出生就具有似女性的外生殖器。当其到达青春期,其睾酮的血浆含量为正常或稍增加。其肌肉生长加速、阴茎增大、声音变低沉、及产生对女性的性欲。然而,其前列腺仍然触知不到,体毛也稀少,而且他们不会发生痤疮或秃头。5α-还原酶缺乏的女性不具有临床症状(Imperato-McGinley,1986)。
对於5α-还原酶缺乏病人的发现,启示5α-还原酶之抑制剂可能对治疗前列腺癌、BPH、痤疮、秃头及女性多毛病有用。临床观察和动物实验显示精子生成、性欲维持、性行为、和促性腺激素分泌的反馈抑制作用不须要将睾酮转化为5α-DHT(Brooks et al.,1982;Blohmet al.,1986;George et al.,1989)。而这正好与用于消除睾酮和5α-DHT作用的其他激素治疗相反。
用5α-还原酶抑制剂治疗雄性激素依赖性的皮肤和前列腺疾病,预期将比现行的激素治疗产生较少的副作用。它包括阉割、雌性激素治疗、高剂量的超活性促性腺激素-释放激素如Luprolidl,及竞争性抗雄性激素之使用,后者可抑制AR对睾酮和5α-DHT的结合,如氟他胺、环丙孕酮醋酸酯及螺内酯。“竞争性抗雄性激素”的长期效能也被它们对促性腺激素分泌的雄性激素反馈抑制作用的阻滞所影响。此导致促性腺激素分泌的提高,它反过来又增加睾丸分泌睾酮。而高水平的睾酮量最终又对抗雄性激素之作用。
1.2.2.5α-还原酶之生物重要性过量的5α-DHT导致某些雄性激素依赖性的病理状况,包括BPH、痤疮、男性形式秃头及女性原发性多毛病。已显示BPH的前列腺较具正常前列腺的病人中5α-还原酶的活性及5α-DHT的水平要高(Isaacs,1983;Siiteri and Wilson,1970)。也有报告称秃头男性较不秃头男性的头皮毛囊中的5α-还原酶活性要高(Schweikert andWilson.1974)。
1.2.3.甾体5α-还原酶抑制剂迄今发展的最强的5α-还原酶抑制剂为甾体或它们的衍生物。其中4-氮杂甾体化合物(Merck Co,)为最广泛研究者(Liang et al.,1983;Rasmusson et al.,1986。这些抑制剂为3-氧代-4-氮杂-5α-甾体,在其17-β位具一大的官能团,并通过与睾酮进行可逆性的竞争与酶的结合部位而作用。
这些化合物之A-环的构象经认定为与3-氧代-Δ4-甾体的5α-还原酶之设想的3-烯醇过渡态相似。5α-还原酶抑制剂之原型为17β-N,N-二乙基氨基甲酰基-4-甲基-4-氮杂-5α-雄甾烷-3-酮(4-MA),它在体内作为5α-还原酶之抑制剂,减少了未经处理的雄性大鼠或给予睾酮丙酸酯于阉割的雄性大鼠的前列腺的5α-DHT浓度。4-MA减少了睾酮诱导的阉割雄性大鼠之前列腺的生长,但对施用5α-DHT的雄性大鼠的作用却要低得多。(Brooks etal.,1981)。
当用4-MA处理狗时,其前列腺大小减小(Brooks et al.,1982;Wenderoth and George,1983)。於断尾恒河猴的头皮局部应用4-MA,它为人类男性形式秃头之灵长类动物模型,也防止一般发生於这些猴类青春期之秃头。(Rittmaster et al.,1987)。这些结果也说明,大鼠和狗的前列腺生长,以及断尾恒河猴之秃头均取决於5α-DHT。另一方面,对大鼠脑下垂体 养的研究显示,用4-MA完全抑制了睾酮转化为5 α-DHT,但并不影响睾酮抑制LH的释放,说明在此系统中睾酮之直接作用(Liang et al.,1984)。
其他强的抑制剂为ProscanTM(Merck Co.)(非那雄胺,MK-906或17β-N-叔丁基氨基甲酰基-4-氮杂-5α-雄甾烷-1-烯-3-酮)。该抑制剂对大鼠前列腺5-AR无显著亲和力。在临床试验中,非那雄胺减少血浆之5α-DHT含量及前列腺大小,也增进良性前列腺增生病人的尿液流量,(Vermeulen et al.,1989;Rittmaster etal.,1989;Gormley et al.,1990;Imperato-McGinley et al.,1990)。在断尾恒河猴中,非那雄胺以0.5毫克/天剂量口服,单独或配合局部应用2%米诺地尔,可降低血清5α-DHT含量,并加强局部米诺地尔的毛发再生作用和逆转其秃头的过程(Diani et al.,1992)。米诺地尔和非那雄胺之效果为相加的。
显示可抑制5α-还原酶的其他甾体化合物有4-雄甾烷-3-酮-17β-羧酸(Voigl et al.,1985)和4-重氮基-21-羟甲基-孕甾-3-酮(Blohm et al.,1989)及3-羧基A-环芳基甾体(Brandt etal.,1990)。
1.2.4.脂肪酸和脂质之作用既然用5α-还原酶抑制剂治疗雄性激素依赖性皮肤和前列腺的疾病,要比无区分地抑制所有雄性激素作用的激素的治疗产生较少的副作用,因此需要提供不用类形的5α-还原酶抑制剂。
一些与细胞膜结合的酶(例如5′-核苷酸酶,乙酰辅酶A羧化酶)已显示可被饮食中脂肪的多不饱和脂肪酸含量所影向,并可改变细胞膜的物理化学性质(Zuniga et al.,1989;Szepsesi et al.,1989)。大鼠心室肌细胞中的各种类型磷脂酶也受到在 养基中不同的不饱和脂肪酸不同的调节(Nalboone et al.,1990)。此外,用不饱和脂肪酸处理大脑皮质片(Baba et al.,1984)或完整视网膜(Tesoriere et al.,1988)可增加腺苷酸环化酶的活性。
然而,只有少数研究直接与在无细胞系统中游离脂肪酸对酶的作用模式之阐明有关。某些顺式不饱和脂肪酸在50μM时显示可刺激蛋白激酶C的活性(Dell and Severson,1989;Khan et al.,1991)并抑制甾体对雄性激素、雌性激素、类皮质激素及黄体酮等受体的结合(Vallette etal.,1988;Kato,1989)。尚未有证据显示不饱和脂肪酸可在动物或人类体内影响类甾体激素的甾体受体之结合。
1.2.5前列腺癌前列腺癌现在是美国男性中最常见的被诊断的癌症。在1996,预期会有317,100新的前列腺癌病例并在41,400男性死于前列腺(Parker等,1996)。前列腺癌的生长和发展起初是雄激素-依赖性的。自从Charles Huggins在1941年发表了他的经典报告后(Huggins和Hodges,1941),雄激素切除疗法已成为转移的前列腺癌的标准疗法。用雄激素切除疗法治疗的前列腺癌患者其前列腺癌一般会缓解,但在几年之内,肿瘤又重新生长。前列腺癌的复发大部份是由于起初为雄激素依赖性的前列腺癌细胞发展成为对其增殖却不依赖于雄激素的肿瘤细胞(Dawson and Vogelzang(eds),1994;Coffey,1993;Gellen,1993)。对这种丢失雄激素依赖性的原因尚不清楚,但人的前列腺癌细胞,包括各种LNCaP亚系,已被用于研究在发展和致肿瘤作用中发生的变化。(Kokontis等,1994;Thalmann等,1994;Joly-Pharaboz等,1995,Liao等,1995)。一些雄激素-不依赖性的前列腺癌细胞系,如PC-3和Du-145,缺乏雄激素受体(AR)(Tilley等,1990)。然而,在切除治疗后,也发现在转移的前列腺癌中有AR(Hobiszh等,1995)。而且发展成甾体不敏感性也能发生而不管存在有功能性的甾体受体。(Darbre and King,1987)。
2.发明概述本发明一般涉及应用一些长链脂肪酸及儿茶素及儿茶素的衍生物通过调节5α-还原酶的活性,来控制靶器官及细胞中的雄性激素活性。在某些方面,应用特定的脂肪酸及儿茶素化合物通过抑制在靶细胞中活性雄性激素的形成和获得而抑制雄性激素活性。因而,本发明可以(但不限於)治疗种类众多的疾病,这包括前列腺增生、乳腺癌、前列腺癌、肿瘤形成,多毛症、痤疮、男性类型的秃头,皮脂溢及其他与雄性激素活性过度相关的疾病。在其他重要方面,数种这些化合物已显示可有效地减少体重及,在某些情况下,减少雄性激素依赖的身体器官的重量,例如前列腺及其他的器官。这些化合物的效力也可能取决于他们对其他机制的作用,这涉及到血管形成、细胞-细胞相互作用、及它们与器官或细胞的各种成分的相互作用。
本发明实践中有用的化合物包括各种饱和及不饱和脂肪酸、天然及合成类似物以及可变为这些脂肪酸的衍生物,以及这些脂肪酸代谢及氧化的产物。这些及其他脂肪酸及其衍生物的使用也被加以仔细考虑。同时也有用的是儿茶素化合物,特别是,结构类似于表儿茶酚五倍子酸酯(ECG)及表儿茶素五倍子酸酯(EGCG)的儿茶素。EGCG在表儿茶酚五倍子酸酯分子上有额外的羟基,并发现它在调节一些5α-还原酶介导的过程中具有令人吃惊的活性。在ECG分子上有此一额外的羟基的EGCG衍生物经证实对於引起体重减少具有活性,特别是在降低对雄性激素敏感的器官的大小,此类器官例如为包皮腺、腹侧前列腺、背外侧前列腺、凝结腺、精囊、人类的前列腺肿瘤,及裸老鼠的乳腺肿瘤。
发明人发现一些儿茶素化合物的某些结构特征的重要性,该些特征似乎对於5α-还原酶的活性有贡献。在没食子儿茶素五倍子酸酯中额外羟基的存在与儿茶素五倍子酸酯相比,前者在活性上具有重要的效果,它反映在减少动物身体及器官重量及肿瘤生长的能力。因此对于活性的结构需求为,在ECG分子上有一额外的羟基的EGCG明显地要比ECG在引起体重减少,以及减小包皮腺大小、腹侧前列腺、背外侧前列腺、凝结腺、精囊、及前列腺和乳腺肿瘤的大小上更具活性。
5α-还原酶抑制剂的一般化学式为
m,n及p可以是0或1。R1,R2,及R5,可有0到6原子链而由C,N,S或O所组成,和可含有不饱和键。
链里的每一原子可有-H,-OH,-CH3,-OCH3,-OC2H5,-CF3,-CHF2,-SH,-NH2,卤素,=O,-CH(CH3)2或-C(CH3)3取代基。
R5中的原子被连接到R1及R2中的原子。R3或R4可以是-H,-OH,-CH3,-OCH3,-OC2H5,-CF3,-CHF2,-SH,-NH2,卤素,=O,-CH(CH3)2,或-C(CH3)3,或下列的基团
R6到R10可以是-H,-OH,-CH3,-OCH3,-OC2H5,-CF3,-CHF2,-SH,-NH2,卤素,=O,-CH(CH3)2,-C(CH3)3,五倍子酰基,或3,4,5-羟基苯基。
R1到R11中的碳碳键可是饱和的或者有双键。羰基可能为烯醇型。
举例来说,下列的化合物已被发现是5α-还原酶有力的抑制剂
活性的化合物可以包括酯键,它能被水解成活性的不饱和脂肪酸,儿茶素,或上述的结构。除此之外,R1及R2不需要是个别的取代基,但是可以一块代表芳香或杂环的部份而且含有卤素或烷基取代基。或者,R1/R2可能代表具有一或多个独立的双键的脂环族部份。将获得的所有信息结合,上述的结构为一类新颖的5α-还原酶抑制剂。
儿茶素五倍子酸酯及其衍生物具有下列的一般通式
据信脂肪酸及儿茶素化合物通过抑制5α-还原酶而影响雄性激素的转换,其结果导致(a)限制了5α-二氢睾酮(5α-DHT)对靶器官的供应而且抑制了5α-DHT依赖的雄性激素作用,及/或(b)防止了睾酮或5α-DHT的其他雄性激素前体的代谢损失而且促进或维持依赖于睾酮或其他5α-DHT前体的激素作用。这些化合物可能通过控制器官的生成,血管生成及/或与其他化学剂的细胞相互作用而发生作用的。
除了睾酮或二氢睾酮之外的甾体也是5α-还原酶的底物。因此也可预期在此公开的脂肪酸及儿茶素化合物也会调节其他的3-氧代Δ4-类甾体的转换及活化,因此通过相同的机制控制其他甾体类激素的生物功能。使用本发明的脂肪酸及儿茶素化合物(特别是一些其衍生物)的优点之一是他们在活体内及活体外的相对稳定性。一般来说,人们可以制备出不容易被代谢、降解或掺入脂质结构或其他衍生物的衍生物。举例来说,稳定性可以通过由烷基化、环化、氟化等而提高。当然,人们不会制备可干扰脂肪酸或儿茶素功能的衍生物。某些脂肪酸及儿茶素对表现器官的专一性特别有效并且没有明显的副作用,因此在这种情况下人们将会选择制备不会明显增加副作用的衍生物。
如上述讨论,儿茶素的某些结构特征使得它们可以有效地用于一些特别用途,例如皮脂制造的抑制作用。此现象对於选择5α-还原酶有效抑制剂的脂肪酸亦然。如表1及表2所示,比较大量的多不饱和脂肪酸能够抑制5α-还原酶活性。虽然甘油酯、酯、腈类及氯化物在细胞结合测定中显示弱的活性,一些这些化合物似乎在细胞外或进入细胞之后被水解而形成游离脂肪酸。与游离脂肪酸相比较,可能更希望以甘油酯或其他衍生物形式来供给游离脂肪酸,因为甘油酯或其他衍生物比游离酸对於氧化较稳定及/或较不会马上被代谢。当然,这样的衍生物被认为是具有疗效的化合物。
一般来说,发明人已经观察到当脂肪酸化合物被用以抑制5α-还原酶活性的时候,脂肪酸碳链的长度及分子里双键的位置及数目似乎与活性有关。观察到的最高的活性为碳数为14或更多以及双键数为1(较佳为2或更多)的时候。不饱和脂肪酸的效力取决於碳链中双键的位置。
除某些脂肪酸之外,经证实儿茶素及没食子儿茶素的五倍子酸酯是有效的5α-还原酶抑制剂。这类抑制剂包括较大群的相关化合物,其中有一些已经被分离出来而且已经被鉴定。这些化合物被发现於一些类型的植物树皮及树叶中,特别是茶,更特别是在绿茶中。五倍子酰基取代的儿茶素作为5α-还原酶抑制剂时显示出令人吃惊的活性。这些化合物包括儿茶素五倍子酸酯(CG),表儿茶素五倍子酸酯(ECG),表 儿茶素五倍子酸酯(EGCG),其光学异构体,和共轭化合物例如茶黄素及茶黄素单(或双)五倍子酸酯。后面的化合物是发酵的茶(包括红茶)的成分。
发明人测定出有活性的儿茶素五倍子酸酯在他们的分子中有三个独特的基(a)一个3-黄酮醇取代基;(b)一个3′,4′,5′-三羟基苯(gallolyl)基连接到黄酮醇的2-位上;和(c)五倍子酸与黄酮醇的3-OH形成酯键(五倍子酰基)。此三个基可以独立地起到抑制作用,但是他们对於5α-还原酶的效果似乎具有协同作用。某些合成的五倍子酸酯衍生物(例如五倍子酸甲酯及五倍子酸正丙基酯,3,4,5-三羟基苯甲酰胺,五倍子酸及焦 酚)的活性不如儿茶素五倍子酸酯,表明单独的3,4,5-三羟基苯基或五倍子酰基的结构不足以形成高抑制活性。五倍子酸辛酯被发现具有低抑制活性,此表明对於抑制活性而言儿茶素五倍子酸酯的黄酮醇基可以被有相似几何结构的其他基团所取代。基於儿茶素或表儿茶素与其五倍子酸酯衍生物相比有较低的活性,高5α-还原酶抑制作用所需的必需结构特征似乎是一个酰基(五倍子酰基)或一个三羟基苯基,它与黄酮醇形成酯或醚键。
与脂肪酸化合物类似,发明人预期某些活性的儿茶素五倍子酸酯可能不容易进入靶细胞。然而,这些抑制性化合物的羟基进行酯化应该提高这些化合物进入靶细胞的能力。一旦进入这些细胞内,酯将会很容易地被酯酶水解成醇(例如,表 儿茶素五倍子酸酯),它能抑制5α-还原酶(Williams,1985)。
本发明的另一方面,γ-亚麻酸(γ-LA)被发现是特别强的5α-还原酶抑制剂。γ-LA在已溶解的微粒体中抑制5α-还原酶的能力显示γ-LA的抑制能力可能不是刻板地取决於内质网膜的天然来源。脂肪酸抑制剂可能通过与还原酶及/或其他对还原酶活性至关重要的成分互相作用而起作用。抑制性脂肪酸也可能作用于或增强其他内源性的抑制剂或者干扰可能增强还原酶的脂质。对5α-还原酶(E)反应提出的机制(Brandt et al,1990)包括下列的步骤
+Testosterone (T) +H+NADPH+E[NADPH-E]←(A)→[NADPH-E-T]→[NADP+-E-5α-DHT]-(b)→5α-DHT+[NADP+-E]→NADP++E令人惊讶的是脂肪酸的二种反式异构体,即反油酸及反亚油酸,在[3H]4-MA结合测定中具有低的抑制活性,然而在酶的测定中仍然与其顺异构体,油酸及亚油酸,一样强。顺式不饱和脂肪酸可能抑制[NADPH-E-T]的形成(步骤a);然而反式异构体在形成三元配合物之后在点上作用(步骤b)。
在某些具体实施例中所公开的方法可用於减少雄性激素依赖性器官的重量。发明人已经显示某些脂肪酸及儿茶素对减少雄性激素依赖性器官的重量有效,这包括包皮腺、腹侧前列腺、背外侧前列腺、精囊、凝结腺,及在高剂量下包括睾丸。一些脂肪酸经观察具有此种作用。对5α-还原酶显示最大抑制活性的化合物最为有效。在一优选的具体实施例中,γ-LA表明对於减少雄性激素依赖性器官的重量特别有效;特别对腹侧、前列腺及包皮的器官。显然较大范围的一类长链多不饱和脂肪酸在减少雄性激素依赖性器官的重量方面会有所需要的作用。人们对於此类脂肪酸的选择将会基於,举例来说,在活体内的稳定性,施用的方便以及以释放出活性的形式。某些酯或醚衍生物预期将会被细胞酯酶水解成一种活性形式;例如甘油酯类。特别优选的长链多不饱和脂肪酸是γ-LA。这种脂肪酸以及有关的衍生物及化合物特别有效。仔细考虑的衍生物为酯类,特别是可水解的酯类。
本发明也包括通过将细胞与含有至少一种儿茶素化合物的组合物接触以抑制细胞中的5α-还原酶。一些儿茶素包括(-)表儿茶酚五倍子酸酯(ECG)和(-)表儿茶素五倍子酸酯(EGCG)可以减少雄性激素依赖的器官、腹侧前列腺及包皮器官的重量;然而,在某些情况下EGCG也能减少体重达35%,表明这种化合物及其有关种类有可能用作减肥剂。因为它无毒或无明显副作用,使得EGCG用在减肥计划中将是理想的。EGCG及有关的儿茶素自然地存在於几类植物中,包括茶,因此它作为食品的成份之一已有很久的安全历史。
EGCG,EGC及γ-次亚麻油酸是减少雄性激素敏感性器官重量的儿茶素及脂肪酸的特别例子。发明人相信这些化合物减少了男性激素敏感的器官中脂质或皮脂的产生,例如,在腹侧及背侧的外侧前列腺、凝结腺,及精囊。EGCG及ECG在结构上的类似处在于,EGCG有八个羟基而GCG有七个羟基,然而EGCGC在促进重量减少上比ECG明显地更为有效。EGCG对脂质产生或器官重量的效果可能取决於EGCG与大分子的特异相互作用,而该作用对调整细胞-细胞或蛋白质-蛋白质的相互作用,或调节酶活性或基因表达对EGCG是特异的。用天然的或合成的化合物调节或调整相互作用或EGCG受体的功能或蛋白质复合物预期将提供一种方法以控制脂质的合成或雄性激素敏感器官的生长及功能。
本发明更特别的方面在於,发明人发现某些儿茶素,特别是EGCG,能被施用以促进体重降低,该作用有差别地影响整体体重及前列腺重量降低。一个特别的例子表明,一定百分比的整体体重降低,而前列腺的百分比重量降低是前者的三倍。体重及器官重量的降低似乎是由於EGCG干扰了控制身体及器官重量的途径中的某共通步骤。EGCG及相关化合物可能影响和干扰调节特定脂质合成或积聚的受体大分子(或许含有蛋白质)。脂质能调节基因的表达、细胞的发展及分化,及器官的生长。细胞及器官中脂质代谢的特异干扰可能控制器官的生长,特别是,前列腺皮脂器官,包皮器官及其他分泌器官。在某些应用中,预期这些器官的良性的或异常的生长或癌可以通过施用儿茶素相关的化合物而得到治疗或甚至预防。
已表明儿茶素化合物会抑制或减少人类前列腺及乳腺癌细胞的生长,发明人已表明儿茶素化合物的效力取决於这些化合物被施用到实验动物的方法。发明人发现腹膜内的施用比口服更有效很多。预期直接应用到有肿瘤的前列腺将会非常有效。发明人证实在动物模型中EGCG令人惊讶地有效的抑制和甚至减少人类前列腺及乳腺肿瘤的大小。其效果用EGCG阐明;然而,结构上相似的儿茶素化合物也应该是有效的,特别是那些结构上类似的EGCG而且与EGC相比有着至少一个额外羟基的化合物。因此,含有八个羟基的EGCG类化合物明显地比含有七个羟基的EGC类化合物在减少体重方面更为有效。有着这种一般结构的化合物预期在人类前列腺癌的化学预防及化学治疗上特别有效。具有部份结构类似于EGCG部份结构的化合物预期也是有效的。
本发明的一个重要方面,发明者已显示可以用药物组合物有效地治疗前列腺和其他癌症,该组合物包含有一种睾酮组合物,如睾酮丙酸酯和这里公开的已发现对降低动物中前列腺肿瘤大小有效的一种或多种儿茶素类和/或脂肪酸的新组合。已表明这些新的睾酮和脂肪酸/儿茶素组合物令人吃惊地可用以治疗这些和其他癌症。已经想到组合物配方中所用的睾酮可包括睾酮的衍生物和各种其他的盐,以及等等,所有这些将是有用的并是在本公开发明的范围内。在治疗方法使用的这些组合物也在这里公开并申请权利要求。
为了测定这里描述的组合物的效果,发明者已显示可以定量脂质产生的有用动物模型是大鼠模型。在大鼠皮脂腺中,如同人类中,皮脂脂质是在中间细胞中由平滑的内质网所合成(SER)。在电子显微镜检验之下看到的SER体积密度取决於雄性激素(Moguilewsky andBouton,1988)。既然抑制雄性激素的作用能引起此密度的减少,全身或局部对大鼠施用的受测试化合物的效力就可通过测量他们减少SER体积密度的能力而加以评估。
这里公开的脂肪酸和儿茶素组合物能作为抗雄性激素剂局部或全身应用。为此种目的的制剂包括载体,保护剂,抗氧化剂(例如维生素C或E及各种儿茶素及多酚),及其他药物的及药理的试剂。在优选的实施例中,组合物的另一个组份是睾酮组合物和/或一种或多种儿茶素组合物。也预期此脂肪酸能用在一种涉及分子识别的输送系统中而被输送至靶的部位。此一输送系统可能包括,在其他方法中,脂质体技术或免疫的装置。
能调节受体和大分子的生成或细胞作用的天然或合成化学物可被用於治疗一些疾病如肥胖,BPH,前列腺癌,皮肤疾病,秃头,乳腺肿瘤,各种肿瘤及多毛症等,它们涉及脂质合成,身体重量,及/或雄性激素功能。
发明人用动物模型来显示公开的组合物的效力,特别是脂肪酸和儿茶酚化合物如EGCG及其相关化合物在多种癌上的效力。举例来说,Shionog肿瘤及其他肿瘤诱导的肿瘤可在雄性大鼠中研究。人的乳腺及前列腺癌细胞生长可在裸鼠中研究。或者,致癌物诱导的啮齿动物乳腺肿瘤或转基因鼠中诱发的其他癌或大鼠中的Dunning肿瘤也可用这里公开的γ-LA和儿茶素组合物对他们进行化学治疗来分析。
本发明的其他内容包括筛选皮脂生成抑制剂的方法。虽然其他的动物模型可被使用,发明人发现使用人来进行筛选是方便的。此方法基本上涉及在人体的某部位有皮脂腺的皮肤区域上施用某一疑为能抑制皮脂生成的化合物。这些区域包括人的额,及脸及手的其他区域。理想地是,该应用将包含两侧相似的区域,一个指定为对照区而另一个为测试区。然后研究者将会测量这些区域的皮脂生成。可使用几种测量皮脂产生的方法;然而,一种方便的方法是使用干净的胶布盖在每个区域一段固定长的时间。此段时间方便地为30到40分钟,但可以短些或长些;例如10分钟或2到3或更多小时。然而,较长的时间通常将会造成较多的皮脂产生而且只有在皮脂产生缓慢或难以获得时才被使用。使用干净的胶布特别方便,因为使用后胶布可以自受试体移去,然后沉积在胶布上皮脂的量通过一些方法和光散射或透光率降低等方法加以测定。
发明人发现不管所用的测量方法为何,每一次测量对皮溢的产生指定一个相对和任意的值是迅速且方便的。因为对照区域的胶布可能被用作相对对照,使用任意值可避免了绝对测量及外部对照样品的需要。已发现当测试区域与对照区域的比值低於将测试化合物应用於对照区域前的比值时,该测试化合物是用於皮脂抑制的适当候选物。当用这种筛选方法鉴出之后,显示较低比值的化合物将会是有用的局部试剂。
本发明所公开的脂肪酸及儿茶素化合物的使用,即用包含一种或多种本发明化合物的治疗有效量的药物组合物,在某些情况中与其他治疗剂及载体的组合,或在天然或合成产品中,可适于治疗各种不同的疾病。在具体实施例中,例如在治疗前列腺肿瘤和前列腺癌,发明人已显示在药物制剂中包含睾酮,可惊人的增加这些化合物在治疗特定疾患,减少癌症的扩散和程度的效果。这些疾病包括,但是未必限制於,由於过度雄性激素活性所产生的影响,举例来说,男性类型的秃头、女性多毛症、痤疮、BPH、及前列腺、乳腺、皮肤及其他器官的癌(包括肿瘤)。
这些药物组合物包含一些脂肪酸,儿茶素,儿茶素衍生物,单独或与睾酮的组合物一块组合,能经由局部或内部的途径被施用,这包括口服、注射、或其他的方法,例如局部的乳霜、洗剂、生发剂、头皮保养产品,或透皮胶布应用,单独或与本发明其他化合物及或与其他药物、药品添加剂、或药物化合物组合使用。不饱和脂肪酸及儿茶素的组合对临床或化妆用治疗将会是有益的,因为他们各自可选择地控制不同的酶或同功酶的活性,而且他们可起到彼此稳定或在化合物或产品的制备、应用或储存期间保护活性化合物免受化学的,生物的或环境条件的影响而降解或变质。经证实这些化合物的一部份似乎可以调节甾体代谢,而且籍此可影响正常或变异的激素受体的功能。因此,这些组合物对治疗雄性激素及其他激素敏感或不敏感的疾病或肿瘤是有用的。本发明的化合物对激素及抗激素作用机制的研究也很重要。
当拟用口服给药途径时,儿茶素组合物可用其原来形式,即草药,食物,茶等,以直接或作为含几茶素化合物的各种天然产物的提取物的形式摄入。在一些实施例中,可能希望将组合物与维生素或抗氧剂和/或GLA或其他类似物组合后再服用。当希望与睾酮和一些组合物一块服用时,可将睾酮用任一所希望的标准方法,例如静注、腹腔内注射,皮注或口服等一块施用。
本发明中术语“接触(contact)”、“已接触(contacted)”、及“接触中(contacting)”被用来描述一种过程,通过该过程将有效量的药剂,例如一种5α-还原酶抑制剂,与靶细胞进入正确的相互位置。本发明中术语“细胞(cell)”指的是能够合成脂肪酸的细胞。所谓有效量意即能给出治疗上所希望的5α-还原酶抑制作用的浓度所需要的药物数量。
虽然本发明主要描述其临床用途,就像本发明实践中所用的,业已被技术界所接受的抑制皮脂产生的模型所示,但本发明的方法及组合物亦适用於当将本发明的组合物一块组合时,筛选5α-还原酶刺激性质的候选物质的方法。此种方法包含制备不同的5α还原酶的同功酶;其中包括基因工程化并在细胞中表达的同功酶;获得候选物质;使该候选物质与脂肪细胞的 养物接触;同时使该养物与具有5α-还原酶抑制活性的一种本发明的组合物接触;及测定5α-还原酶抑制作用的程度。使用本发明的组合物的5α-还原酶抑制作用也可利用这种方法以提供基腺对照;以决定候选物质的效果,及测试此候选物质是否协同地增加在本文公开的组合物的5α-还原酶抑制活性。本发明中术语“候选物质(candidate substance)”定义为任何自然或经合成的物质或化合物,它们被疑为能影响5α-还原酶活性。
3.图示简要说明本说明书的图示部份用来进一步展示本发明的某些方面,通过参照一个或多个这些图并结合本文具体实施例的详细描述,可以对本发明有更好的了解。


图1.化合物的一般式,为本发明公开的部份。R1,R2,R3,R4,R5,R6,R7,R8或R9可为氢,氟或其他卤素,或甲基,乙基,丙基,其他烷基或芳基;一个或两个氟或其他卤素原子可以取代连接到任一碳原子上的氢,而“l”,“m”,“n”,“p”,“q”,“r”和“t”各自独立地为0或从1到50的整数,优选为1到约30。与分子相连的烷基或芳基和氟或者其他卤素可以保护他们免遭不饱和双键的氧化和α、β或ω氧化而降解。也包括这些脂肪酸的代谢和氧化产物,因为预期它们也调节5-AR的活性。当其中R代表烷基或芳基时,-CH和-OH基也可是取代的形式(-CR和/或-OR)。也包括酰化物和酯,当水解时,它们可形成所示的羧酸。“X”可以是碳,硫,氧,或-NH-。该X-键不限于连接碳2和在链末端的碳;该键可在碳链中任二碳之间。为防止脂肪酸氧化降解,于骨架碳链中加入一个或二个硫原子可能是有用的。总碳链长度可以是6到28。
图2.可用以调节5-AR活性的脂肪酸。
图3.脂肪酸的氟取代的和环状衍生物的例子,为本发明公开的部份。
图4A.儿茶素衍生物的一般结构。
图4B.五倍子酰基部份的结构。
图5.重要儿茶素类的结构。
图6.重要儿茶素五倍子酸酯类的结构。
图7.新类型的5α-还原酶抑制剂。R1和R2为烷基、烯丙基、或具有通式VII,VIII,IX,X,XI,XII,的基团,R3和R4为具有通式XI或XII的基团,R5和R6为氢或卤素原子,R7,R8,R9,R10,R11,R12,R13,R14,R15,和R16为氢、卤素,羟基,甲基,乙基,甲氧基,乙酰基,或乙酰氧基,R是氧,氮,或硫原子。
图8.一男性中γ-LA对其前额皮脂生成的抑制作用。
图9.一男性中儿茶素对其前额皮脂生成的抑制作用。
图10.局部应用睾酮(T)及二氢睾酮(5α-DHT)对仓鼠胁腹器官的刺激。未成熟经阉割雄性仓鼠的右胁腹器官(每组五只)仅局部地应用5μl/天的乙醇溶液(C),或含有0.5μgT或5α-DHT的乙醇17天。图示每一组的一只代表动物。
图11.睾酮(T)对施用部位(右侧胁腹器官)刺激的效果与对侧位置(左侧胁腹器官)的比较。未成熟经阉割雄性仓鼠的右侧胁腹器官受到T(0.5μg/天)处理17天。左侧胁腹器官则未处理。
图12.仓鼠胁腹器官的色素斑之睾酮-刺激生长受到γ-LA抑制,但是未受到硬脂酸抑制。雄性仓鼠(4周龄)被阉割,然后在2星期之后开始处理并进行18天。这些动物用5μl的乙醇(C)处理。该乙醇含有睾酮(T,0.5μg),T(0.5μg)+γ-LA(LA,1毫克),T(0.5μg)+硬脂酸(SA,1毫克)或T(0.5μg)+SA(2毫克)。只有右胁腹器官受到处理而且显示於图中。从这些动物收集的资料示於表7。
图13.将γ-LA施用于完整雄性仓鼠的右胁腹器官以对受雄性激素刺激的色素斑的生长产生局部的抑制作用。如表7所述,4周龄完整雄性仓鼠的右胁腹器官被处理156天。该处理包括单用赋形剂(乙醇)或γ-LA(1毫克/胁腹器官/天)的供局部用溶液。图中显示2只代表性仓鼠的右胁腹器官。
图14.γ-LA局部施用在完整雄性仓鼠的右胁腹器官,仅抑制应用的部位而不抑制对侧(左边)胁腹器官。图中显示表7所述研究的第三组中的一只代表性完整仓鼠用1毫克γ-LA处理的情形。
图15.γ-LA减少胁腹器官的色素斑之生长及毛发长度。这里所示的仓鼠与表7显示的动物相同。图示代表最后二天胁腹器官上毛发生长情形。用1毫克γ-LA/5μl乙醇/天(A)的处理组的胁腹器官上之毛发要比用赋形剂(C)处理的仓鼠之毛发颜色明显地较淡且长度较短。
图16.用γ-LA处理完整雄性仓鼠对色素斑生长速率的影响。4周龄青春期前的完整雄性仓鼠右胁腹器官仅仅局部地应用赋形剂(对照组),γ-LA1毫克或2毫克/5μl乙醇/胁腹器官/天。每一处理组有10只动物。色素斑区域的指数在开始(第10天)及处理后不同的天数加以测量。左胁腹器官仅受用赋形剂处理。所有3组对照组仓鼠之左胁腹器官的色素生长速率都与对照组右胁腹器官的色素斑生长速率相似。
图17.EGCG对裸鼠中肿瘤大小的抑制作用。
图18.EGCG治疗之后裸鼠中肿瘤大小的减小。
图19.EGC及EGCG对於仓鼠腹侧前列腺大小的影响。
图20.EGC及EGCG对仓鼠包皮腺大小的影响。
图21.EC、ECG,EGC及EGCG对大鼠体重增加的影响。
图22.大鼠停止接受EGC及EGCG处理以后正常体重恢复的情形。
图23.在去势雄性裸鼠中,雄激素-特异性地抑制LNCaP 104-R2肿瘤的生长。阉割裸鼠并用LNCaP 104-R2细胞注射。四周后,对长有肿瘤(240±20mm3)的裸鼠植入20mg的下述甾体植入片睾酮(T),睾酮丙酸酯(TP),5α-二氢睾酮(5α-DHT),5β-二氢睾酮(5β-DHT),甲羟孕酮(MPA),或17β-雌二醇(E2)。每周测量肿瘤大小。每个点代表6至15肿瘤的数据。也阉割对照的裸鼠但并不植入甾体小丸。
图24.在阉割的雄性裸鼠中用睾酮丙酸酯(TP)刺激LNCaP 104-S的生长。将LNCaP-S细胞注射入正常的雄性裸鼠并在四周后,将带有肿瘤(260±20mm3)的裸鼠阉割并分成二组。一组不受另外的处理(C),而另一组小鼠植入睾酮丙酸酯(C+TP)。每周测量肿瘤的大小。每一点代表5个肿瘤的数据。
图25.在阉割的雄性裸鼠中睾酮-依赖性的抑制了和非那甾胺-依赖性的刺激了LNCaP 140-R2肿瘤的生长。用LNCaP 104-R2细胞注射阉割的裸鼠,一些小鼠在4周后接受了TP移植。然后又在另外的三周后将未用TP处理的小鼠(883±63mm3)分成2组一组用TP植入(■)而另一组不植入用作对照(○)。用睾酮丙酸酯(TP)处理的小鼠在四周时开始有小肿瘤(88±13mm3)并分成3组原来在第四周植入TP的小鼠(见图1)不变任何其他处理(●);在第四周植入TP的小鼠并于第七周植入非那雄胺(FS)(▲);在第四周植入TP的小鼠与第7周移去植入的TP(□)。每周测量肿瘤大小。每点代表5个肿瘤的数据。
图26.在阉割的雄性裸鼠中睾酮和非那雄胺对LNCaN 104-R2肿瘤生长的影响。图中概括了研究中有代表性的小鼠。A阉割的小鼠在注射LNCaP 104-R2细胞7周后;B如A中的带有LNCaP 104-R2肿瘤的小鼠并在第7周植入TP;1周后拍照;CB中的小鼠,3周后;DA中的小鼠但在第4周植入TP并在第7周拍照;ED中的小鼠在第7周移走TP并在4周后拍照;F如D所示处理的小鼠,在第7周用非那雄胺植入,并在4周后拍照。
图27.在裸鼠中非那雄胺对LNCaP 104-S和MCF-7肿瘤生长的影响。将人前列腺LNCaP 104-S细胞或人前列腺癌MCF-7细胞各自注射入正常的雄性或雌性裸鼠。在肿瘤生长至1,400±430mm3时,将裸鼠分成二组。一组接受非那雄胺(FS)的植入而另一组作为对照。每一点代表4个肿瘤的数据。
图28A.在LNCaP肿瘤中雄激素受体和前列腺特异抗原(PSA)的组织学和免疫细胞化学的定位。取自阉割的雄性裸鼠的LNCaP 104-R2肿瘤的苏木精和苏红染色切片。
图28B.在植入睾酮丙酸酯1周后,取自阉割的雄性裸鼠的LNCaP104-R2肿瘤。
图28C.植入睾酮丙酸酯4周后小鼠的LNCaP 104-R2肿瘤。
图28D.用免疫细胞化学染色(过氧化物酶-二氨基联苯胺)阉割雄性裸鼠中LNCaP 104-R2中的雄激素受体。
图28E.用睾酮丙酸酯植入1周后裸鼠的LNCaP 104-R2肿瘤中的PSA。
图29.睾酮丙酸酯(TP)影响mRNAs对AR,C-myc,PSA和β2-R2肿瘤的表达。用32P-标记的反义探针的RNase保护测定的放射自显影图显示于昆虫中。该图代表定量的保护的探针用以标化保护的β2-MG探针的量。用LNCaP 104-R2细胞注射入雄性裸鼠并在注射细胞7周后,植入TP并在0,3,7,14天后切除肿瘤供RNA提取和RNase保护分析。
4.说明性的具体实施例之详述4.1甾体激素及5α-还原酶活性4.1.1雄性激素雄性激素是六大主要甾体激素之一。甾体激素在靶器官的选择性细胞中与特定受体蛋白质形成复合物(Jensen et al.,1968;Liao,1975;Gorski,et al.,1976)。甾体受体是能调节基因表达的转录因子的大家族之成员,该功能取决於特定激素配位体与适当受体的结合(Evans,1989;Beato 1989;O′Malley,1990)。
甾体激素对其受体之专一性及亲和性的研究使人们得以了解甾体和受体结构及生物活性、靶器官专一性及许多抗激素作用的机制之间的关系,这包括“竞争性抗雄性激素”。“竞争性抗雌性激素”在这里定义为那些抗雄激素,它们可与受体相互作用而且竞争性地防止受体结合活性雄性激素(Fang and Liao,1969;Liao et al.,1973;Liao et al.,1974;Chang and Liao,1987;Liao et al.,1989),虽然应该注意的是具有抗雄性激素活性的一些化合物可能依不同的机制作用。
在睾丸产生的雄性激素刺激雄性生殖器官的分化,包括阴茎、阴囊、前列腺、精囊、副睾、及输精管。随着青春期的来临,雄性激素生成的增加促进这些组织的生长。精子形成需要雄性激素,它并且加速骨骼肌生长及骨形成。在中枢神经系统,它刺激性欲而且产生促性腺激素分泌的反馈抑制。在皮肤,雄性激素增加皮脂腺及顶泌腺的大小并将腋部、耻骨区的毛发及胡须转变成较粗较长的恒久毛发。雄性激素使得声带变粗而且降低声音的音调。雄性激素也刺激造血。
在例如前列腺的许多器官中,雄性激素之作用取决於通过NaDPH-依赖的5-AR将睾酮转化成5α-二氢睾酮(5α-DHT),然后后者与5-AR结合而发挥它的生物功能(Liao et al.,1989)。抑制5α-还原酶限制了5α-DHT的可获得性但不是睾酮,因此,5α-还原酶抑制剂可用来选择性的治疗5α-DHT-依赖性的疾病,例如良性的前列腺增生、前列腺癌、多毛症、男性形式秃头和痤疮,而不会影响睾酮依赖的睾丸功能、性行为、及肌肉生长(Russell and Wilson,1994;Hipakka and Liao,1995)。大部分5α-还原酶抑制剂为甾体或具有与甾体类似结构的化合物。然而,本发明也已经证实特定的脂肪酸及儿茶素类,包括γ-LA及EGCG,是有效的5α-还原酶抑制剂。
已知多不饱和脂肪酸能纠正脂肪酸缺乏症,脂肪酸缺乏症能造成皮炎、肾脏坏死,不孕症,及心血管疾病(Herold and Kinsella,1986;Phillipson et al.,1985;Zibon and Miller 1990)并也能显示抗肿瘤活性。(Begin,1990;Karmali et al.,1984)。许多不饱和脂肪酸是哺乳动物膜的必需成分,典型地为酰化形式的三甘油酯及磷酯(Lands,1965)。
花生四烯酸可作为前列腺素及白三烯的生物合成中特定的前体(Needleman et al.,1986)。这些不饱和脂肪酸的代谢产物是发炎的介质。不饱和的必需脂肪酸涉及影响痤疮的饮食因素。然而,这种论点尚未有坚定的支持,而且尚未有基於这种观念出现成功的治疗方法。(Downing et al.,1986)。合成的视黄素和AR结合竞争性抗雄性激素已经用在一些个体中获得对痤疮的治疗改善。这些抗痤疮剂增加了皮脂中的亚油酸比例的同时并伴有平行的临床改善(Wright,1989)。
4.1.2.5α-还原酶因此,不同类型的5α-还原酶选择性抑制剂可用於对雄性激素作用的研究及雌性激素-依赖性肿瘤和其他疾病的治疗。
已显示大鼠及人中的二种5α-还原酶同功酶。在人体中,第1及第2类同功酶只有50%胺基酸序列相同(Anderson et al,1991)。第1类同功酶具中性至碱性最适pH值而且对5α-还原酶抑制剂非那雄胺较不敏感。第2类同功酶具酸性最适pH值而且对非那雄胺的抑制作用要比第1类同功酶敏感30倍。在前列腺中,第2类同功酶为主要的形式(Anderson et al,1991),然而,在头皮中第1类同功酶占大多数(Harris et at,1992)。在大鼠中,经证实其肝主要含有第1类同功酶(Berman and Russell 1993);然而,前列腺含有第1类同功酶(60%)及第2类同功酶(40%)(Normington and Russell,1992)。已发现γ-LA可在肝及前列腺中抑制5α-还原酶的活性(Liang andLiao,1992)。因此,γ-LA为一种第1及2类同功酶的抑制剂。仓鼠胁腹器官中的5α-还原酶同功酶还没有在分子阶段被鉴定。然而,仓鼠侧面中的5α-还原酶活性之最适pH值为8(Takayasu and Adachi,1972),表明胁腹器官中的主要5α-还原酶同功酶可能是第1类,而不是第2类同功酶。
在同一个体中,已发现5α-还原酶的活性在秃头皮肤中高於多毛的皮肤中(Bingham and Shaw,1973)。一些自发性多毛女性有正常循环水平的睾酮,但是在他们受影响的皮肤中要比非多毛的女性皮肤具有较高的5α-还原酶活性(Serafini and Lobo,1985)。也有报告指出有痤疮的皮肤具有较高的5α-还原酶活性(Sansone and Reisner,1971)。
基因证据也支持5α-DHT在BPH及上述皮肤症状的发展上起重要作用。在先天的5α-还原酶缺乏的男性中,他们的前列腺在青春期之后仍然很小或无法触及。他们并不出现痤疮,颞的发线后退,或秃头。与他们的父亲及兄弟相较之下,他们的胡须稀疏而且身体毛发较少。
4.2脂肪酸代谢在α,β及ω位置氟化的脂肪酸(Gershan and Parmegiani,1967;Pattison and Buchanan,1964;Gent and Ho,1978)及ω-油酸(Tosakiand Hearse,1988)经鉴定存在於植物及微生物中,而且已被化学合成。这些氟化的酸大部份是有毒的。一些氟化脂肪酸降解后能产生氟代醋酸,氟代醋酸能掺入至氟代柠檬酸酯中然后能阻断乌头酸酶作用。此作用能抑制柠檬酸循环及细胞的能量产生(Hall,1972)。氟化脂肪酸常用在生物系统中研究脂肪酸的降解、代谢及转运(Stoll et al,1991),以及蛋白质的脂质相互作用及膜功能的生物物理学的研究(Gent et al,1981)。
生物素是主要的羧化酶的一个辅因子,需要它用于脂肪酸的有序制造和代谢。生物素缺乏引起的秃头能通过对病人施用生物素而得到完全治疗。口服和皮肤施用不饱和脂肪酸也能改善生物素依赖的皮肤病状态,这包括头发生长(Munnich.et al,1980;Mock et al,1985)。脂肪酸的效果显然是由於对缺乏脂肪酸的补充但与男性类型秃头所涉及的雄性激素作用的调节无关。
4.3.药物组合物本发明的水性组合物包含有效量的5α-还原酶抑制剂溶解于或被分散与可供药用的水性介质中。“可供药用的”一词指的是,当用于人体时不产生过敏或相似的不适当反应的分子实体及组合物。
含有此种抑制化合物作为活性成分的水性组合制剂在技术界是周知的。典型地,此类组合物被制成可供注射的溶液或悬浮液;也能制成固体剂型,於注射前通过加入液体而形成溶液或悬浮液。该制剂也能被乳化。
在此处公开之药物组合物可经口服用,举例来说,与惰性稀释剂或与可同化的可食用的载体一道,可将他们装入硬的或软的胶囊中,或可将他们压缩成片剂,或将他们调制成控制释放剂,例如透皮的及渗透的压力装置、可注射装置及可植入装置,或他们可直接地被掺入日常饮食的食物中。至於经口服的治疗剂,该活性化合物可能掺入赋形剂中并用以可服用的片剂形式、口腔片、糖锭、胶囊、配剂、悬浮液、糖浆、糯米纸囊片、及等等。当然,组合物和制剂可以变化而且可能方便地是100%(以纯化合物应用)。在该治疗上有用的组合物中活性化合物的量为在於可得到适当的剂量。
片剂、糖锭、丸剂、胶囊及其类似物也可含有下列物质粘合剂,如西黄蓍胶、阿拉伯胶、玉米淀粉、或明胶赋形剂,例如磷酸二钙;崩解剂,例如玉米淀粉、马铃薯淀粉、藻酸及其类似物润滑剂,例如硬脂酸镁和甜味剂,例如蔗糖、乳糖或也可加入糖精或矫味矫臭剂,例如薄荷、冬绿树油,或樱桃调味料。当剂量单位形式是胶囊的时候,除上述类型的物质之外,它可含有液体的载体。一些其他物质可能作为包衣存在或修饰剂量单位的物理形状。举例来说,片剂、丸剂、或胶囊可能被包上一层片胶,糖衣或两者。酏剂的糖浆可能含有活性化合物蔗糖当做甜味剂对羟基苯甲酸甲酯或丙酯作为防腐剂,颜料及香料,例如樱桃或柑橘调味料。当然,用在制备任何剂量单位形式的任何物质应该是药物纯的并在所用的数量上基本上是无毒的。除此之外,活性化合物可能被掺入至持续释放剂型及配方中。
活性化合物也可能通过肠胃道外或腹膜内给药。作为游离碱或可供药用的盐之活性化合物的溶液能在水中适当地与例如羟丙基纤维素的界面活性剂混合而被制备。分散液也能在甘油、液体聚乙二醇、其混合物及油中制备。在正常储存及使用情况下,这些制剂含有防腐剂以防止微生物的生长。
适用於注射用的药物剂形包括无菌的水溶液或分散液及无菌的散剂以供使用时制备无菌的可注射溶液或分散液。在所有情况下剂形必须是无菌的而且必须是流体使得容易注射。在制造及储存的情况之下它必须是稳定的而且必须防腐以避免例如细菌及真菌等微生物的污染作用。载体可能是溶剂或分散介质含有,举例来说,水、乙醇、多元醇(例如,甘油、丙烯乙二醇、及液体的聚乙二醇,及其类似物),其适当的混合物和菜油。可以保持适当流动性,举例来说,使用包衣,例如卯磷脂,在分散剂的例子中可通过保持所需的粒子大小以及使用界面活性剂。防止微生物作用可使用各种不同的抗菌性及抗真菌剂,举例来说,对-羟苯甲酸酯、三氯叔丁醇、酚、山梨酸、乙汞硫代水杨酸钠,及其类似物。在许多情况下,优选为包括等张剂,举例来说,糖或氯化钠。可注射组合物的延长吸收可在组合物中使用延长吸收剂,举例来说,单硬脂酸铝及明胶。
制备无菌的可注射的溶液可通过在适当的溶剂中加入需要量的活性化合物及按需要,将上面列举的各种不同的其他成分,随之过滤灭菌。一般来说,制备分散体可通过加入各种灭菌的活性成分到无菌的赋形剂中,而它含有基本分散介质及上面列举的所需其他成分。在无菌散剂制备无菌可注射溶液的例子中,制备的优选方法是真空干燥及冷冻干燥技术,它产生活性成份的粉末加上来自先前灭菌过滤的溶液产生的附加的所需要的成分。
这里所用的,“可供药用的载体”包括任何的和所有的溶剂,分散介质,包衣,抗菌及抗真菌剂,等张剂及吸收延迟剂及其类似物。对药物活性物质这些介质及试剂的使用在本领域中已是熟知的。除非任何传统的介质及试剂与活性成分为配合禁忌外,它们在治疗组合物中的使用是可预期的。补充的活性成分也能掺入组合物中。
为供经口施用,组合物可掺入赋形剂中并以不可摄食的漱口剂及牙粉的形式使用。制备漱口剂可将需要量的活性成分掺入适当的溶剂里,例如硼酸钠溶液(多贝耳氏溶液)。或者,活性成分可掺入含有硼酸钠、甘油及重碳酸钾的杀菌性洗剂中。活性成分也可被分散在牙粉中,它包括胶、糊剂,散剂及泥浆状物。治疗有效量的活性成分可被加入到可含有水、结合剂、研磨剂、调味剂、起泡剂、及湿润剂的一种糊状牙粉中。
组合物可被配制成中性或盐的形式。可供药用的盐,包括酸加成盐(与蛋白质的游离氨基形成)而且它是与无机酸或有机酸一起形成,该无机酸为例如盐酸或磷酸,该有机酸为例如醋酸、草酸、及酒石酸、苯乙醇酸,及其类似物。由游离羧基形成的盐也能衍生自无机碱类例如,钠、钾、铵、钙、或铁的氢氧化合物,及有机碱类例如异丙胺、三甲胺、组织氨酸、普鲁卡因及其类似物。
在配制后,溶液将会以与剂量配方匹配的形式而且该剂量为治疗性有效量而施用。这些配方可容易地以不同的剂量形式,例如可注射溶液、药物释放胶囊及其类似物而施用。
在其他的具体实施例中,可能欲用本发明所公开的组合物局部应用。此种组合物可配成乳霜,洗剂,溶液或以固体的形式,取决于具体的应用。供局部应用的可供药用的赋形剂是本领域技术人员所熟知的(见,“Remington′s Pharmaceuticals Sciences”15th edition)。在这里公开的组合物的剂量的变化,将必然地取决於具体的患者及欲治疗的疾患的性质。
在水溶液中的肠胃道外给药,举例来说,如果需要溶液应该被适当地缓冲而且该液体稀释液首先要与充足的盐水或葡萄糖形成等渗。这些特定的水溶液尤其是适用於静脉内,肌内,及皮下及腹膜内给药。与这相联系,能使用之无菌水介质是本领域技术人员所熟知的。举例来说,可将一个剂量溶解在1毫升等张NaCl溶液中,然后或者加入1000毫升皮下输液中或注射到预定位置,(例子见“Remington′s PharmaceuticalSciences”15th Edition,pages 1035 to 1038 and 1570 to 1580)。取决于欲治疗的个体的情况,剂量必然会有一些变化。但无论如何,负责给药的人将会对个案决定适当的剂量。而且,对人给药时,制剂应该符合FDA生物标准局要求的无菌、热源、一般安全性及纯度标准。
4.4.候选物质的分析在进一步的具体实施例中,本发明关注一种可用于鉴定抑制5α-还原酶活性的新试剂的方法。这些新试剂可称为“候选物质”。不同类型的5α-还原酶同功酶被发现存在於各种器官的不同细胞中的不同组合中(Russel and Wilson,1994)。因此,期望同功酶选择性抑制剂用於治疗性目的。类型1及类型2的5α-还原酶之来源为应用基因工程使大鼠1A细胞仅含有类型1或类型2同功酶。大鼠1A细胞或微粒体被用来筛选同功酶选择性抑制剂。预期该筛选技术将会证明适用於任何抑制5α-还原酶或特定类型5α-还原酶活性的化合物之一般鉴定。发明人进一步认为就此而言,有用的化合物将不仅限於本发明所公开的具体组合物,而是这些组合物成份的任何类似物、衍生物、合成修饰物、或取代物,它们能在活体外或活体内有效地抑制这种活性。
因此,在筛选分析以鉴定抑制5α-还原酶活性的药物时,已提议分离来自例如植物、动物或甚至海洋、森林或土壤样品的天然来源的化合物,来用于分析以寻找存在潜在的有用药物试剂。应理解的是筛选的这些药物也可能来自化学组合物或人造的化合物。
活性化合物可能包括天然存在的化合物的碎片或部份或仅被发现为无活性的已知化合物的具活性的组合。
4.5抑制5α-还原酶活性的方法在更进一步的具体实施例中,本发明为是关于一种抑制5α-还原酶的方法,它包括使细胞接受一种有效浓度的5α-还原酶抑制剂,例如本发明所公开的一系列脂肪酸或儿茶素化合物之一,或依照候选物筛选分析具体实施例所鉴别出的一种候选物质。当然,这是本发明的一个重要方面,因为据信通过抑制5α-还原酶的活性,人们将得以治疗各种不同的疾病及癌症,例如与前列腺有关的癌及因不正常的雄性激素作用引起的疾病。据信使用这种抑制剂以阻断不正常的雄性激素作用将可用于治疗癌及疾病而且它们可被单独使用或与其他抗癌治疗方法,包括化学治疗、切除术、放射料法,及其类似方法一起使用。除了作为5α-还原酶抑制剂之外,本发明的化合物可能具有其他的作用而能导致抗肿瘤活性或抑制前列腺或其他器官的不正常生长。
5.实施例以下实施例阐明本发明的理论基础及实践。虽然,许多实施例是基于雄性激素的作用及雄性激素受体(ARs),它们也可用於其他甾体激素的功能而它是取决于或被5α-还原酶或其同功酶调节的。他们被包括以展示本发明优选的具体实施例。本领域中的技术人员应该了解,按照发明人所发现的有代表性的技术的实施例所公开的技术,在本发明实践中应用良好,因此可以认为它构成其实践的优选模式。然而,本领域的技术人员应该了解所公开的具体实施例中也可有许多变化,但仍能获得类似或相似的结果而并未脱离本发明的精神及范围。
5.1实施例1-对5α-还原酶活性的抑制作用5.1.1.分析哺乳类动物细胞中,5α-还原酶与细胞内膜,包括内质网膜及邻近核膜紧密结合。企图溶解并纯化5α-还原酶并未非常成功。因此,5α-还原酶活性的分析系通过测量整个细胞中或在NADPH的存在下用微粒体和核制备物(酶分析)将睾酮转化为5α-DHT的速率来进行的。或者,5α-还原酶的活性可以如下进行可靠的分析,即NADPH依赖的非共价结合强放射性抑制剂,如[3H]4-MA([3H]4-MA结合分析),它可与睾酮强烈竞争结合还原酶。当由不同器官或动物的微粒体制备物用于比较时,此二种分析的结果相关性很好。(Liang et al,1983)。
5.1.1.1.5α-还原酶的[3H]4-MA结合分析该方法前曾被详细描述过(Liang et al,1983,1990)。简短地说,结合测定溶液,其最后体积0.15ml中含有微粒体(2-20μg蛋白质),0.08μCi的[3H]4-MA,0.1mM NADPH,1mM二硫苏糖醇及50mM磷酸钾,pH值为7.0,含或不含指定量的脂质或抑制剂制剂。脂质溶于乙醇中并且加入1-5μl体积。对照试管也加入相同量的乙醇。在0℃孵育1小时之后,在Whatman GF/IF玻璃纤维过滤器上收集微粒体,而且用10ml pH值为7.0含有0.01%CHAPS的20mM磷酸钾溶液洗涤以除去未结合的[3H]4-MA。然后测定结合到微粒体的[3H]4-MA.。
5.1.1.2.微粒体5α-还原酶的酶活性分析标准的反应化合物,其最后体积为0.15ml中含有微粒体,1μCi的[3H]睾酮,0.5-3.0μM非放射性睾酮,0.1mM NADPH、1mM二硫苏糖醇及50mM磷酸钾,pH值为7.0,含或不含指定量的脂质或抑制剂制剂加入微粒体开始反应,并于37℃孵育15分钟。如前所述,抽提甾体并用薄板层析分离。(Laina & Heiss,1981;Liang et al,1984a,1985a,)。放射活性甾体用萤光图仪定位,并用闪烁计数仪测定存在的放射活性。通过分析[3H]睾酮转化为[3H]5α-DHT的程度而测定5-AR的活性。
5.1.2.5α-还原酶活性的来源如前所述,微粒体是在4℃将人肝或成年Sprague-Dawley雌性大鼠的肝的缓冲的0.32M-蔗糖匀浆组织用差速离心制备的(Liang etal.,1990),并且用于5α-还原酶活性的分析中。在一些实验中,除了以聚氧乙烯醚W-1取代Lubrol-WX外如前所述,将微粒体溶解於0.1%聚氧乙烯醚W-1(Liang et al,1990)中。
用基因工程以表达特定类型的5α-还原酶同功酶的细胞也可被用来作为5α-还原酶活性的来源。含有5α-还原酶、其微粒体、或核制备物的完整细胞也可能被用来筛选5α-还原酶抑制剂。
5.1.3.5α-还原酶活性的抑制剂测试了动物及植物来源是否存在有影响5α-还原酶活性的化合物。发现抑制活性存在於大鼠和牛肝微粒体,牛肾脏,人类胎盘,大鼠及人前列腺的提取物中,以及在酵母及蔬菜植物油中,例如,玉米、花生及橄榄油中,表明5α-还原酶抑制剂存在於广泛范围的动物、植物及微生物来源中。
5.1.3.1.大鼠肝微粒体当大鼠肝的微粒体部份被醋酸溶解然后与甲醇混合时,多於80%的微粒体蛋白质作为沉淀物而被除去。这种程序使5α-还原酶活性完全失活。可溶解的但不是沉淀的部份含有抑制大鼠肝微粒体的5α-还原酶活性的化合物(由酶分析或[3H]4-MA结合分析测定)。甲醇可溶解部份的葡聚糖凝胶G-50柱色谱层析显示洗脱外水体体积可从主要的蛋白质峰分离出抑制活性的部份。此抑制活性也发现於大鼠肝微粒体的二氯甲烷萃取液中,表明一些抑制剂是脂质。
5.1.3.2.植物及真菌从各种植物物质也得到制备物,而且分离出特定化合物。这些化合物的一部份能够调节大鼠及人的类型1及类型2的5α-还原酶同功酶。当这些物质的一部份具有抑制作用的时候,其他的却刺激5α-还原酶活性。
每种植物物质(1到2克)用2到10毫升的水、乙醇、异丙醇、醚、氯仿、或乙酸乙酯萃取。有机溶剂可能含有0-90%水,而且萃取可在0-100℃进行30分钟到20小时。
当1克植物物质用4毫升乙醇或水萃取,而且3μl萃取液在肝微粒体的5α-还原酶分析系统中进行测试的时候(反应混合物的最终体积为0.15毫升),观察到明显的抑制活性(超过20%抑制作用)存在於下述物质的提取物中各种不同品牌的绿茶、云南茶、中国珠茶、乌龙茶、红茶、绿藻、黑色蕈类、罗勒树叶、荷兰芹叶,及中国的草药,包括当归(Angelica sinensis)、洋茴香果(Anisi stellati fructus)、党参(Codonopsis pilosula)、川芎(Ligustici rhizoma)、丹参(Salviamitiorrhiza),及金色百合花、琉璃苣的种子、待宵草、黑醋栗、芝麻、南瓜、向日葵,及小麦胚之萃取液中。
罗勒、乌龙茶、绿茶及当归中的抑制物质能籍由使用一维或二维矽胶薄层色层或葡聚糖凝胶柱色谱层析而与其他无活性的物质分离。一些纯化了的化合物的化学结构通过将它们的化学性质与标准化合物之化学性质相比较而得以测定,这些化学性质包括色谱层析的移动性、熔点、紫外及可见光光谱及NMR。可购得的标准化合物也可用来进行5α-还原酶的分析以显示其中一些确实是可以抑制5α-DHT形成的5α-还原酶抑制剂。
5.1.3.3.脂肪酸发现一些长链的脂肪酸,特别是γ-LA可以抑制5α-还原酶的活性。一般来说,发现长链的多不饱和脂肪酸为最有效,特别是那些具有至少二个双键及链长度至少12的多不饱和脂肪酸。
5.1.3.4.儿茶素及表儿茶素五倍子酸酯发现在各种不同品牌的茶中,尤其在绿茶中的主要抑制物质是儿茶素衍生物(图4A)。没有五倍子酰基(图4B)取代基的儿茶素(图5),其活性要比儿茶素五倍子酸酯、表儿茶素五倍子酸酯、表棓儿茶素五倍子酸酯、及其光学异构体(图6)或其共轭物质例如茶黄素及茶黄素单(或双)五倍子酸酯的活性低许多。这些五倍子酸酯在浓度为0.5到40μM的分析系统中显示出明显的抑制活性(30到90%抑制作用),该分析系统含有(a)大鼠肝微粒体的制备物或(b)被含有类型1及类型2的5α-还原酶基因的逆转录病毒感染并且表达特异类型还原酶的细胞。儿茶素及表儿茶酚(图5)之活性低许多(在40μM低於25%的抑制作用)。
虽然这些抑制性的多酚物质是抗氧化剂,但是在分析条件之下他们没有明显地氧化NADPH(在肝微粒体制备物的存在下和没有睾酮或4-MA的存在下),表明该抑制活性是由於抑制了5α-还原酶而不是由於这些多酚对NADPH的非特异氧化。
各种合成的五倍子酸酯衍生物(五倍子酸甲酯,五倍子酸正-丙基酯, 3,4,5-三羟基苯甲酰胺),五倍子酸,及焦棓酚之活性不如儿茶素五倍子酸酯。这表明单独的3,4,5-三羟苯基或五倍子酰基结构不足以产生高抑制活性。五倍子酸正-辛酯被发现具有低抑制性活性,这表明就抑制性活性而言,儿茶素五倍子酸酯的黄酮醇基可被具相似几何结构的其他醇基所取代。
这些结果表明五倍子酸酯部份可能需要掺入酰基(五倍子酰基)或醇性(三羟苄基)基以抑制5α-还原酶。这些基团可以与黄酮醇形成酯或醚键(图7)。5.2.实施例2-脂肪酸对5α-还原酶活性的抑制作用使用两种分析方法来鉴定能抑制5α-还原酶的化合物酶分析及结合分析如实施例2所述。两种分析法可检出那些活性脂肪酸具有相似的活性。
当测定各种脂质影响[3H]4-MA对大鼠肝微粒体结合的能力时,只有某些不饱和脂肪酸具抑制作用,如表1及2所示。在测试的脂质中,具高抑制作用的脂肪酸具14至22个碳链及1至6个双键。双键的存在为较高抑制活性所要求的;饱和的脂肪酸一般不像其对应的不饱和脂肪酸般活性高。用[3H]4-MA结合分析法,只有顺式构型的双键的化合物在低浓度具活性(<10μM),而反式异构物甚至在高浓度(>0.2mM)下仍不具活性。然而,如实施例3所示,当用酶分析法分析还原酶活性时,反式异构物为活性抑制剂。在[3H]4-MA结合分析中,当用下列各组脂肪酸相比较时油酸(C181,顺式-9)对反油酸(C181,反式-9)及亚油酸(C182,顺式-9,12)对反亚油酸(C182,反式-9,12),脂肪酸顺式反式异构物效果的差异极为明显。结果示於表1及2中,也说明双键的数目和位置也影响效力。当使用[3H]4-MA结合分析法时,C18脂肪酸之抑制强度渐减的顺序为γ-亚麻酸(顺式-6,9,12)>顺-6,9,12,15-十八碳四烯酸>α-亚麻酸(α-LA)(顺式-9,12,15)>亚油酸(顺式-9,1 2)>油酸(顺式-9)>岩芹酸(顺式-6)。芥酸(C221,顺式-13)无活性而顺式-4,7,10,13,16,19-廿二碳六烯酸为强抑制剂。十一碳二烯酸(C111,10)和神经酸(C241,顺-15)也无活性。
由於这些具抑制作用的不饱和脂肪酸之甲酯及醇类似物无活性或仅具轻微活性,故游离的羧基是重要的。前列腺素E2,F2a和I2无活性,而前列腺素A1,A2,B1,B2,D2,E1及F1a在0.2mM有一些活性。胡萝卜素、视黄醛和视黄酸也无活性。磷脂酰胆碱,磷脂酰乙醇胺,3-二油精,视黄醇,13-顺-视黄酸和13-顺-视黄醇具轻微刺激作用。
当使用酶分析法测定脂肪酸的抑制作用的时候,饱和及顺不饱和脂肪酸的相对效力与使用[3H]4-MA结合分析法的测定结果一致(表1及2),而不管是否使用大鼠肝微粒体或前列腺微粒体作为酶的来源。在[3H]4-MA结合分析中(表1及2)那些反式异构体,反油酸(C181,反式9)及反亚油酸(C182,反式9,12)的抑制作用大大低於其顺式异构体,油酸(C181,顺9)及亚油酸(C182,顺9,12);然而,在使用前列腺微粒体或肝微粒体进行酶分析的时候,他们与其顺式异构体一样有效。此结果提示反式异构体通过不同的机制来抑制5α-还原酶。
表1脂质对[3H]4-MA结合大鼠肝微粒体之5α-还原酶的抑制作用
*脂质在浓度自0.01至0.2mM范围下进行试验。每个实验重复一次并且进行几次实验以确定结果的代表性。低於10%抑制作用的化合物被认定为无活性(NA)。
在200μM下,下列化合物未见明显作用(a)饱和脂肪族脂肪酸包括己酸、庚酸、辛酸、壬酸、癸酸、十一酸、月桂酸、十三酸、肉豆蔻酸、十五酸、十九酸、花生酸、廿一酸、山萮酸、廿三酸和廿四酸。
(b)脂肪酰基酯和醇包括硬脂酸甲酯、S-硬脂酰辅酶A、棕榈油酸甲酯、S-棕榈酰辅酶A、顺-9-十四烯酸、及花生四烯醇、及(c)维他命A相关化合物包括α-或β-胡萝卜素、视黄酸、9-顺-视黄醛,视黄醛、及13-顺-视黄醛。於此高浓度下,一些脂肪族脂质显示明显低於其相应的不饱和脂肪酸的抑制活性(括弧中表示抑制百分数)肉豆蔻脑酸甲酯(27%)、γ-亚麻酸甲酯(32%)、及顺-4,7,10,13,16,19-廿二碳六烯醇(51%)。视黄醇、13-顺-视黄酸、及13-顺-视黄醇於200μM下显示58%刺激作用但於40μM下无刺激或抑制作用。强的脂肪酸之IC50(显示50%抑制作用所需的浓度)为γ-LA(10μM)、十八碳四烯酸(57μM)、γ-LA(60μM)、花生四烯酸(65μM)、棕榈油酸(108μM)、亚油酸(117μM)、及油酸(128μM)。
#数字符号表示分子中的碳和双键数目。括弧中之数目表示双键在顺或反式中的位置(由羧端算起)。
除表1所示化合物之外,表2所列之脂肪酸、其甲酯及甘油酯也被试验过。这些脂肪酸的碳链长度范围自11到24碳并带1至6双键数。一些具抑制作用的化合物及达到50%抑制作用所需浓度(示於括弧中;NA代表在200μM或较低浓度无抑制作用)为10-十五碳烯酸(100μM),10-十七碳烯酸(28μM),10-反-十七碳烯酸(NA),10-十七碳烯醚甲酯(NA),13-十八碳烯酸(93μM),12-十八碳烯酸(NA),11-十八碳烯酸(26μM),单γ-亚麻精(86μM),γ-亚麻醇(NA),γ-亚麻基醋酸酯(NA),γ-亚麻酸甲酯(NA),胆固醇基γ-亚麻酸酯(NA),二-γ亚麻精(NA),γ亚麻酰氯(NA),三-γ-亚麻精(NA),6,9,12,15-十八碳四烯酸(74μM),十九烷腈(NA),12-十九碳烯酸(90μM),10-十九碳烯酸(130μM),10-反式十九碳烯酸(NA),10,13十九碳二烯酸(86μM),亚油基氰化腈(NA)反亚麻基氰化腈(NA),11-二十碳烯酸(146μM),8-二十碳烯酸(48μM),5-二十碳烯酸(NA),11,14-二十碳二烯酸(131μM),反式11,14-二十碳二烯酸(NA),11,14-二十碳二烯酸甲酯(NA),11,14--二十碳二烯酰氯(NA),11,14,17-二十碳三烯酸(29μM),11,14,17-二十碳三烯酰氯(NA),8,11,14-二十碳三烯酸(15μM),高-γ-亚麻酰氯(NA),高-γ-亚麻酸甲酯(NA),5,8,11-二十碳三烯酸(50μM),花生酰氯(NA),二十一碳烯酸(154μM),二十一碳烯腈(NA),芥酸(NA),13,16-二十二碳二烯酸(118μM),13,16,19-二十二碳三烯酸(163μM),13,16,19-二十二碳三烯酸甲酯(NA),7,10,13,16-二十二碳四烯酸(46μM),二十二碳四烯酸甲酯(NA),4,7,10,13,16,19-廿二碳六烯酸(47μM),14-二十三碳烯酸(NA),15-二十四碳烯酸(NA)。
表2脂质对[3H]4-MA结合到大鼠肝微粒体的5α-还原酶的抑制作用
5.3.实施例3γ-亚麻酸对5α-还原酶活性抑制作用γ-LA是较强的5α-还原酶抑制剂之一,因此被进一步探讨它的5α-还原酶结合特性。
5.3.1.5α-还原酶抑制作用使用酶分析或[3H]4-MA结合分析,在γ-LA与微粒体酶制备物混合后一分钟以内即可观察到抑制作用的存在,而且此抑制作用存在於完整的(图15A)及清洁剂(聚氧乙烯醚)增解的(图15B)大鼠肝微粒体中。随着蛋白质的浓度从2增加到20μg时,10μM γ-LA对完整的微粒体的抑制程度从93%降低到52%而对溶解的微粒体从96%降低到88%。
当在NADPH的存在下使[3H]4-MA与微粒体结合时,随之加入γ-LA至最终浓度10μM时,在2分钟之内大约60%的微粒体结合的[3H]4-MA自微粒体中被解离出来。剩下的微粒体结合的[3H]4-MA在另外的60分钟以慢得多的速度被解离出来。为了测定γ-LA的抑制作用是否可逆将微粒体与γLA一块孵育然后再解离以除去游离的γ-LA。结果显示抑制作用只有部份地为可逆(抑制作用从78%降到63%)。γ-LA有可能被紧密地结合到微粒体和/或不可逆地失活的成分,这些成分对於还原酶的活性是必要的。
使用酶分析或[3H]4-MA结合分析,该抑制作用不能通过增加NADPH或睾酮的浓度而被对抗。γ-LA似乎不与睾酮或NADPH竞争地结合微粒体的还原酶。将数据双重交叉绘图,结果显示5μM的γ-LA增加了NADPH(从2.0到3.1μM)及睾酮(从2.4到4.5μM)的表观Km值,而Vmax值从7.5降至2.8pmol 5α-DHT生成/毫克蛋白质/15分钟。5及10μM的γ-LA分别增加[3H]4-MA的表观Ki值从13到20和40μM,并且分别将最大结合值从0.56降低至0.45和0.40pmol/10μg蛋白质。
5.3.2 NADH甲萘醌还原酶及UDP葡糖醛酸5α-DHT葡糖醛酸基转移酶的抑制作用也测试了γ-LA对另外的微粒体还原酶的活性和用甾体做为底物的微粒体酶的作用以决定γ-LA作用的特异性。结果显示γ-LA在10到40μM没有影响NADH甲萘醌还原酶或UDP-葡糖醛酸5α-DHT葡糖醛酸转移酶的活性。
哺乳动物5α-还原酶是细胞膜结合的酶。膜的脂质基质的微扰可能非特异地影响还原酶活性。只有特异构形的不饱和脂肪酸在特异分析中才是5α-还原酶强的抑制剂而其他的二种微粒体酶经测定不受影响之事实,说明这种抑制作用是选择性。
5.3.3.γ-LA对人微粒体及前列腺癌细胞的作用γ-LA抑制NADPH依赖的[3H]4-MA对人肝微粒体的结合程度相同於实验中与对大鼠肝微粒体的程度。在棓养基人前列腺癌细胞中对[3H]睾酮的5α还原酶的活性也是选择性地受到γ-LA的影响。表3显示γ-LA在5到50μM抑制了对雄性激素敏感的LNCaP细胞(Horszewiczet al,1983)和对雄性激素不敏感的PC3细胞中(Kaighn et al,1979)的5α-还原酶对[3H]睾酮的还原。然而,γ-LA没有影响睾酮到4-雄甾烯二酮的代谢,此说明17β-甾体脱氢酶对不饱和脂肪酸不敏感。在棓养基中硬脂酸(5到20μM)并不影响PC3细胞的5α-还原酶的还原或17β-类固醇脱氢酶。
在棓养基中观察到的对完整前列腺细胞的特异的5α-还原酶抑制作用,表明外部加入的脂肪酸能够进入细胞并在原位发挥内质网或核膜上结合的5α-还原酶的抑制作用。
表3γ-LA对人前列腺癌细胞中自[3H]睾酮形成放射性4-雄甾烯二酮及5α-DHT的抑制作用
*PC3细胞所形成的4-雄甾烯二酮及5α-DHT的对照值分别为400850±9507dpm及12183±74dpm。LNCaP所形成的5α-DHT的对照值为4569±505dpm。
当使用LNCaP的时候,没有测得4-雄甾烯二酮之形成。γ-LA及硬脂酸在测试的浓度下於2小时孵育期间没有产生可见到的细胞形态学的变化。前列腺癌细胞受到γ-LA处理之IC50值(四组研究)为10±5μM。5.4实施例4化合物对仓鼠胁腹器官模型中雄性激素作用的影响本发明人寻找一种能够局部具活性而全身无活性的5α-还原酶抑制剂,因为此种抑制剂将可理想地用作治疗雄性激素依赖的皮肤疾病。在测试的对大鼠及人的肝及前列腺中对5α-还原酶活性起抑制作用的脂肪族不饱和脂肪酸中,γ-LA被发现是局部施用于仓鼠胁腹器官最强的脂肪酸抑制剂。在本研究中,γ-LA被局部地应用到仓鼠胁腹器官以调查对雄性激素作用的抑制。仓鼠胁腹器官特别适用於评估这些化合物对皮肤细胞或皮脂腺的影响(Frost and Gomez,1972)。在胁椎角两侧的成对胁腹器官对於雄性激素刺激具有高度敏感性。胁腹器官中对於雄性激素敏感的结构包括皮肤的黑色素细胞、皮脂腺、及毛囊(Hamiltonand Montagna,1950)。这种动物模型已经被广泛地用於测试雄性激素(Hamilton and Montagna,1950;Frost et al,1973)及抗雄性激素化合物(Voigtand Hsia,1973;Weissmann et al,1985;Chakrabartyet al,1980)。这种动物模型的独特优点是测试的化合物能被局部地应用只在一个胁腹器官而其效果可在两个器官上加以观察。如果测试化合物只有局部的效果那么只有被处理的胁腹器官受到影响。然而,如果效果是全身性的那么两个胁腹器官将都受到影响。结果表明应用的γ-LA仅局部地抑制雄性激素作用而没有全身性的作用。
5.4.1.物质及方法5.4.1.1化学品脂肪酸自西格马化学公司获得,圣路易斯,密苏里州(SigmaChemical Co,St Louis,MO)。睾酮(T)及5α-DHT购自Steraloid,Wilton,NH。
5.4.1.2阉割动物的处理4周龄被阉割的预青春期雄性叙利亚金仓鼠得自Harlan Sprague-Dawley Co.(Madison,WI)。每只动物各自关在塑胶笼中并以12小时光照/12小时黑暗循环并任意供给啮齿动物食物(Purina)及水。
阉割后一到二星期,每只动物后背的毛发用电动剪毛机剃除然后每周刮毛以暴露其胁腹器官。将动物分为5只动物/处理组。用Pipetteman及聚丙烯可弃式吸头管每天将处理溶液(5μl)局部施用于右边胁腹器官一次。除非另有说明,否则左边的胁腹器官不予处理。该处理溶液含有(a)单纯乙醇(赋形剂及对照),(b)一种雄性激素(T或5α-DHT),(c)一种脂肪酸或(d)一种雄性激素及脂肪酸的组合。在每次处理前将胁腹器官用乙醇棉擦拭,以除去残留化合物。在每次实验结束时(17到25天),那些动物用CO2气室息或以过量苯巴特定妥(64.8毫克/毫升/动物)腹膜内注射加以处死。处理的及未经处理的一侧胁腹器官用下述的方法加以评估以测定这些处理对色素斑及皮脂腺生长的影响。在处理前后每只动物的体重都被记录。
5.4.1.3.完整动物的处理4周龄完整雄性仓鼠饲养在较长的光照时间(16小时光照/8小时黑暗的循环)环境下以确保性特征的最大刺激(Luderschmidt et al,1984)。动物被分为10只动物/组。每天应用5μl溶液(5μl)处理右边胁腹器官一次,该溶液仅含有赋形剂(乙醇)或γ-LA(0.5,1,及2毫克),实验进行15到25天。所有动物左边的胁腹器官接受等体积的赋形剂。
5.4.1.4.胁腹器官色素斑面积的测定用数位显示的测径器(Digimatic,Mitutoyo Corp,Japan)测量色素点(色素斑)的短轴及长轴长度,其乘积(长轴×短轴,mm2)被用做表面积的一种指数(Wuest and Lucky,1989)。数据用平均值±标准误差表示。
5.4.1.5皮脂腺隆起的测量受到T±脂肪酸处理的胁腹器官变得隆凸及可触摸。隆凸块的短轴及长轴的长度被测径器加以测量。其乘积(长轴×短轴,mm2)被用做皮脂腺面积的一种指数,该指数与皮脂腺的体积有相互关系(Weissmannet al,1984)。数据用平均值±标准误差表示。没有接受T处理之胁腹器官的皮脂腺没有隆凸并且未受到测量。
5.4.1.6.处理溶液用薄层色层分析(Whatman LK5DF矽胶板用由氯仿∶甲醇3∶1组成的溶剂系统)对溶於乙醇的γ-LA溶液的检查发现有两种额外的较极性的产品,表明在储存5星期之后γ-LA有氧化。因此必须采取特别的预防措施以避免处理化合物中的变化。为了要避免氧化,所有的处理化合物(T,5α-DHT,脂肪酸)皆溶解於乙醇中,然后置入瓶中以铝箔覆盖使其免於光照,并储存在4℃。在将瓶子盖住之前先滴入一或二滴液态氮以将瓶中空气用氮气取代。每次瓶子打开后,皆重新以氮气取代。薄层色层检查冷藏3星期后的γ-LA溶液,发现化合物没有可检出的变化。所有的处理溶液每星期制备一次作为额外的预防措施以避免处理溶液变化。
5.4.1.7.统计Student′st分配测试被用来统计分析那些资料。只边检定p值<0.05,认为具有统计显著性。
5.4.2.结果当青春期前的经阉割雄性仓鼠的一对色素斑之一用T或5α-DHT处理后,与仅用赋形剂处理的色素斑相比较,其颜色变得深许多而且面积变大。图26示每组动物的一些实施例。于右边胁腹器官施用T或5α-DHT对同一动物对侧的胁腹器官没有产生任何可检示的作用。表明T或5α-DHT的刺激作用是局部性的。图27示用T处理的动物组中的一只动物。T的处理量为0.5,2,及5μg/胁腹器官/天,5只动物/组,而对照组仅用赋形剂处理。在24天的处理之后,色素斑面积指数对照组是2.4±1.4mm2,0.5μg T是45.6±8.0mm2,2μg T是69.4±13.7mm2, 5μg T是66.4±4.2mm2。处理前后不同的处理组之间没有显著的体重差别。下列的实验选用一种“次最大剂量”的T(0.5μg/胁腹器官/天)。
测试γ-LA及SA抑制由T刺激引起的色素斑生长的能力。γ-LA是活体外最强的脂肪酸,SA经测试在活体外作为5α-还原酶的抑制剂不具活性(Liang and Liao,1992)。其结果显示於表4。
表4γ-LA及硬脂酸对仓鼠胁腹器官中睾酮刺激生长的色素斑的影响
a.每个实验组有5只阉割的未成熟仓鼠。其右侧胁腹器官(R)每天用5μl乙醇或含指定剂量的睾酮(T)、γ-亚麻酸(γ-LA)、硬脂酸(SA)、T+γ-LA、或T+SA的5μl乙醇处理18天、左侧的胁腹器官(L)未受处理。
b.T对T+γ-LAc.N,S=不显著;T对T+SAT的处理刺激了色素斑的生长,T的这种作用受到γ-LA的抑制。此论点获自用γ-LA(1毫克/胁腹器官/天)和T(0.5μg/胁腹器官/天)处理的动物的色素斑要比仅用T处理之动物的色素斑颜色为淡和面积要小。
色素斑面积减少了53%(32.7±9.2对15.3±3.9mm2·p<0.005)。相反,与T一起应用的SA(1毫克及2毫克)没有抑制T刺激色素斑生长的能力。对照组和仅用γ-LA或SA的处理组之间其色素斑没有显著的不同。体重及对侧胁腹器官均未受影响。结构上而言,γ-LA及SA都是链长度为18碳的脂肪族脂肪酸。它们的差异在於,γ-LA(C183,cis-6,9,12)在6、9及12位置上有三个顺式双键(将羧基端视为1),而SA(C180)是一种没有双键的饱和脂肪酸。
为进一步研究活性脂肪酸在结构上的特异性,测定了各种不同脂肪酸抑制胁腹器官由于T引起色素斑生长之能力。表5示γ-LA(66%抑制作用)在抑制T引起色素斑生长的能力上要比所有测试的其他脂肪酸活性更强。α-LA(C183,顺-9,12,15)要比γ-LA的活性弱,表明双键的位置对抑制活性是重要的。
油酸(C181,顺-9)及亚油酸(C182,顺-9,12)具活性,然而他们的反式异构物,反油酸(C181,反-9)及反亚油酸(C182,反-9,12)则不具活性,此提示顺式双键构型的脂肪酸比反式构型更具活性。棕榈酸(C160)、花生四烯酸(C204,顺-5,8,11,14)及芥酸(C221,顺-13)发现具有弱的抑制作用。十一碳烯酸(C111,10)或神经酸(C241,顺-15)没有明显的抑制作用。大体上,活体内脂肪酸的特异性类似其在活体外抑制5α-还原酶活性的能力(Liang and Liao,1992)。在没有T的存在下,所测试的脂肪酸没有一种能刺激或抑制色素斑的生长。
为了要调查是否对5α-还原酶的抑制作用是γ-LA作用的主要模式,比较了γ-LA对T及5α-DHT引起仓鼠胁腹器官生长的抑制能力,实验的γ-LA的剂量从0.01到2毫克/胁腹器官/天进行以测试其抑制T刺激(0.5μg/胁腹器官/天)色素斑生长的能力。发现γ-LA剂量在0.2毫克或更高有效,1mg达到最大的抑制作用(50%)。测试γ-LA(0.2到1毫克/胁腹器官/天)抑制T及DHT引起的色素斑生长的能力,其结果列在表6。这些结果表明,T引起的色素斑生长可被γ-LA所抑制。γLA对5α-DHT引起的生长的抑制作用没有统计学意义,虽然在较高剂量的γ-LA下其生长平均值被降低了。
表5脂肪酸对睾酮刺激色素斑生长的影响
a.右边胁腹器官局部地用含有睾酮(0.5μg)或睾酮加上脂肪酸(1毫克)的5μl溶液处理。左边的胁腹器官受到不含睾酮的相同溶液处理。一天处理一次共21天。每个处理组有五只动物。
b.N.S.=不显著表6γ-LA对於睾酮及5α-DHT引起的胁腹器官色素斑和皮脂腺生长的作用差别
a)经阉割的未成熟雄性仓鼠之右侧胁腹器官局部地用含有单独睾酮(T)或二氢睾酮(5α-DHT),或T和γ-LA组合,或5α-DHT和γ-LA组合的5μl乙醇溶液处理。一天处理一次共进行19天。显示的数据为右边(经处理)胁腹器官的。左边的器官未处理。表中亦列有每天使用雄性激素及γ-LA的数量。
b)N.S=不显著表6也显示γ-LA对於T及5α-DHT在胁腹器官中所引起的皮脂腺生长(识别为可触摸的块)之作用差别。皮脂腺是直接位於色素斑的下面,但是在T处理之后延伸超过色素斑的面积。γ-LA也抑制T所引起的皮脂腺的生长,但是它没有明显地影响被5α-DHT刺激所引起的皮脂腺生长。
实验亦证实是否γ-LA能够在完整雄性仓鼠从性未成熟变成成熟状态时抑制其内源性雄性激素刺激所引起的色素斑点生长。右边胁腹器官每日单独用赋形剂或γ-LA(0.5及1毫克)处理。所有三组动物的左边胁腹器官皆仅用赋形剂处理。在处理开始的时候,所有组的色素斑都很小,大约4mm2。在内源性雄性激素刺激15天之后,对照组的色素斑成长6倍,且其左右两侧没有差别。γ-LA的处理明显地抑制色素斑的生长(表7)。图13显示这些标本之一。γ-LA处理的抑制作用是局部性的,因为对侧的色素斑的生长不受影响(图14及表4)。γ-LA处理也抑制受处理的胁腹器官的毛发生长。
图15为一代表性实施例,它表明用γ-LA处理的胁腹器官的毛发比对照的毛发的颜色为淡且长度较短。在另外的研究中,完整的未成熟雄性仓鼠的右边胁腹器官每日受到单独的赋形剂(空白)、1毫克γ-LA、及2毫克γ-LA的处理。色素斑的面积定期受到测量和计算以证实用γ-LA处理对色素斑生长速率的抑制作用。图16显示对照动物的色素斑线性地生长到第16天,但是这种生长被γ-LA处理大幅降低。所有三组动物的左边胁腹器官色素斑的生长速率皆类似,表明γ-LA处理的抑制作用是局部性的。
表7γ-LA对於完整雄性仓鼠之色素斑生长的抑制作用
a.所有组的左侧胁腹器官仅用乙醇处理。每组有10只动物。γ-LA处理组的结果与第1组或同组的左侧胁腹器官相比较。
b.N.S=不显著。
c.4周龄完整雄性仓鼠的右侧胁腹器官每天接受含有5μl乙醇或含有0.5或1.0毫克γ-LA的5μl乙醇的供局部用溶液处理15天。
d.T对T+γ-LA5.4.3.讨论局部应用某些不饱和脂肪酸例如γ-LA,可以抑制仓鼠胁腹器官中的雄性激素作用。一些系列证据显示对5α-还原酶的抑制作用可能是γ-LA作用的主要模式。首先,在无细胞的系统中γ-LA在人及大鼠的肝或前列腺中是5α-还原酶的强抑制剂(Liang and Liao,1992)。其次,在经阉割的仓鼠中γ-LA抑制了T所引起色素斑的生长,但不抑制5α-DHT所引起的生长。第三,抑制T所引起色素斑的生长和抑制5α-还原酶对脂肪酸结构上的要求非常类似的。除了可抑制T所引起色素斑的生长的能力之外,γ-LA也抑制T-引起的胁腹器官其他结构例如皮脂腺及毛发等的生长。此提示γ-LA是作用在5α-还原酶上,它为所有三种结构中雄性激素作用的共同步骤。这显示不饱和脂肪酸对活体内雄性激素作用的特异性作用。
局部应用γ-LA没有完全地消除阉割的仓鼠局部用T处理时色素斑的生长。用每日剂量为1到2毫克的γ-LA达到最大的抑制作用(50到66%)。一些因素可能造成这种不完全的抑制作用。首先,γ-LA的渗透可能是限制性因素。其次,T能通过结合雄性激素受体而影响雄性激素作用,虽然其受体结合亲和力较5α-DHT为低(Liang et al,1973)。
γ-LA,一种必需脂肪酸(Horrobin,1992)和本研究显示的活性不饱和脂肪酸是人类组织(例如,皮肤)中的正常成分,(Schafer andKragballe,1991)。因此,他们用于人应该是安全的。既然γ-LA局部应用时没有全身的作用,γ-LA及它的类似物可适用於局部应用和治疗雄激素依赖的皮肤疾患例如痤疮、雄性激素性秃头、女性多毛症、皮脂增生、及皮脂溢等。5.5实施例5仓鼠注射γ-亚麻酸对器官生长之影响5.5.1.γ-LA抑制胁腹器官的生长。
在处理之前,二组之间的胁腹器官色素斑的面积相似。对照组的右侧胁腹器官为5.9±1.5mm2,γ-LA组的右侧胁腹器官为6.6±2.0。对照组的左侧胁腹器官为6.2±1.4mm2,γ-LA组的左侧胁腹器官为6.2±2.1。注射γ-LA抑制了右侧及左侧胁腹器官的生长。
因此,对照组的右侧胁腹器官为14.6±1.5mm2,γ-LA组的右侧胁腹器官为9.8±2.5(p<0.001)。对照组的左侧胁腹器官为12.9±2.2mm2,γ-LA组的左侧胁腹器官为9.9±2.4(p<0.02)。
5.5.2.γ-LA抑制精囊及前列腺的生长因为前列腺难以和精囊分离,所以这二种组织一起被秤重。对照组的精囊及前列腺是0.156±0.026克,而γ-LA组为0.106±0.022(p<0.001)。
5.5.3.γ-LA并不抑制肾脏、肾上腺或脾的生长这些器官的各自重量是肾脏(对照组为1.060±0.086克而γ-LA组为1.121±0.073)。肾上腺(对照组为0.022±0.004克而γ-LA组为0.021±0.004),脾(对照组为0.157±0.027克而γ-LA组为0.1867±0.048)。对照组与γ-LA组之间的差异在统计学上为不显著。
对仓鼠进行γ-LA的皮下注射抑制了雄性激素依赖的组织的生长胁腹器官、精囊及前列腺。γ-LA处理没有影响肾脏、肾上腺、或脾。已知这些组织不需要雄性激素以成长。因此,经由皮下给γ-LA能抑制雄性激素作用。5.6实施例6化合物对毛发脱落和生长的局部作用断尾恒河猴子秃头发展的类型类似於人类的雄性激素性秃头。秃头的过程在青春期(大约4岁的年龄)不久之后开始。此现象几乎发生於100%这种动物,不管是雄性及雌性,而且是雄性激素依赖性的。这是一种对人的雄性激素性秃头有用的动物模型,并且适用於显示多不饱和脂肪酸对毛发脱落的效果。下文描述实验的方法(Rittmaster et al,1987;Diani et al,1992)。
雄性断尾恒河猴(4岁大)被分为每组3到5只动物。于其前额及头顶头皮的特定区域作记号,例如,刺上花纹。将有记号的区域中的毛发被剃除。将不同剂量及组合的测试化合物的溶液每天平均地涂敷於该剃除毛发的区域一次或两次。对照动物接受等体积的溶剂(例如,乙醇或其他有机溶剂,或乳霜)。该相同面积里的头皮每4到6星期被剃除一次,而且被剃除毛发的重量被加以测量。此处理可能持续6个月到2年。4-MA(17-N,N-二乙胺甲酰基-4-甲基-4-氮杂-5-雄甾烷-3-酮),一种已知可防止该动物秃头的5α-还原酶抑制剂,用作为阳性对照。在处理之前及结束之后皆进行头皮活组织检查(4mm钻)。这些样品被分析其5α-还原酶活性并且进行组织学地检查以求取秃头的证据。5.7实施例7儿茶素对5α-还原酶活性的效果通过酶分析,茶的儿茶素五倍子酸酯是类型1但不是类型2之5α-还原酶的强抑制剂。类型1的5α-还原酶的(-)表棓儿茶素-3 五倍子酸酯及(-)表儿茶素-3-五倍子酸酯的IC50约为10μM。(-)表儿茶素及(-)表棓儿茶素对两类型的酶皆不具活性。不像4-氮杂甾体及许多其他非甾体的抑制剂,这些五倍子酸酯不含杂环的氮环而且不与睾酮或NADPH竞争以结合5α-还原酶。
5.7.1.实验操作5.7.1.1.原料各种生物化学品及多酚化合物从西格马化学品公司(SigmaChemical Co)获得,(4-14C)-睾酮(60mCi/mmol)是新英格兰核子公司(New England Nuclear)的产品。(1,2-3H)17β-N,N-二乙胺甲酰基-4-甲基-4-氮杂-5α-雄甾烷-3-酮([3H]4-MA)(60Ci/mmol)之制备如前文所述(Liang et al,1983)。纯化的儿茶素自Funakoshi Co(东京,日本)或西格马化学品公司获得。各个儿茶素的纯度依NMR及HPLC分析为至少98%纯。各种儿茶素也在发明人的实验室依下述的方法从绿茶(山茶属)纯化。
5.7.1.2.从绿茶中分离及纯化儿茶素。
以500毫升90℃H2O二次萃取干燥绿茶(50克)15-30分钟。所合并的水提取液被加以冷冻干燥。干燥的粉末用50毫升的水溶解并且以等体积的CHCl3加以萃取。水层中的儿茶素用乙酸乙酯萃取两次。在除去乙酸乙酯后,将干燥的粉末(1克)溶解於10毫升的95%乙醇中然后装入到葡聚糖凝胶LH-20柱(5×35公分)中。该柱用95%乙醇洗脱,而且流出液于280nm下紫外吸收监控。分离的儿茶素(图21)之鉴定及纯度用NMR光谱分析及HPLC评估。HPLC用C18反相柱(4.6mm×250mm,5μ,Alltech Co)等组成地用乙腈/乙酸乙酯/0.05%H3PO4於水中(12∶2∶86)作为流动相。
5.7.1.3.表达人5α-还原酶之大鼠1A细胞的制备将人类型1及2的5α-还原酶的cDNAs从人的前列腺λZAP IIcDNA文库中分离出来,该分离使用已发表的5α-还原酶程序,PCRTM及标准文库筛选技术(Sambrook et al,1989)。该类型1及2分别符合已公布的这些5α-还原酶序列的核苷酸31-870及28-829(Andersonand Russell,1990;Anderson et al,1991)。类型1及2cDNAs被亚克隆进入逆转录病毒表达载体pMV7中(Kirschmeier et al,1988),然后使用包装细胞BOSC 23 293产生含有类型1及2cDNAs的高效价病毒原种(Kirschmeier et al,1988)。大鼠1A细胞(Pear et al,1993)受到病毒感染(Topp,1981),选择含有整体逆转录病毒的细胞以供G418-S04耐受,(Brown and Scott,1987)。
5.7.1.4.微粒体5α-还原酶的[3H]4-MA结合及酶分析依前述的方法(Liang and Liao,1992)从成年Sprague-Dawley雌性大鼠肝或表达特异性类型的人5α-还原酶的大鼠1A细胞制备微粒体。每项研究进行二次或三次,彼此之间的误差通常是在10%之内。进行数次研究以确保实验结果具代表性。所列数据是以反应速率为基础。低於10%抑制作用的化合物被认为在所指定的浓度下不具活性(NA)。4-MA结合测定已於前文详细描述(Liang and Liao,1992;Liang et al,1983)。最后体积0.15毫升的分析溶液含有0.08μCi的[3H]4-MA、0.1mM NADPH、0.1mM二硫苏糖醇及50mM磷酸钾,pH值为7.0,含或不含测试化合物。通过加入25μl的微粒体(25μg蛋白质)开始反应。在0℃棓养30到60分钟之后用Whatman GF/F玻璃纤维收集结合至微粒体的[3H]4-MA。洗涤及测量其放射性(Liang and Liao,1992)。
酶分析是基於在微粒体存在下测定来自睾酮产生的5α-DHT(Liang and Liao,1992;Liang et al,1983)。最后体积0.25ml的分析混合物含有2.8μM 4-[14C]睾酮。0.1mM NADPH,1mM二硫苏糖醇,及100mM磷酸钾,pH值6.0,含或不含测试化合物。通过加入25μl的微粒体(25μg蛋白质)开始反应。混合物在37°棓养30到60分钟之后,加入0.5ml乙酸乙酯并混合1分钟以终止反应。有机溶剂萃取液在真空下除去。干燥的萃取物溶於25μl乙酸乙酯中并且点样到矽胶60T.L.C.板上。用含二氯甲烷∶乙酸乙酯∶甲醇(85∶15;3)的溶剂系统展开。用T.L.C.板于AMBIS放射分析扫描仪上扫描测定。睾酮转化为5α-还原的代谢物5α-DHT是主要的代谢物(>95%)而仅有少量或没有睾酮转化成雄甾烷二醇、雄甾烷二酮、4-雄甾烯二酮或热代谢物。
5.7.2结果在5α-还原酶从微粒体或核膜被溶解及纯化期间大部份的5α-还原酶活性已丧失。因此,5α-还原酶的活性是在NADPH存在下用整个细胞或微粒体制备物通过测量睾酮转化成5α-DHT的转化率而鉴定的。仅含类型1的5α-还原酶之大鼠肝(Russell and Wilson,1994;Normington and Russell,1992)的5α-还原酶的活性也通过测量与一种,例如与[3H]4-MA强放射性抑制剂的NADPH-依赖性非共价的结合而被可靠的分析,该强放射性抑制剂强烈地与睾酮竞争以结合还原酶(Liang et al. 1983)。
基於[3H]4-MA结合分析(表8)或酶分析,EGCG,ECG及CG但不是(+)儿茶素,(±)儿茶素、(-)棓儿茶素、(-)表儿茶素、或(-)表棓儿茶素为大鼠肝微粒体类型1的5α-还原酶的强抑制剂。EGCG、ECG及CG的1C50分别地为3μM、12μM及18μM。因为儿茶素分子中五倍子酸酯部份的存在似乎对抑制活性是重要的,所以许多有五倍子酸酯结构的化合物被加以测试。五倍子酸及许多五倍子酸烷基酯甚至在200μM仍不具活性。一些具有gallolyl(3,4,5-三羟基苯)的化合物也不具有抑制作用(表8)。
表8茶的儿茶素及有关化合物对[3H]4-MA结合到大鼠肝微粒体的5α-还原酶之抑制作用
a.含有gallolyl(3,4,5-三羟基苯)或五倍子酸酯基的上述化合物在浓度高达200μM时仍不具抑制活性。这些化合物是焦棓酚,3,4,5-三甲氧苯甲酸,3,4,5-三甲氧苯乙酸,3,4,5-三羟基、苯甲酰胺,3-[3,4,5-三甲氧苯基]丙酸,五倍子酸,五倍子酸甲酯,五倍子酸正丙酯,五倍子酸异丙酯,五倍子酸正辛酯,及五倍子酸十二烷基酯。具有相似结构但是不具活性的其他化合物有五羟黄酮α-萘并黄酮,β-萘并黄酮,芸香苷,4[4-氯苯甲基]-6.7-二甲氧基异喹啉甲磺酯。
咖啡因,为茶提取物中的主要成份,在浓度高达200μM时仍不具活性。
b.NA=无活性。
通过[3H]4-MA分析(表9)或酶分析(表10),(-)表儿茶素及呈(-)表棓儿茶素对用基因工程和表达在大鼠1A细胞中的类型1或2人微粒体5α-还原酶不是有活性的抑制剂。通过[3H]4-MA结合分析(表9),ECG及EGCG是两种同功酶的活性抑制剂,但是在浓度低於30μM时对类型1同功酶现示一些优选的抑制作用。然而,用酶分析(表10),ECG及EGCG在浓度低於30μM时不能抑制类型2同功酶,但是对类型1同功酶是强的抑制剂。此二种五倍子酸酯的IC50值大约是10μM。如所预期的,已显示能选择地抑制类型2人同功酶(2)的非那雄胺能抑制表达在大鼠1A细胞中的类型2同功酶。比较之下,γ-LA於[3H]4-MA结合分析(表9)或酶分析(表10)中皆能抑制两种类型的人同功酶。
表9各种不同的化合物对[3H]4-MA结合到人5α-还原酶同功酶的抑制作用
a.浓度以nM为单位。
於[3H]4-MA分析或酶分析中,ECG及EGCG抑制了大鼠肝或大鼠-1细胞的类型1同功酶的反应速率及程度。这些五倍子酸酯似乎不与睾酮或NADPH竞争地结合微粒体的5α-还原酶,因为抑制作用不能通过增加NADPH或睾酮的浓度而被对抗。在微粒体存在下这些五倍子酸酯在孵育反应混合物期间没有引起NADPH气化。
大部分已知的5α-还原酶抑制剂是甾体衍生物(Russell andWilson,1994;Faller et al,1993)。非那雄胺是治疗良性前列腺增生(BPH)的一种治疗剂(McConncl et al,1992)。4-MA及非那雄胺是4-氮杂甾体,在实验动物上能有效地避免雄性类型秃头(Rittmasteret al,1987;Rittmaster,1994)。LY191704类型1的5α-还原酶的选择性抑制剂,它有4-氮杂甾体结构的特征但缺乏甾体的第四个环(Hirsch et al,1994)。ONO-3805(Russell and Wilson,1994)是一些苯甲酰氨基苯氧基丁烷酸衍生物之一,它具有5α-还原酶抑制活性。4氮杂甾体,LY191704及ONO-3805含有氨基,它可能在与5α-还原酶相互作用中起某种作用。相反地,不饱和脂肪酸可能通过微扰膜的脂质基质,因而不是5α-还原酶同功酶的选择性抑制剂(Russell andWilson,1994)。茶的五倍子酸酯的同功酶依赖性作用提示五倍子酰基能够与类型1的5α-还原酶中的特定基起相互作用。由於许多五倍子酸烷基酯不具有活性(表8),所以表儿茶素分子中的其他结构特征对抑制作用也可能是重要的。
已显示γ-LA在棓养基中能抑制人前列腺癌(PC3及LNCaP)细胞中睾酮到5α-DHT的转化;EGCG在棓养基中也减少这些细胞的5α-DHT生成。对雄性大鼠施用EGCG也能够减少腹侧及背外侧前列腺、凝结腺、精囊、及包皮腺的重量,而不影响睾丸或肾脏的重量。
一些儿茶素类在活体外已显示能抑制酶的活性。报导的最敏感的酶是HIVI逆转录酶(EGCG的IC50=40nM)(Nakane et al,1994)。然而,这种抑制作用明显地是非特异的(Moore & Pizza,1992)。大豆脂氧合酶也被EGCG(IC50=10μM)、ECG(IC50=18μM)及EGC(IC50=21μM)所抑制。人唾液的α-淀粉酶、大鼠小肠的蔗糖酶及麦芽糖酶皆对EGCG的抑制作用较不敏感(IC50=50到500μM)(Honda et al,1994)。
各种茶的儿茶素五倍子酸酯及相关化合物对於食道、皮肤、结肠及其他器官的癌症有防癌的活性(Yang and Wang,1993)。ECG及EGC占绿茶热水萃取液中固体物质的大约65%。他们在绿茶饮料中的浓度大约是5到10mM。
表10各种化合物对人5α-还原酶同功酶减少4-[14C]睾酮的抑制作用
5.8实施例8在人模型中组合物对皮脂生成的影响一些脂肪酸及儿茶素局部的抗雄性激素活性首先在仓鼠胁腹器官分析或大鼠分析实验中评估。为进一步确定抗雄性激素化合物的效力及其供人用的适合性,测试在一位男性个体上进行。供人治疗用的理想化合物为局部地及区域性地呈活性但不显示全身的抗雄性激素活性,尤其在涉及年轻男性的案例中。在下列的实施例中,通过测定局部施药于一位成年男性前额的皮脂分泌,测试了二类化合物。
5.8.1方法5.8.1.1.测定前额皮脂的生成一位63岁老年亚洲裔男性志愿者用于试验并分析其前额区域皮脂的生成。其前额用肥皂彻底清洗二次并用70%异丙醇清洁二次。30至60分钟后用皮脂测量计(Courage/Khazaka电子公司,德国),测量皮脂的产生。在每次测量中,皮脂测量计胶布探头(tapeprobe)(7mm×8mm)盖住56mm2区域。在眉毛和头发线之间前额左或右边的中间的4cm见方区域(16cm2)内进行十次测量。
皮脂测量计可检出胶布放在前额30秒前后透明度的差别并用0至300之间的任意数(S-值)来表示该差别。在男性前额积集的皮脂的S-值通常为200至300。手上皮肤表面通常显示非常低的值(5至20)。前额在立即清洗后的S-值要低于5。对男性来说,在洗涤后30分钟内S-值逐渐增加至约50,并在45至55分钟内达到100至200。
为测定皮脂产生的速率,交替测量左和右边前额区,每次均在两侧可比较的区域上。每侧进行的十次测定约需15-20分钟而皮脂-值约在30至200间。前额不同区域的S-值差别较大并也可受到环境的影响,这包括气候、饮食和生理等情况。然而,左边前额的总S-值(10次测量的总数)和右边的总S-值之比是常数。对试验中测试的这位亚裔男性来说,如果是在彻底清洗前额后30至50分钟测定S-值时,六个月期间内左/右之比是在1.15至1.38之内。因此,施用于左前额并可降低左/右比值低于1.1的化合物,被认为是可抑制皮脂产生的局部有效试剂。5.8.2结果5.8.2.1γ-LA对人前额皮脂的抑制作用在图8所示的实验中,将胶囊中的0.2ml玻璃苣油(含18%γ-LA)施用于左前额一天二次共23天。在此期间,左/右比值自1.28±0.03减少到1.05±0.01。在停止玻璃苣油处理后,左/右之比值又回复到1.20±0.14。玻璃苣油对左前额皮脂产生的作用是比较小的,这可能是由于玻璃苣油中大多数γ-LA处于三甘油酯的形式而它是不抑制5-AR的。通过非酶或酶作用自甘油酯积放自由脂肪酸可能是抑制作用的原因。
在停止施用玻璃苣油和左/右比值回复到1.33后,将20mg纯的γ-LA施用于左前额一天二次共6天。在此期间,左/右比值下降到0.22。在停止施用γ-LA后,左/右比值在16天期间又慢慢地回复到1.20±0.14。这个发现清楚的表明,在迅速抑制男性个体前额的皮脂产生方面,γ-LA要优于玻璃苣油5.8.2.2儿茶素对人前额皮脂产生的抑制作用将在0.2ml 70%乙醇中的20mg(一)表棓儿茶素五倍子酸酯(EGCG)一天二次施用于左前额共计6天(图9)。在此期间左/右比值从1.20±0.02减少到0.71±0.04。在EGCG处理停止后,左/右比值在16天内慢慢回复到1.19±0.02。再用0.2ml 70%乙醇中的20mg(-)表棓儿茶素继续处理左前额一天二次共计6天,L/R比值降低到1.02±0.1。在停止涂敷之后,L/R比值在10天期间内慢慢地增加到正常值1.21±0.01。在降低前额的皮脂产生方面,EGCG明显地要比(-)表儿茶素更为有效。5.9实施例9儿茶素对於大鼠体重及雄性激素依赖性器官的影响雄性的sprague-Dawley大鼠(体重180克±10克)用於实验。每组有5只大鼠。对一组大鼠每天腹膜内注射EGCG(15毫克/0.1毫升30%,乙醇/大鼠/天)共计7天。对照组的大鼠只接受0.1毫升30%乙醇。这项研究的结果列於表11。
5.9.1.对大鼠体重和前列腺和包皮器官生长的影响雄性的Sprague-Dawley大鼠(体重60克±5克)被用於实验。每组有6只鼠,而且全部经过阉割。在阉割当天及其后,将(-)表儿茶酚(EC)、(-)表棓儿茶素五倍子酸酯(EGCG)、或γ-LA(0.1毫升30%乙醇含有10μg睾酮及5毫克各该化合物)每天腹膜内注射共计14天。对照组的大鼠只每日接受0.1毫升含有10μg睾酮的30%乙醇。
表11表棓儿茶素五倍子酸酯对大鼠体重及雄性附属生殖器官和包皮器官的影响
a.15毫克/天b.基於最后的重量c.基於重量的增加d.对照重量之减少实验结果显示γ-LA及EGCG但不是EC降低了腹侧前列腺及包皮器官的重量约10到35%。EGCG但不是EC或γ-LA减少了体重的增加约10到35%。似乎是γ-LA及EGCG将有用於减少前列腺的大小而EGCG可能有用於控制体重的增加。注射EGCG或γ-LA的大鼠似乎像其他组的大鼠类一样健康。当目视检查各种器官的时候,例如肾上腺、脾、肝、肾脏、胸腺、胰等器官没有明显的感染、坏死或改变颜色或器官大小。注射EGCG的大鼠其皮下脂肪量似乎较少。EGCG对於前列腺重量或体重的增加的效果可能是特异的,至少在部份上,这是由於雄性激素依赖性的前列腺、肌肉生长或细胞的脂肪产生受到调节。
5.9.2.儿茶素对於大型大鼠体重及前列腺和包皮器官生长的影响体重172±20克的雄性Sprague-Dawley大鼠被用於实验。每组有5只大鼠。EC、EGC、ECG、或EGCG(各15毫克在0.3毫升30%乙醇中)被每天腹膜内注射共计7天。对照组的大鼠只接受0.3毫升30%乙醇。
结果显示在7天实验期间正常大鼠体重从172±20克增加到232±10克(大约增加35%),接受EGCG注射的大鼠体重降低到平均147±14克(大约减少15%)。因此,在研究结束的时候EGCG组的大鼠大约比正常大鼠只小36%。ECG及其他儿茶素对体重的影响小於10%。在研究结束的时候,与正常大鼠相比较之下EGCG组大鼠的器官重量明显的减少 (正常大鼠的器官重量的%)包皮腺(35%),腹侧前列腺(46%),背外侧前列腺(46%),精囊(41%),凝结腺(34%),睾丸(84%),及肾脏(74%)。此结果表明在减小脂质或皮脂产生的器官例如包皮腺及雄性激素敏感器官,例如腹侧及背外侧前列腺,凝结腺及精囊上,EGCG是有效的。由于ECG在结构上非常类似于ECG(ECG比EGCG少一个-OH基)却比EGCG的效果要低许多,EGCG对於脂质制造或器官重量之影响可能取决于一高度特异性的EGCG与大分子的相互作用,它可被认为是EGCG或蛋白质复合物的一种特异性受体,它能调节酶的活性、基因表达及器官生长。通过天然或合成化合物对於EGCG受体(或蛋白质)复合物相互作用或功能的调节或调整,有可能被用来控制脂质合成或例如前列腺的雄性激素依赖性器官的生长及功能。
5.9.3.EGCG对於大鼠体重及前列腺和包皮器官雄性激素依赖性生长的影响体重60±5克的雄性Sprague-Dawley大鼠被用於实验。大鼠分成6组。每组有5只大鼠。第1及2组为正常大鼠其余4组大鼠只在第一天被阉割。第一天及其后每天,第3及4组接受100μg睾酮/天而第5及6组接受100μg 5α-DHT/天。除此之外第2,4及6组每天接受5毫克EGCG。将雄性激素及/或EGCG溶於0.1ml的30%乙醇并且每天腹膜内注射共计7天。对照组(第1组)的大鼠接受0.1毫升的30%乙醇。
实验结果显示在7天实验期间EGCG减少正常大鼠的前列腺重量大约30%,而经阉割并接受睾酮注射的大鼠则减少前列腺重量大约23%。经阉割并接受5α-DHT注射的大鼠的前列腺重量没有减少,此说明至少部份地,EGCG对前列腺重量减少的影响是由於对来自睾酮的5α-DHT形成的抑制作用。
在7天实验期间EGCG也减少了注射睾酮或5α-DHT的正常及经阉割大鼠的体重之8±1%。不像前列腺的重量减少,EGCG对於体重减少没有雄性激素特异性。EGCG似乎通过一种减少脂肪积聚的机制来影响重量降低。一位兽医病理学家对各种器官及血液进行详细检验并未发现EGCG造成任何异常的生长或致病性效果。
5.9.4.EGCG对於体重及健康器官重量的选择性减少作用体重175±5克的雄性Sprague-Dawley大鼠被用於实验。每组有5只大鼠,注射0.3ml的30%乙醇,该乙醇含有10毫克或15毫克得自绿茶的EC、ECG、EGC、EGCG中的一种。对照组大鼠注射0.3ml的30%乙醇。EGCG计量为每天10毫克的时候,体重减少为大约10%;计量为每天15毫克的时候体重减少为大约25%。ECG及EGC即使计量为每天15毫克的时候,对体重没有显著影响(图21)。
EGCG计量为每天10毫克的时候,造成腹侧前列腺(图19)、背外侧前列腺,及凝结腺的重量减少大约30%。精囊及包皮腺重量减少大约20到25%(图20)。EGCG剂量为每天15毫克的时候,所有这些器官重量减少60%或更多。EGCG剂量为每天10毫克的时候,EGCG对於睾丸及肾脏的重量影响不显著;而在每天15毫克时睾丸及肾脏的重量减少10%或更少。发果ECG有影响的话,每天10及15毫克的时候所有受检查器官的重量减少低於20%。
事实是,EGCG剂量每天10毫克时,体重减少为低於10%而前列腺的重量减少则超过30%,这表明前列腺的重量减少可能不是体重减少的直接结果。然而,就体重及器官重量减少而言,在EGCG中而不是在ECG分子中的一个-OH基的结构优选性是很重要的。体重及器官重量减少可能是由於EGCG干扰了体重及器官重量增加所需要的一个共同步骤。
既然身体脂肪重量减少似乎可能是要对整体体重减少负责,EGCG可能相互作用并且干扰一种能调节特异性脂质的合成或积聚的受体大分子(或许含有一种蛋白质)。脂质能调节组因表达、细胞发展及分化、及器官生长。对细胞及器官中脂质作用的特异性干扰可能可以控制器官的生长,例如,前列腺、脂肪器官、包皮器官、及其他分泌器官。因此这些器官的良性的或异常的生长或癌症能被EGCG及有关化合物加以化学预防或治疗。
这些研究显示体重只有被EGCG明显地减少。而且,比EGCG(含有8个-OH基)含有少一个-OH基的ECG(含有7个-OH基)不很具活性或完全没有活性。
当停止EGCG应用时,实验组动物的体重恢复到与对照组动物大约相同的重量。表明EGCG的作用是可逆。此结果显示EGCG对於大鼠不引起永久的毒性或伤害(图22)。
EGCG的类似效果被发现存在於腹侧前列腺。背外侧前列腺、凝结腺、及精囊等器官重量。EGCG对肾脏及睾丸的影响不如对雄性激素敏感的器官那样显著。EGCG效果能够在10毫克/大鼠的剂量被清楚地观察到,但是ECG在10毫克/大鼠的剂量则活性低许多。雄性激素敏感的雄性附属器官(腹侧及背外侧前列腺、精囊、及其他器官)受到的影响比肾脏或睾丸大许多。5.10实施例10裸鼠的前列腺及乳癌生长人的前列腺癌PC-3细胞在培养基中生长。将约一百万个细胞注射入雄性裸鼠中并观察肿瘤的生长。在二周内,肿瘤成长至大约100mm3。长有肿瘤的三只鼠每天注射溶於0.1毫升水里的1毫克EGCG。三只对照鼠仅接受水。
在其后二星期这段期间注射EGCG的鼠之肿瘤没有成长而且其肿瘤的大小变得小於100mm3(图17)。对照鼠的肿瘤(没有注射EGCG)在二星期内成长至450mm3;在三星期内成长至650mm3。当二星期之后EGCG注射被停止(前额处)时,注射EGCG的鼠显示肿瘤新的生长。
此种现象在另外的研究中也被观察到(图18)。对照组(未注射EGCG)小鼠的肿瘤在二星期内成长到大约1400mm3。在此时候将EGCG开始给药。在接着的另二星期内肿瘤大小减少至大约850mm3,并在其他另外的二星期内减少至大约500mm3。
在二星期内注射EGCG的鼠之肿瘤大约是100mm3。当EGCG注射停止以后,肿瘤大小在二星期内开始成长到大约800mm3,然后在三星期内成长至大约1200mm3。这些结果显示EGCG对於人的前列腺癌的化学预防及化学治疗是有效的。关於乳腺肿瘤的研究,将人的乳腺肿瘤细胞系MDF-7(1百万细胞)注射入雌性的裸鼠中。在5个星期之后,肿瘤生长超过1000mm3。注射EGCG(1毫克/鼠/天)2星期减少了肿瘤50%。5.11.实施例11-用雄激素组合物抑制人前列腺肿瘤的生长为了模拟人前列腺癌的天然过程,在雄激素-耗竭的棓养基中经长期棓养后(Kokontis等,1994),发明人已从雄激素依赖的LNCaP 104-S细胞衍生成LNCaP 104-R2细胞。LNCaP-R2细胞含AR但其增殖不依赖于雄激素。这些细胞的增殖反而受到棓养基中极低浓度的雄激素所抑制。这里报导了睾酮在裸鼠中防止并抑制了LNCaP104-R2肿瘤的生长。而且这种作用取决于睾酮转化为5α-DHT。5.11.1.材料和方法5.11.1.1.细胞系如前所述(Kokontis等,1994),分离出雄激素-依赖的LNCaP 104-S(37次传代)和雄激素-不依赖的LNCaP 104-R±。在注射进裸鼠前,先在体外确认这些细胞的特征。简言之,在含0.1nm的合成雄激素R1881的棓养基中,LNCaP 104-S细胞的增殖要比棓养在下述棓养基的增殖增加10-13倍,该棓养基为将活性炭-处理的小牛血清(FBS)加到棓养基中以除尽雄激素。LNCaP 104-R2细胞生长在活性炭-处理的棓养基中而不用另加雄激素。它们的增殖不受加入0.1nMR1881的刺激却反而受抑制。LNCaP 104-S细胞保持在DMEM中(Gibcα)补充有1nM 5α-DHT和10%FBS(Summit Biotechnology)而LNCaP 104-R2细胞保持在DMEM中补充有10%FBS,但已用活性炭除去甾体(Kokontis等,1994)。PC-3和MCF-7细胞系得自American Type Culture Collection(Rockville,MD),并保持在DMEM中补充有10%FBS。5.11.1.2.动物使用BALB/C无胸腺(裸)雄性(LNCaP,PC-3细胞系)和雌性(MCF-7细胞系)小鼠(Taconic公司,Germantown,NY),5-7周龄。小鼠饲养在无病原体环境中,每笼4至5只。使用前将笼(顶部有过滤器),垫草和水等高压消毒。食物在Pico Lab Mousc Chow 20 5058(Purina)照射(消毒)。所有程序包括动物均经芝加哥大学执行动物保护和使用委员会批准。为供肿瘤生长研究,将106细胞在0.25ml棓养基中使0.25ml MatrigelTM(Collaboratiave Reseach,Bedford,MA)混合并如前所述(Liao et al,1995)皮下注射至小鼠的一侧或双侧。每周测量肿瘤大小并用公式L×W×H×0.52(Janek和Hartman,1975)计算肿瘤体积。在Metofane麻醉下进行双侧睾丸切除术和皮下植入或移去植入片。血样品是在小鼠麻醉下通过心脏穿刺或自眶丛取得,并通过双侧活性酶免疫分析(Tandem-EPSA,Hybritech,San Diego.CA)进行放射分析PSA的水平而测定睾酮的水平。所有甾体植入片(20mg)均购自Hormone Pellet Press(Westwood,KS)。非那雄胺(Proscar,5mg,Merck.NJ)得自芝加哥大学医院药房。所有数字资料均为从4到6个肿瘤所得的平均值并以标准误差表示。5.11.1.3.RNA分析用酸-硫氰酸鈲酚-氯仿抽提法(Chomczynski和Sacchi,1987)自肿瘤组织中分离总RNA。用探针进行核糖核酸酶保护分析(Zinn等,1983;Hay等,1987),该探针产生自人AR cDNA的210-bpKpn1-Sac1片段(Kokontis等,1994;Chang et al,1988),人PSA cDNA的77-bp片段(Kokonit等,1994;Young等,1991)人C-myccDNA的252-bpPst1-cIa1片段(Alitalo等,1983)和在人β2-微球蛋白的5′-末端的144-bpPstl-Hincll片段(Suggs等,1981)。在杂交中包含入β2-微球蛋白反义RNA探针用作内部标准以标化含有不同水平的总RNA样品。5.11.1.4来自肿瘤的LNCaP雄激素受体mRNA顺序cDNA编码LNCaP AR雄激素-结合范围用引物5′-GGCGATCCTTCACCAATGTC-3′(AR核苷酸顺序号2780-2799)(SEQ ID NO1)和5′-GGAAAGGTCCACGCTCACCAT-3′)(AR核苷酸顺序号3184-3203)(SEQ ID NO2)(Chang et al,1988)经RT-PCR“被放大”(Kokontis et al,1991)。Gle-纯化的PCRTM产物(424引物对)插入pBluescript SK(+)的EcoRV位置(Stratagene)并用顺序酶(Sequenase)(Amersham)经双支链DNA=脱氧顺序法排列。5.11.1.5.组织学和免疫细胞化学为进行组织学检查,将切除的肿瘤组织用10%福尔马林固定,包埋在石腊中,切成5μm薄片,并用苏木精和伊红染色。对石腊切片的免疫学定位研究是用兔子多克隆抗-人AR抗体(AN-15)(5μg蛋白质/ml),它是导向AR的1到15氨基-末端的氨基酸和多克隆抗-人PSA抗体(15μg蛋白质/ml)(DAKO,Carpenteria,CA)。来源于PC-3细胞的裸鼠肿瘤用作阴性对照。免疫染色是用链(霉)亲和素-生物素-过氧化酶方案进行的。(Liang等,1993)。为进行AR免疫染色,脱去石腊的组织切片在柠檬酸盐缓冲液中在微波照射下预处理5分钟(Hobiszh等,1995)。5.11.1.6.略语
AR雄激素受体;TP,睾酮丙酸酯;R1881,17β-羟基-17α-甲基-雌甾-4,9,11-三烯-3-酮,DHT,二氢睾酮;DMEM,Dulbeccos′改良的Eagle棓养基;FBS,胎牛血清;PSA,前列腺特异抗原;RT-PCRTM逆转录酶聚合酶链反应;TGF-β,转化生长因子-β1。5.11.2.结果5.11.2.1裸鼠中LNCaP 104-S和LNCaP 104-R2细胞的致肿瘤作用。
在注射LNCaP 104-S细胞数周后,在83%的正常小鼠中可检出可触知的肿瘤,但经阉割的小鼠为0%。相反地,注射LNCaP-R2细胞5周后,在75%的阉割的小鼠中可检出可触知的肿瘤,但正常小鼠为0%。然而,注射7周后,在50%的正常小鼠中可检出可触知的LNCaP 104-R2肿瘤,它们的平均大小为831±191(SE)mm3,而在此等它与在阉割的小鼠中发现的肿瘤几乎一样大(884±64(SE)mm3)。LNCaP细胞具有从A到G的点突变(Kokontis等,1991;Veldscholte等,1990),它位于DNA中核苷酸位置3157,编码为AR的雄激素-结合功能域。也发现由LNCaP 104-S或104-R2衍生的AR cDNA也具该突变,它是与来源于注射的LNCaP细胞相一致的。
表12在裸鼠中LNCaP 104-S和LNCaP 104-R的致肿瘤作用。
肿瘤的发生LNCaP 104-S LNCaP 104-R2周 正常 阉割的 正常 阉割的No. %No. %No.% No. %3 0 (0)0(0)0 (0) 0 (0)4 10 (83) 0(0)0 (0) 9 (0)5 10 (83) 0(0)1 (0) 9 (75)7 10 (83) 0(0)4 (33) 9 (75)7 11 (91) 0(0)6 (50) 10(83)
a将LNCaP细胞注射进12只正常雄性裸鼠和在细胞注射前24小时阉割的12只裸鼠中。每周检出可触到的肿瘤的小鼠。在注射癌细胞三周后未发现肿瘤。带有肿瘤的小鼠数以(No)表示。带有小鼠的肿瘤百分数表示在括号内。5.11.2.2.雄激素及其他甾体激素对LNCaP 104-R2肿瘤的生长的影响。
如果在长有LNCaP 104-R2肿瘤的经阉割裸鼠中于第4周植入睾酮丙酸酯植入片,则肿瘤的进一步生长受到抑制并在第7周时肿瘤体积显著减小到约10mm3或更小(图23)。当植入睾酮或5α-二氢睾酮植入片时,可观察到相似的肿瘤抑制作用。5β-二氢睾酮,它为5α-二氢睾酮的无雄激素作用的立体异构体,则无此作用,说明此抑制作用需要雄激素甾体。17β-雌二醇和甲羟孕酮醋酸酯无抑制作用却实际上显示生长刺激作用。
5.11.2.3.睾酮丙酸酯对其他肿瘤生长的影响与LNCaP 104-R2肿瘤正好相反,LNCaP 104-S的增殖却被雄激素所刺激(图24)。如果带有肿瘤的裸鼠在注射细胞4周后阉割,LNCaP 104-S肿瘤停止生长,而且在其后的四周期间,肿瘤缩小到阉割前体积的10%。如果在阉割时植入TP,则肿瘤继续生长,在其他的4周期间从299±27(SE)mm3生长到965±166(SE)mm3。TP并不影响AR阴性的PC-3肿瘤的生长。在雌性裸鼠中,表达雌激素和雄激素受体的MCF-7肿瘤的生长也不受TP的影响。因此,对LNCaP 104-R2肿瘤生长的雄激素-依赖的抑制作用均是肿瘤和甾体特异的。
5.11.24-LNCaP 104-R2肿瘤的雄激素-依赖性衰退和通过除去TP或植入非那雄胺使它逆转。
在对照的阉割小鼠中LNCaP 104-R2肿瘤在注射细胞于阉割的小鼠7周后长至884±64(SE)mm3(图25和图26A)。在这些小鼠中TP的植入导致肿瘤体积的迅速减小。TP的这种作用在一周内即可明显见到;肿瘤中可见到广泛出血。(图26B)。TP植入四周后,肿瘤大小减小至208±33(SE)mm3(图25和图26C)。如果原来在第四周时植入TP的带有LNCaP 104-R2肿瘤的小鼠中在第7周除去TP(图23),则肿瘤在其后四周内从96±26(SE)mm3(图25到图26D)重新生长到641±157(SE)mm3(图25和图26E)。
5-AR抑制剂(Russell和Wilson.1994),例如非那雄胺可以代表睾酮的作用,而这作用是依赖于睾酮转换为5α-DHT的(Bruchosky和Wilson,1968;Anderson和Liao,1968)。因此,发明人研究非那甾胺是否可以防止在裸鼠中对LNCaP 104-R2肿瘤的这种TP-依赖的抑制作用。原来在第四周植入TP的小鼠中,当于第7周植入非那雄胺(2.5mg)植入片时,LNCaP 104-R2肿瘤从TP抑制的84±15(SE)mm3水平又重新生长,并在四周内达到593±144(SE)mm3(图25和图26F)。这种重新生长的速率约相同于裸鼠在将植入的TP除去时的速率。(图25和26F)。因此,非那雄胺减轻了睾酮对肿瘤生长的抑制作用。
与此正好相反,在正常裸鼠中用非那雄胺处理LNCaP 104-S肿瘤,在四周内肿瘤大小减少45%,从1387±432(SE)mm3至759±136(SE)mm3。在此期间,未植入非那雄胺的对照小鼠的肿瘤大小增加了240%。因此,在维持LNCaP 104-S肿瘤的生长,5α-DHT起了主要作用。非那雄胺并不影响雌性裸鼠中人乳腺MCF-7肿瘤的生长。
5.11.2.5.组织学在裸鼠中生长的LNCaP 104-R2和LNCaP 104-S肿瘤之间并无鲜明的组织学差别。对LNCaP 104-R2肿瘤,TP植入后3天内并未注意到有明显的组织学变化(图28A)。TP植入后5-7天,组织学切片显示广泛坏死并有严重出血(图28B)。在TP处理后第4周时,肿瘤体积显著减少,而且组织切片显示纤维变性带有慢性炎症细胞浸润和在退化过程中溃散的癌细胞(图28C)。
5.11.2.6.雄激素对LNCaP 104-R2肿瘤中雄激素受体,C-myc,和PSA表达的影响。
对LNCaP 104-R2肿瘤的免疫细胞化学染色定位AR是在核上(图28D)和PSA在细胞质,而这是在肿瘤细胞中而不是在周围小鼠细胞中(图28E)。在植入TP三天内,LNCaP 104-R2肿瘤中的AR和C-myc的mRNA水平减少了约50到70%。(图29)。这个起始的迅速损失超过了肿瘤细胞的一般损失。在TP处理1周后肿瘤样本中的PSAmRNA水平(图29)和血清PSA增加10倍多并维持在该高水平上至少又一周。在该TP作用的早期阶段,增强的PSA表达表明,一肿瘤细胞是活的并且仍然对雄激素刺激有反应。
5.11.2.7在裸鼠中雄激素的生物学作用结果表明TP的植入可具生物学作用至少七周。研究中使用的TP维持血清睾酮水平在20至28ng/ml至少7周。与此相比,正常的血清睾酮水平约为5ng/ml,在阉割小鼠无TP植入为0.3ng/ml。由于TP刺激由LNCaP 104-S细胞衍生的肿瘤的生长但对裸鼠中PC-3和MCF-7肿瘤的生长却无影响,因此TP对LNCaP 104-R2肿瘤生长的抑制作用似乎不像是由于植入的雄激素的一段毒性作用。该结论被下述事实所支持即在雄激素植入4周后,带有LNCaP 104-S或104 R2肿瘤的裸鼠的精囊重量增加了约10倍(与阉割的而且无TP处理的相比较),而且这些裸鼠的体重并无损失。
5.11.3讨论雄激素对正常前列腺的发展和功能是需要的。大多数新诊断的前列腺癌也是雄激素依赖的。然而,人前列腺癌细胞系,LNCaP 104-R1(Liao等.,1995)和104-R2细胞±,它含有非常高的AR水平(比雄激素刺激质LNCaP 104-S细胞多10倍多),不被雄激素刺激增殖,但实际上却被低浓度(0.1nm)的雄激素所抑制。已报导称,被AR表达的载体转染的PC-3细胞的增殖也受棓养基中雄激素的抑制(Yuan等1993)。已发现用AR表达的载体逆转录病毒性感染的PC-3细胞在棓养基中并不好存活。
由于雄激素抑制了棓养基中LNCaP 104-R细胞的生长(Kokontis等,1994),雄激素可能对裸鼠中的肿瘤细胞直接施加它的作用。过量表达的雄激素-诱导的基因可能导致在协调各种细胞功能中的不平衡,或者在产生影响细胞循环或细胞程序死亡的因子中的改变。例如,在大鼠腹侧前列腺中的TGF-β1 mRNA是受雄激素负控制的。(Kyprianou和Issacs 1989),而棓养基中TGF-β1对LNCaP细胞增殖的抑制作用(Wilding,1991)则取决于适当浓度的雄激素的存在(Kim等,1996)。雄激素也抑制前列腺的硫酸化糖蛋白-2(Clusterin,)的表达。(Bettuzzi,等1989;Monpetit等,1986),它防止了由肿瘤坏死因子α诱导的LNCaP细胞的死亡。(Sensibar等,1995)。肿瘤的生长取决于肿瘤的血管生成(Weidner等,1993)。然而,组织学分析并未发现在肿瘤生长抑制的最初数周期间,睾酮对LNCaP 104-R2肿瘤中血管形成的明确影响。
雄激素-压制的LNCaP 104-R2肿瘤慢慢地适应在雄激素存在下的生长。在正常雄性小鼠中,LNCaP 104-R2细胞在4周中并不长成可触摸的肿瘤。然而,在50%的这些小鼠中,在7周期间它们慢慢地适应了雄激素的存在并生长成大小等于LNCaP 104-R2细胞在阉割的裸鼠中7周长成的大小(表12)。已有人提出,间歇使用雄激素可能延迟前列腺癌细胞的发展(Goldenbrg等,1995)。这些观察表明,一些可被认为是雄激素-不依赖性的前列腺肿瘤可回复到雄激素-敏感的表现型。这些肿瘤然后可能对雄激素-切除治疗有反应。
在雄激素-缺失的棓养基中长时间(2年)的孵育后,LNCaP 104-R2细胞自LNCaP 104-S细胞的衍生化可能类似于接受雄激素切除疗法(睾丸切除术或化学阉割)的前列腺癌症患者中的情况(Dawson和Vogelzang,1994;Coffey,1993;Geller,1993)。这些患者中的前列腺肿瘤起初对雄激素切除治疗有反应,但前列腺癌常常作为雄激素-不依赖性的癌重新出现。最近的一篇报导显示,曾进行过各种内分泌治疗的前列腺癌患者中的远处转移含有AR(Hobisch等,1995)。一些这些转移的前列腺肿瘤细胞可能行为像LNCaP 104-R2细胞并对雄激素-抑制作用有反应,或回复到雄激素-依赖性的肿瘤,如本研究中所示。
已发现5-AR抑制剂,非那雄胺,在一些病人中治疗良性前列腺增生有效(Stoner和非那甾胺研究组,1994)。也正在试验非那雄胺用以化学预防前列腺癌(Gormley等,1995)。本发现表明,睾酮-抑制的LNCaP 104-R2肿瘤生长需要睾酮转化为5α-HT而非那雄胺逆转该抑制作用并促进LNCaP 104-R2肿瘤的重新生长。因此,如果使用非那雄胺于前列腺癌的化学治疗,考虑该副作用是重要的。氟他胺(用于前列腺治疗的一种抗雄激素)刺激了LNCaP细胞的生长(Wilding等,1989),这是因为这些细胞中的AR在配体-结合的结构域中具一种点突变而且可以利用抗雄激素氟他胺作为雄激素来反式激活靶基因(Kokontis等,1991,Veldscholte等,1990)。因此,欲有效的使用抗雄激素和5-AR抑制剂进行前列腺癌的治疗,需要仔细地评估考虑特别类型的前列腺癌细胞的存在。
现在已将LNCaP 104-R(Kokontis等,1994)称为LNCaP 104-R1。LNCaP 104-R1细胞是从雄激素-依赖的LNCaP 104S细胞衍生的,这是在含活性炭-剥离的FBS的DMEM中40次传代之后;而LNCaP 104-R2细胞是从LNCaP 104-R1细胞衍生的,这是在相同的雄激素-除尽的介质中经过另外的60次传代之后。
6.参考文献下列的参考文献及这里所引用的所有参考资料都被并入本发明以作为补充、解释、提供背景资料给本发明或指导本发明作用之方法学、技术、及/或组合物。Alitalo et al.,美国国家科学院院报,801707-1711,1983。美国癌症协会,癌的事实和数据,1994。Anderson and Liao,自然,219277-279,1968。Anderson and Russell,美国国家科学院院报,873640-3644,1990。Anderson et al.,自然,354159-161,1991。Anderson et al.,生物化学杂志(美).,26416249-16255,1989。Baba et al.,神经化学杂志.,42192,1984。Beato,细胞,56335,1989。Begin,营养学学会会报.,49261,1990。Berman and Russell,美国国家科学院院报,909359-9363,1993。Berry et al.,泌尿学杂志.,132474-479,1984。Bettuzziy et al.,生物化学杂志(英).,257293-296,1989。Bingham and Shaw,内分泌学杂志.,57111,1973。Blohm et al.,内分泌学,119959,1986。Blohm et al.,生物化学与生物物理学研究通讯(美).,95273,1989。Brandt et al.,甾体生物化学与分子生物学杂志.,37575,1990。Brooks et al.,内分泌学,109830,1981。Brooks et al.,前列腺,335,1982。Brooks et al.,实验生物学与医学学会会报(美).,16967,1982。Brown and Scott,lnDNA克隆,一种实用的方法,Glover,D.M.ed.,IRLPress,Oxford,Vol.3,1987。Bruchosky and Wilson,生物化学杂志(美).,2672012-2021,1968。Bruchovsky and Wilson,生物化学杂志(美).,2435953-5960,1968。Carter and Coffey,前列腺,1639-48,1990。Chakrabarty et al.,745-8,1980。Chang and Liao,甾体生物化学杂志.,27123,1987。Chang et al.,美国国家科学院院报,857211-7215,1988。Chomczynski and Sacchi,分析生物化学.,162156-159,1987。Coffey,癌,71880-886,1993。Cooke and Robaire,生物化学杂志(美).,2607489,1985。Darbre and King,细胞,51521-528,1987。Dawson and Vogelzang(Eds),前列腺癌,Wiley-Liss,New York,1994。Dell and Severson,生物化学杂志(英).,258171,1989。Diani et al.,临床内分泌代谢杂志.,74345-350,1992。Downing et al.,美国科学院皮肤病学杂志,14221,1986。Ehrmann and Rosenfield,临床内分泌代谢杂志.,711,1990。Evans,科学,240889,1989。Faller et al.,生物化学,325705-5710,1993。Fang and Liao,分子药理学.,5428,1969。Frost and Gomez,生物皮肤学进展.,12403,1972。Frost et al.,研究的皮肤病学杂志,61159-167,1973。Geller,癌,71(Suppl)1039-1045,1993。Gent and Ho,生物化学,173023,1978。Gent et al.,生物生理杂志.,33211,1981。George et al.,内分泌学,119959,1989。Gershan and Parmegiani,药物化学杂志(美).,10186,1967。Giovannucci,癌,751766-1777,1995。Gittes,新英格兰医学杂志,324236,1991。Goldenberg et al.,泌尿学,45839-845,1995。Gomez and Hsia,生物化学.,724-32,1968。Gormley et al.,临床内分泌代谢杂志.,701136,1990。Gormley et al.,纽约科学院年报.,768163-169,1995。Gorski,et al.,生理学年鉴.,4217,1976。Halgunset et al.,甾体生物化学杂志.,28731,1983。Hall,新植物学.,71855,1972。Hamilton,美国解剖学杂志.,71451-481,1942。Hamilton and Montagna,美国解剖学杂志.,86191-233,1950。Hammerstein et al.,甾体生物化学杂志.,19591,1983。Harris et al.,美国国家科学院院报,8910787-10791,1992。Hay et al,基因进展.,1659-671,1987。Herold and Kinsella,美国临床营养学杂志.,43566,1986。Hilpakka and Liao,ln.内分泌学,3rd ed.,(DeGroot,L.I.,ed.)W.B.
Saunders Co.,Philadelphia,2336-2351,1995。Hirsch et al.,美国国家科学院院报,905277-5281,1994。Hobisch et al.,癌症研究.,553068-3072,1995。Honda et al.,ln食品植物化学品用于癌症预防11,美国化学学会论文集系列.54784-89,美国化学学会,Waxhington,D.C.,1994。Horrobin,脂质研究进展.,31163-194,1992。Horszewicz et al.,癌症研究.,431809,1983。Huggins and Hodges,癌症研究.,1293-297,1941Ichihara and Tanaka,生物化学与生物物理学研究通讯.,149482,1981。Imperato-McGinley et al.,临床内分泌代谢杂志.,70777,1990。Imperato-McGinley,基因学动向,2130,1986。Isaacs,临床内分泌代谢杂志.,56139,1983。Janek and Hartman,癌症研究.,353698-3704,1975。Jensen et al.,美国国家科学院院报.59632,1968。Joly-Pharaboz et al.,甾体生物化学与分子生物学杂志.,5567-76,1995。Kaighn et al.,研究的泌尿学.,1716,1979。Karmali et al.,国家癌症研究院杂志.,73457,1984。Kato,甾体生物化学杂志.,34219,1989。Khan et al.,FEBS通讯.,29298,1991。Kim et al.,内分泌学,137991-999,1996。Kirschmeier et al.,DNA,7219-225,1988,1987。Kokontis et al.,受体,1271-279,1991。Kokontis et al.,癌症研究.,541566-1573,1994。Kwok et al.,美国化学学会会志.,1093684,1987。Kyprianou and lssacs,分子内分泌学,31515-1522,1989。Lands,生物化学年鉴,34313,1965。Liang and Heiss,生物化学杂志 (美).,2567998,1981。Liang and Liao,生物化学杂志(英).,285557-562,1992。Liang et al.,内分泌学,1152311,1984。Liang et al.,生物化学杂志 (美).,2604890,1985。Liang et al.,研究的皮肤病学杂志.,100663-666,1993。Liang et al.,甾体化学杂志.,19385,1983。Liang et al.,内分泌学.,117571-579,1985。Liang et al.,内分泌学.,(巴尔的摩),1121460-1468,1993。Liao and Fang,维生素与激素,2717,1969。Liao et al.,内分泌学.,941205,1974。Liao et al.,癌症通讯.,96239-243,1995。Liao et al.,甾体生物化学杂志.,3441-51,1989。Liao et al.,生物化学杂志(美).,2486154-6162,1973。Liao,国际细胞学评论,4187,1975。Luderschmidt et al.,研究的皮肤病学杂志.,83157-160,1984。McConnel et al.,临床内分泌代谢杂志.,74505-508,1992。Mock et al.,向科学杂志,106762,1985。Moguilewsky and Bouton,甾体生物化学杂志.,31699,1988。Monpetit et al.,前列腺,825-36,1986。Mooradian et al.,内分泌学评论.,81,1987。Moore and Pizza,生物化学杂志 (英).,288717,1992。Morello et al.,研究的皮肤病学.,66319,1976。Munnich et al.,柳叶刀,21080,1980。Nakane et al.,In食品植物化学品用于癌症预防11.美国化学学会论文集系列54756-64,美国化学学会,Washington,D.C.,1994。Nalboone et al.,脂质,25301,1990。Needleman et al.,生物化学年鉴.5569,1986。Normington and Russell,生物化学杂志(美).,26719548-19554,1992.O′Malley,分子内分泌学.,4363,1990Parker et al.,加拿大癌症临床杂志.,465-27,1996。Pattison and Buchanan,生物化学杂志(英).,92100,1964。Pear et al.,美国国家科学院院报,908392-8396,1988。Phillipson et al.,英格兰医学杂志.,3121210,1985。Pincus,“皮肤的解剖学和组织学,在皮肤病理学”中,J.H.Graham,W.C.Johnson and E.B.Hewig,editors,Harper and Row,Hagerstown,1-24,1987。Pochi and Strauss,研究的皮肤病学杂志.,62191-201,1974。Pochi,医学年鉴.,41187,1990。Rasmusson et al.,药物化学杂志(美).,292298,1986。Rittmaster et al.,男科学杂志.,10259,1989。Rittmaster et al.,临床内分泌学代谢杂志.,65188-193,1987。Rittmaster,新英格兰医学杂志.,330120-125,1994。Russell and Wilson,生物化学年鉴.,6325-61,1994。Sambrook et al.,分子克隆实验室手册,Cold Spring Harbor LaboratoryPress,Cold Spring Harbor,1989。Sansone and Reisner,研究的皮肤病学杂志.,56366,1971。Schafer and Kragballe,研究的皮肤病学杂志.,9610-15,1991。Schweikert and Wilson,临床内分泌学代谢.,38811,1974。Sensibar et al.,癌症研究.,552431-2437,1995。Serafini and Lobo,生育与不孕,4374,1985。Siiteri and Wilson,临床研究杂志.,491737,1970。Silverberg and Lubera,癌症情况.,409,1990。Stoll et al.,脂质研究杂志.,32843,1991。Stoner and Finasteride Stuby Group,国际医学文献.,15483-88,1994。Stoner and Finasteride Study Group,泌尿学杂志.,1471298-1302,1992。Strauss and Yesalis,医学年鉴.,42499,1991.Suggs et al.,美国国家科学院院报,786613-6617,1981。Synder,医学年鉴.,35207,1984。Szepsesi et al.,营养学杂志.,119161,1989。Takayasu and Adachi,内分泌学.,9073-79,1972。Tesoriere et al.,神经化学杂志.,51704,1988。Thalmann et al.,癌症研究.,542577-2581,1994。Tilley et al.,癌症研究.,505382-5386,1990。Topp,病毒学,113408-411,1981。Tosaki and Hearse,心脏病学基础研究.,83158,1988。Vallette et al.,甾体生物化学杂志.,2633639,1988。Veldscholte et al.,生物化学与生物物理学研究通讯.,173534-540,1990。Vermeulen et al.,前列腺,1445,1989。Voigt and hsia,内分泌学.,921216-1222,1973。Voigt et al.,生物化学杂志(美).,2604890,1985。Weidner et al,美国病理学杂志.,143401-409,1993。Weissmann et al.,皮肤病学文献.,12157-67,1985。Weissmann et al.,研究的皮肤病学杂志.,82522-525,1984。Wenderoth and George,内分泌学.,113569,1983。Wilding,癌症评述.,11147-163,1991。Wilding et al.,前列腺,14103-115,1989。Williams G.M.,临床药物动力学.,10392-403,1985。Wilson,美国医学杂志.,68745,1980。Wright,前列腺素,白三烯和必需脂肪酸,38229,1989Wuest and Lucky,皮肤药理学.,2103-113,1989。Wynder et al.,营养与癌,221-10,1994。Yang and Wang,国家癌症研究院杂志.,851038-1049,1993。Young et al.,癌症研究.,513478-3752,1991。Ynan et al.,癌症研究.,531304-1311,1993。Ziboh and Miller,营养学年鉴.,10433,1990。Zinn et al.,细胞,34865-879,1983。Zuniga et al.,营养学杂志.,119152,1989。
本发明所公开的所有组合物及方法以及下文所列的权利要求可以在不需许多按照本发明的实验之下即可实施及应用。虽然本发明的组合物及方法已经在优选的具体实施例中加以描述,然而,本领域中的技术人员显然很容易地即可对本发明的组合物、方法、实验步骤或方法步骤的页序加以改变而仍未脱离本发明的观念、精神及范围。更特定言之,显然,一些化学及生理学上有关的试剂可能取代本发明所描述的试剂而仍能获得相同或类似的结果。对本领域的技术人员显而易见的所有这些相似的取代基或修筛仍然在下面权利要求所定义的本发明的精神、范围和概念之中。
情报目录(1)一般情报(i)申请人(A)NAMEArch Development Corporation(B)STREET1101 East 58th Street(C)CITYChicago(D)STATEIllinois(E)COUNTRYUnited States of America(F)POSTAL CODE(ZIP)60637(ii)发明题目抑制5α-还原酶活性的方法和组合物(iii)顺序号2(iv)计算机可读形式(A)MEDIUM TYPEFloppy disk(B)COMPUTERIBM PC compatible(C)OPERATING SYSTEMPC-DOS/MS-DOS(D)SOFTWAREPatentIn Release#1.0,Version#1.30(EPO)(vi)在先申请(A)APPLICATION NUMBERUS 08/442,055(B)FILING DATE16-MAY-1995(2)SEQ ID NO1的情报(i)顺序特征(A)LENGTH20 base pairs(B)TYPEnucleic acid(C)STRANDEDNESSsingle(D)TOPOLOGYlinear(xi)顺序说明SEQ ID NO1GGCGATCCTT CACCAATGTC 20(2)SEQ ID NO2的情报(i)顺序特征(A)LENGTH21 base pairs(B)TYPEnucleic acid(C)STRANDEDNESSsingle(D)TOPOLOGYlinear(xi)顺序说明SEQ ID NO2GGAAAGGTCC ACGCTCACCA T 2权利要求
1.一种组合物,它包含有在可供药用的赋形剂中的脂肪酸或儿茶素组合物和睾酮的组合物。
2.权利要求1的组合物,其中所说的脂肪酸为r-亚麻酸或具有如下结构
其中m,n,和p是0或1;R1,R2和R5具有0到6一个原子链而由C,N,S或O所组成,链中的第一个原子具有-H,-OH,-CH3,-OCH3,-OC2H5,-CF3,-CHF2,-SH,-NH2,卤素,=O,-CH(CH3)2或-C(CH3)3的取代基其中,R5中的原子被连接到R1和R2中的原子上;其中R3或R4为-H,-OH,-CH3,-OCH3,-OC2H5,-CF3,-CHF2,-SH,-NH2,卤素,=O,-CH(CH3)2,或-C(CH3)3,或下述基团
其中环结构可含有不饱和键例如苯环;和其中R6到R10可以是-H,-OH,-CH3,-OCH3,-OC2H5,-CF3,CHF2,-SH,-NH2,卤素,=O,-CH(CH3)2,或-C(CH3)3,五倍子酰基,或3,4,5-三羟基苯基。
3.任何前面的权利要求的组合物,其中所说的睾酮组合物为睾酮丙酸酯。
4.任何前面的权利要求的组合物,其中所说的儿茶素具如下结构
或它的一种异构体,其中n=1或2;R1和R2独立地为H,卤素,低级烷基,OH,或OR3;和其中R3是低级烷基,或其可供药用的盐。
5.任何前面的权利要求的组合物,其中所说的儿茶素为表儿茶素,表儿茶素五倍子酸酯,表儿茶素-3-五倍子酸酯,表棓儿茶素-3-五倍子酸酯,(-)表棓儿茶素-3-五倍子酸酯,或(+)表棓儿茶素-3-五倍子酸酯。
6.任何前面的权利要求的组合物,其中所说的儿茶素包含有从绿茶,云南茶,中国珠茶,乌龙茶,红茶,绿藻,黑色蕈类,罗勒叶,荷兰芹叶,当归,洋茴香果,党参,川芎,丹参或金色百合花分离的组合物。
7.任何前面的权利要求的组合物,用以在动物的靶细胞中抑制5α-还原酶的活性,其中将组合物按可有效抑制5α-还原酶活性的剂量施用于所说的靶细胞。
8.权利要求7的组合物,其中所说的靶细胞为癌细胞,例如前列腺癌细胞,乳腺癌细胞,或肿瘤细胞。
9.权利要求6的组合物,其中所说的靶细胞位于雄激素敏感的器官中,如前列腺,包皮器官,腹侧前列腺,背外侧前列腺,凝结腺或精囊。
10.任何前面的权利要求的组合物,用以在动物中减少雄激素依赖性的器官的重量,其中将组合物按可产生所说的器官重量减少的有效剂量,施用于所说的动物。
11.权利要求10的组合物,其中所说的雄激素依赖性的器官是前列腺,包皮器官,腹侧前列腺,背外侧前列腺,凝结腺或精囊。
12.任何前面的权利要求的组合物,用以在动物中阻止或减少癌细胞的生长,其中将组合物按可有效地阻止或减少所说的癌细胞生长的剂量,施用于所说的动物。
13.权利要求12的组合物,其中所说的癌细胞为前列腺癌细胞,乳腺癌细胞,或肿瘤细胞。
14.任何前面的权利要求的组合物,用以减少动物的重量,其中将组合物按可降低所说的动物的重量的有效量,施用于所说的动物。
15.权利要求14的组合物,其中将所说的化合物给药于所说的动物,使雄激素敏感的器官,如前列腺,凝结腺,精囊或包皮腺的重量减少。
16.任何前面的权利要求的组合物,用以在细胞中抑制脂质的生成,其中将组合物按可抑制脂质生成的有效量,施用于所说的细胞。
17.权利要求16的组合物,其中所说的脂质为皮脂。
18.任何前面的权利要求的组合物,用以减少人的头发脱落,其中将组合物按可减少人的头发脱落的有效剂量,给药于所说的人。
19.任何前面权利要求的组合物,用以减少人的痤疮,其中将可有效地减少人的痤疮的剂量,给药于所说的人。
20.以上任一权利要求的组合物在制备降低或抑制人体中5α-还原酶活性药物中的用途,其中该药物以降低或抑制5α-还原酶活性有效量给预该主体。
全文摘要
公开了抗雄性激素化合物的新颖种类,包括饱和及不饱和脂肪酸,儿茶素五倍子酸酯,其衍生物,及合成类似物,其合成方法,及它们在治疗与雄性激素活性有关的疾病时的应用。亦公开了先前未知其抗雄性激素活性的组合物在治疗与雄性激素活性相关疾病及癌症时的应用。公开了用包含睾丸酮组合物与5α-还原酶抑制剂如脂肪酸和儿茶素组合物一起组合形成的组合物,以治疗乳腺癌,前列腺癌,和其他肿瘤的方法。同时也公开了组合物和方法;用以减少在动物中脂质的产生,减少器官和身体重量,治疗脱发、良性前列腺增生,减少皮脂产生,和其他有关的疾病。
文档编号A61K31/216GK1190888SQ96195605
公开日1998年8月19日 申请日期1996年5月16日 优先权日1995年5月16日
发明者廖述宗, 梁德明 申请人:阿奇发展公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1