超声波施放装置的制作方法

文档序号:1071306阅读:205来源:国知局
专利名称:超声波施放装置的制作方法
技术领域
本发明涉及用于把超声波施加到人体上的超声波施放装置。
传统的用于把超声波施加到人体上的超声波施放装置公开于日本专利特开平6-22518和特开平3-63054中。该传统装置包括具有与人体接触以施放超声波的振动元件的施放器、用于把超声波提供到振动元件的振荡电路、以及用于检测该振动元件是否与一负载相接触的负载检测电路。在该装置中,当检测到没有负载的情况下,该装置减小向振动元件提供超声振动的强度。这种超声波施放装置主要开发用于由象医生这样的专家对人体的内部器官进行诊断。因此,该负载检测电路对于专家来说足够有效地把超声波施加到人体中。但是,当在美容或减肥操作中使用该装置产生超声波时,这时使用者通常是业余人员,因此即使具有负载检测电路也难以安全有效的使用该装置。因此,对检测该装置是否正确地沿着皮肤移动的要求变得重要起来。也就是说,考虑到当振动元件保持长时间的与人体某个部位保持接触时,在该部位会产生冷灼伤,这样就需要一种能够防止冷灼伤并能在没有负载的情况下消除过量的能耗的措施。
本发明是在考虑到上述问题的情况下作出的,其目的是提供一种足够安全并便于使用的的超声波施放装置。
本发明的超声波施放装置包括具有一振动元件的手持施放器,在使用中该振动元件与用户的皮肤相接触以把超声波施加到皮肤上;一提供直流电压的电源;一由来自电源的直流电压所激励以产生用于驱动该振动元件的振荡输出的振荡电路;以及一负载检测电路,它用于监测振动元件是否通过与皮肤接触而被加载,并当该振动元件被加载时提供一种负载检测信号。另外,提供一个移动检测电路,它用于监测该振动元件是否移动,并当振动元件移动时发出移动检测信号。一控制电路连接到该负载检测电路和该移动检测电路,用于当在预定的第一时间周期内没有接收到负载检测信号时,或当即使在第一时间周期内检测到负载检测信号而在预定的第二时间周期中移动检测信号在一段临界时间内不连续时,该控制电路控制该驱动电路降低馈送到超声波振动元件的振荡输出。
因此,该装置可以检测振动元件的移动,并判断它是否在移动中与人体接触,并且只有在振动元件这样移动时才连续地发出超声波,这样就避免了连续的把超声波长时间的施加到人体的某个部位而产生冷灼伤的现象。
最好,该装置可以包括一个监测电路,该电路给出一个表明超声振动被振动元件所发出的指示,其中包括一个由振动元件的移动所引起的并且频率低于该超声振动的低频成分。该监测输出被馈送到提供负载检测信号和移动检测信号的负载检测电路和移动检测电路。该包括关于负载情况以及振动元件移动信息的监测输出能够出现在谐振系统中,其中该谐振系统包括用于该振动元件的振荡电路。因此,通过监测电路与谐振系统之间的简单电连接可以通过简单的电路结构实现负载和移动检测,而不需要用于这种检测的附加传感器。
例如,该监测电路设计来用于检测该振荡电路的输出,该振荡电路包括具有初级线圈和次级线圈的变压器。该振动元件是由跨接在该次级线圈两端上的压电元件形成的。该初级线圈产生一振荡电压,而该振荡电压又在次级线圈中产生振荡输出以驱动该振动元件。该监测电路包括一个与该变压器磁耦合的副线圈,以提供与该振荡电路的输出成正比的监测输出。
另外,对于包括上述变压器的相同振荡电路,该监测电路可以做成一个与该振动元件相并联的整流电路,该整流电路跨接在变压器的次级线圈两端以把振荡电压整流为监测输出。
另外,该监测电路也可以设计为根据通过包含谐振电路的振荡电路的电流提供监测输出,在这种情况下,该振荡电路包括具有初级线圈和次级线圈的变压器,其中在该次级线圈两端跨接的由压电元件形成的振动元件。一电容器跨接在初级线圈上以与该初级线圈形成并联谐振电路。一开关元件与跨接在直流电压电源上的并联谐振电路相串联,并被打开或关闭以使该谐振电路提供振荡电压,该振荡电压又使该次级线圈感应产生振荡输出。该监测电路包括与开关元件和并联谐振电路相串联的以电压的形式提供监测输出的测流电阻器。
在另一种结构中,该监测电路具有带有初级线圈和次级线圈的变压器。该初级线圈与在振荡电流输出通道上由压电元件形成的振动元件相串联,使得次级线圈提供监测输出。
负载检测电路最好具有把该监测输出的振幅与预定电平进行比较的比较器,当该振幅偏离该预定电平并达到一定程度时输出该负载检测信号。
该移动检测电路被设计为具有从监测输出中提取低频成分的低通滤波器,以及当该低频成分的振幅超过预定电平时把移动检测信号提供给控制电路的一判断电路。
另外,本发明公开的另外一种方案是利用与该振动元件相邻放置的传感盘用于进行负载检测和移动检测。该传感盘在该振动元件被加载时能够发生形变,它是由在形变时电阻发生改变的压敏导电橡胶制成的。该传感盘在一个表面上形成单个第一电极,而在相对表面上具有多个第二电极。提供了多个电压,其中每个电压施加在第一电极和一个第二电极之间,从而提供了多个监测输出,每个监测输出表示在传感盘上与每个第二电极相邻的部位发生的形变的程度。该控制电路可以设计为至少对其中一个监测输出进行分析以给出负载检测信号,并对所有监测输出进行分析,使它们相互比较以提供移动检测信号。
另外也可以利用感应振动元件温度的温度传感器。在该控制电路中包括一个保护电路,当接收到表明温度超过规定水平的温度输出指示时,产生一个停止信号使振荡器停止产生振荡输出。因此,在发热时振动元件可以停止振动以保护人体。
该振荡电路最好产生间歇性振荡输出,这样使振荡输出的相邻脉冲序列之间留出一段间歇时间。在该间歇时间中,负载检测电路和移动检测电路向所述控制电路发出负载检测信号和移动检测信号。因此,可以防止负载和移动检测信号被噪声所干扰,以提高该控制电路判断的可靠性。
最好,该振荡电路和电源与向该电源提供源电压的电池一同包含在施放器内,并且该施放器可以与包含提供对该电池充电的交流电压的变换器的主壳体相分离。该变换器包括跨接在交流电压上的初级电源线圈。当该施放器与主壳体物理连接时,该施放器所包含的与该初级电源线圈磁耦合的次级电源线圈产生感应电压。次级电源线圈与手持施放器在内部连接以通过由在初级电源线圈中感应的电压对所述电池充电。通过这种设计,施放器可以易于制造为具有可在潮湿环境下使用的防水结构。


图1为展示本发明第一实施例的超声波施放装置的电路的方框图;图2为该装置的示意图;图3为展示用于上述装置中的振荡电路、负载检测电路、以及移动检测电路的电路图;图4A至4F为说明该负载检测电路和移动检测电路的操作过程的示意图;图5A至5C为说明振荡电路的输出与负载检测电路的输出和移动检测电路之间的关系的示意图;图6为用于上述装置中的温度传感电路的电路图;图7为说明上述装置的操作过程的流程图;图8为本发明第二实施例的超声波施放装置的电路图;图9A和9B为说明上述装置的操作过程的流程图;图10为本发明第三实施例的超声波施放装置的电路图;图11为本发明第四实施例的超声波施放装置的电路图;图12为本发明第五实施例的超声波施放装置的电路图;图13为本发明第六实施例的超声波施放装置中用于负载检测和移动检测的传感盘的截面图;图14A和14B为说明该传感盘相对表面上的电极分布的平面图;图15为说明用于把振荡输出发送到该施放器并从上述装置中检测输出的线路连接的示意图;图16为本发明第七实施例的超声波施放装置的电路图。
图1为本发明第一实施例的超声波施放装置的电路图。该装置用于面部治疗或减轻体重,其中包括一手持施放器10,在其一端带有用于与人体皮肤相接触以施加超声振荡的振动盘12。该振动盘12是铝制薄片,并接收在由压电元件形成的振动元件11中产生的超声波。为了与皮肤紧密接触并有效地施放超声波,在使用时该振动盘12上覆盖有胶体。该胶体由包含大量水分的物质构成以增加超声波的传输性能。施放器10包括驱动压电元件11的振荡电路20、给该振荡电路20供电的电源1、用于检测振动盘12的负载情况的负载检测电路40、用于检测施放器10的移动方向的移动检测电路50、用于传感压电元件11的温度传感电路60、用于显示操作状态的显示装置7、以及用于控制上述电路和类似电路的控制电路80。另外,该施放器10具有一电源开关13,以及用于显示操作状态的窗口14。
在使用中,该施放器10需要产生超声振动,并使振动盘12保持与人体接触。为了这一目的,该负载检测电路40被提供以用于检测是否由于振动盘12与人体皮肤接触而产生适当的负载。当振动盘12由于没带胶体或由于胶体覆盖不够,而没有与人皮肤紧密接触,这样就不能顺利地发送超声振动,负载检测电路40判断振动盘没有被加载并限制超声波的产生。另外,当把超声波施加到人体上时,最好使该振动盘12缓慢地沿着皮肤移动。否则,当振动盘12长时间地保持在某一位置时,就会发生在人体的皮肤上产生冷灼伤的潜在危险。考虑到这一点,提供该移动检测电路50,使得当振动盘12以适当的速率移动时保持连接的振荡,否则就停止振荡。另外,该控制电路80包括一个定时器,该定时器在该施放器于正常状态下使用预定的时间后就使该振荡停止。也就是说,由下面将要讨论到的内容,只有当该来自该负载检测电路的负载检测信号表明振动盘12保持与皮肤接触,并且来自移动检测电路的移动检测信号表明该振动盘12没有长时间地保持在一个部位时,该定时器就会计时,以使该超声振动连续保持预定的时间。当振动盘12由于振荡电路20的性能不佳或其它原因而不正常振动并伴随着温度上升时,该温度传感电路60对从位于振动盘12附近的温度传感器15的输出作出响应以向控制电路80提供一个表明反常温度升高的输出指示,该控制电路作出响应以停止振荡电路20。
窗口14包括被驱动来连续地导通或阻断以表明该振荡的发光二极管的阵列。另外,窗口14显示产生正常操作的情况,对未加载的情况发出警告,对该振动盘保持静止的情况发出警告,对该振动盘的异常温度发出警告,保持由该计时器所计的时间,以及该装置的异常操作。
如图2所示,施放器10的外壳16中包含着用于向电源1提供电能的可充电电池17。该电池17可以由从安装于一个分离的主壳体90中的充电电路91的输出进行充电,该充电电路91包括用于把来自市电的交流电压进行整流的整流器92,以及把该整流器92的直流输出转换为交流输出的变换器。该变换器包括一个初级电源线圈94。相应的次级电源线圈18包含于施放器10的外壳16内,它用于在外壳16的一端上的突起19与在主壳体90中的凹陷99相吻合时,与初级电源线圈94相磁耦合,因此,在次级电源线圈18感应出与该变换器的输出电压成正比的用于对电池17进行充电的电压。施放器10可拆卸地安装于主壳体90上,并且不用通过电接触而从中获得电源。在这种情况下,外壳16可以被做成防水结构使得该施放器可以在象浴室或澡堂这样的潮湿环境中使用。因此,当用于浴室或澡堂中时该施放器不会存在被水气侵入的问题,并且可以利用该潮湿环境中的水来代替胶体作为振动片12。
电源1有选择地向振荡电路提供来自电池17的高的和低的直流电压,以根据用户所选择的强度改变来自振荡电路20的振荡输出的幅度。并且,在经过了一段定时器的预置时间后,控制电路80发出指令以停止向振荡电路20提供电能。
如图3所示,振荡电路20包括用于把来自电源1的直流电压转换为约具有1MHz的频率的直流电压的变换器,在其输出端上带有包括初级电源线圈21和次级电源线圈22的变压器T。该初级电源线圈21场效应晶体管23和测流电阻27相串联并跨接在电源1上,并且与跨接在初级电源线圈21两端的电容器24相配合形成一个并联谐振电路,该电路在场效应晶体管23截止时在初级电源线圈21两端产生谐振电压。该压电元件11跨接在次级电源线圈22上,用于通过在次级电源线圈22中产生的交流电压发出超声振荡。反馈线圈25与初级电源线圈21相耦合,以把振荡电路的输出反馈到FET23。双极型晶体管26连接到FET23的栅极与发射极之间的通道上,以用于控制FET23。跨接在电源1上的是相串联的启动电阻28和电容器29,它们之间的连接点通过反馈线圈25连接到FET23的栅极以向它提供偏压。当电容器29被电源充电并达到FET23的阈值电压时,FET23变为导通并降低FET23的漏极电压。在此时,反馈线圈25产生向FET23栅极提供的反馈电压,从而增加通过该FET的电流。因此,当随着通过FET的电流的增加在27两端上的电压达到预定的电平,晶体管26变为导通以使FET 23截止。因此,初级电源线圈21和电容器24组成的谐电路被激励并产生谐振。在该谐振的一个周期结束时,在反馈线圈25中感应的反馈电压达到使FET 23的栅极导通的电压,因此,再次使FET导通。重复上述操作保持谐振电压使压电元件11产生振动。谐振电路的频率被设置为该压电元件11的固有频率附近,以把所产生的超声振动施放到振动片12上。
晶体管26的基极与电阻27之间连接着一个阻值可以改变的可变电阻30,用于改变晶体管26的导通定时,以调整谐振频率。也就是说,改变FET的导通周期可以调节谐振频率,以使谐振电路的谐振频率压电元件的固有频率相匹配,该压电元件的固有频率可能会由于所采用的元件的特性不同而不同。请注意,在这种连接中,谐振电路由控制电路80所控制以产生在相邻的脉冲序列Vp之间具有间歇时间段的间歇振荡,如图4A和4B所示。
变压器T包括与对副线圈101的输出进行整流的整流电路相配合的副线圈101,以形成发出表明超声波被施加于负载上的情况的监测输出指示的监测电路100。监测输出Vx包括由于振动元件12的移动产生的频率低于该超声振动的频率的低频成分。更准确在说,在副线圈101两端之间的电压除了表明超声振动的高频成分之外还包括从在压电元件与负载相接触以及从施放器沿着人体皮肤移动发出的磨擦声中产生的低频成分。对在副线圈101两端的电压进行整流所获得的监测输出Vx被馈送到负载监测电路40和移动监测电路50以进行负载检测和移动检测。
如图3所示,负载检测电路40具有用于把来自监测电路100的监测输出Vx与参考电平Vref相比较的比较器41。该监测输出Vx具有如图4B所示的波形图案。当监测输出Vx变得低于参考电平Vref,比较器41向控制电路80提供一个高电平的负载检测信号SL,表明振动片12与用户的皮肤保持适当的接触。当在预定的时间段没有连续地获得负载检测信号SL时,控制电路80停止振荡电路20的操作,或使电源1断开。在本实施例中,考虑到谐振电压被负载的存在所降低的情况,使得监测输出Vx低于参考电平Vref时,则产生负载监测信号SL。但是,与上述情况相反,有可能由于不同结构的谐振电路会改变压电元件11的特性,以破坏与谐振电路的阻抗匹配,从而在存在负载时引起监测输出增加。在这种情况下,当监测输出Vx大于参考电平Vref时产生负载监测信号SL。
监测输出Vx也通过电容器51以输出Vx′形式馈送到移动检测电路50,如图4D所示。移动检测电路50包括低通滤波器52和判断电路53。该输出Vx′通过滤波器52除去高频成分,以保留不具有由振动片12的移动所引起的频率成分的低频成分,如图4E所示,如此获得的低频输出VL被馈送到判断电路53的两个比较器55和56,并分别与阈值TH1和TH2(TH1>TH2)进行比较,以在输出VL高于阈值TH1或低于阈值TH2的时间段内向控制电路80提供一个高电平的移动检测信号SM(如图4F所示)。TH11和TH2可以由可变电阻器57和58所调节。控制电路80在预定的时间段Tc(例如15秒)内计数高电平的移动检测信号SM的时间周期,当在该时间段Tc内的计数超过计数超过预定的参考数值时,则判断该振动片12以适当的速度移动。否则,控制电路80判断的振动片没有以适当的速度移动,并输出一个限制振荡电路20的限制信号。该振荡电路20包括与跨接在FET23的栅极与源极路径上的晶体管26相并联,并通过光耦合器81连接到控制电路80的晶体管84。因此,在从控制电路80接收到限制信号时,晶体管84导通使FET23截止以使振荡电路20停止振荡。尽管在本实施例中限制信号的作用是停止振荡电路20的工作,但是本发明不限于此,还可以设计为控制振荡电路20或电源1以降低振荡强度。
如图5A所示,来自振荡电路的输出被通过利用图5B中的驱动脉冲间歇的放出。在驱动脉冲的间歇周期内,包含负载检测信号和移动检测信号的数据信号S被发送,并在控制电路80中进行处理。因此,该检测信号不会受与振荡相关的噪声所影响,从而实现可靠的负载和移动检测。
如图6所示,温度传感电路60包括接收用于测量温度的热敏电阻15的输出的第一温度感测部分61和第二温度感测部分62,第一温度感测部分61具有一温度控制器65,从热敏电阻15的输出通过电阻63和电容器64馈送到该温度控制器65。当在热敏电阻15检测的温度超过预定的参考温度,该温度控制器65通过光耦合器66向振荡电路20发出的停止信号。光耦合器66具有连接到晶体管84的基极-发射极之间的通道上的晶体管68,致使该停止信号可以使晶体管84导通,以停止振荡电路20的振荡。在振动片12上被热敏电阻15所感应的温度超过参考温度时启动温度控制,致使只有在所检测的温度低于该参考温度时,该振荡电路20被启动并重新开始振荡。当所检测温度低于该温度水平时,温度控制器62作出响应不发出停止信号,从而使振荡电路20重新开始振荡。第二温度检测部分包括一比较器69,该比较器69在热敏电阻15所检测的温度超过预定的参考温度时,使晶体管70导通,从而使光耦合器71的晶体管73导通,从而使电源与晶体管73之间的连接断开。用于比较器69的预定参考温度被设置为高于温度控制器65的参考温度,以用于作为一个安全措施,即使由微处理器制成的温度控制器65停止工作时,也可以在振动片12被反常加热时停止超声振荡。
下面参照图7说明该超声装置的操作过程。在打开电源开关后,按下启动电流以激励振荡电路20,使振动片12开始超声振动并启动定时器。在这时,对振动片12进行温度测量,使得当第一温度感测部分61测出该温度超过预定温度(例如45℃)时,显示驱动器7发出表明振动片过热的警告,同时定时器与振荡被停止。在启动定时器的步骤后,当发现发感应的温度小于45℃时,则进行负载检测,然后当发出表明振动片被加载的负载检测信号时进行移动检测。当没有发出负载检测信号时,在40秒的有限时间段内显示未加载警告,以促使用户把覆盖有胶体的振动片置于皮肤上。如果在40秒钟内没有发出负载检测信号,则进行一控制动作以显示停止操作警告并停止定时器和振荡。在存在负载检测信号时进行移动检测,这样当在预定时间(例如15秒)内发出移动检测信号时,显示正常操作并对定时器发出一个倒计时指令。在经过一段的预定操作时间后(例如在这种情况下为10分钟),振荡电路停止工作。如果在10分钟之内按下暂停键,该振荡电路停止,但是定时器继续进行倒计时操作。当在这10分钟之内按下重新启动按钮,则振荡电器重新开始振荡。
尽管上述实施例,这样设计使得控制电路在没有检测到负载或移动时使振荡电路停止,但是本发明并不限于此,它也可以设计为在检测到这种情况时减小从振荡电路的振荡输出。
图8示出本发明第二实施例的超声波施放装置的一振荡电路20A和一监测电路100A。其它构造与第一实施例相同,该振荡电路20A具有与第一实施例的振荡电路20相同的基本结构,因此,在图中相似的部分被标以相似的号码并带有后辍“A”。监测电路100A设计为从测流电阻27A两端的电压获得监测输出,该监测输出被馈送到负载检测电路40A和移动检测电路50A。在发生负载变化时,对于由初级电源线圈21A和电容器24A构成的谐振电路产生的谐振电压在测流电阻27A两端有相应的电压变化。根据该电压变化,监测电路100A提供一个表明该负载变化的监测信号。该监测电路100A由跨接于电阻27A两端串联连接的二极管111、电阻112和电阻113,以及与电阻113并联的电容114组成,如图9A所示,使得在电阻27A两端的电压被平滑为电容114两端的电压,并被作为监测信号Vx馈送到负载检测电路40A和移动检测电路50A。当检测信号Vx的电平低于预定数值时,负载检测电路40A发出如图9B所示的负载检测信号SL。移动检测电路50A与图3中第一实施例所采用的电路结构相同,它根据监测输出Vx进行移动检测。
图10示出本发明第三实施例的超声波施放装置的一振荡电路20B和一监测电路100B。其它构造与第一实施例相同,该振荡电路20B具有与第一实施例的振荡电路20相同的基本结构,因此,在图中相似的部分被标以相似的号码并带有后辍“B”。监测电路100B由跨接于振荡电路20的次级线圈22B两端的串联的二极管121、电阻122和电阻123,以及与电阻123并联的电容125组成,使得在次级线圈22B两端的电压被整流和平滑为作为馈送到负载检测电路和移动检测电路的监测输出的电压。这样获得的监测输出包括表示负载情况和振动片移动状态的低频成分,并给出负载和移动检测所依据的基础。
图11示出本发明第四实施例的超声波施放装置的一振荡电路20C和一监测电路100C。其它构造与第一实施例相同,该振荡电路20C具有与第一实施例的振荡电路20相同的基本结构,因此,在图中相似的部分被标以相似的号码并带有后辍“C”。监测电路100C包括与压电元件11C相串联跨接在振荡电路20C的次级线圈22C两端的电阻130,跨接在电阻130两端的相串联的二极管131、电阻132和电阻133。这样在次级线圈22C中产生输出电压被整流和平滑以向负载检测电路和移动检测电路提供所得的监测输出。
图12示出本发明第五实施例的超声波施放装置的一振荡电路20D和一监测电路100D。其它构造与第一实施例相同。该振荡电路20D是科尔皮兹振荡器(电容反馈振荡器),使压电元件11D连接到该电路的输出端。监测电路100D包括具有与位于振荡电路的输出通道上的压电元件11D相串联的初级线圈140以及与该初级线圈相磁耦合的次级线圈142,以及用于把该次级线圈的输出整流和平滑的整流/平滑电路144。因此,对应施加到该压电元件11D上的电压的监测输出被馈送到负载检测电路40D和移动检测电路50D。
图13、14A和14B示出本发明第六实施例的超声波施放装置的监测电路100E。其它构造与第一实施例相同。该监测电路100E包括由根据施加于振动片上的压力而变形的压敏导电橡胶而制成的环状传感盘150。该传感盘150与振动片12E的边缘151一同与该施放器的外壳16E的一端的凹陷处相吻合,并能够被在振动片12E与人体接触并沿着人体皮肤移动时振动片12E受到的压力所变形。该传感盘150在形变时改变其电阻,在它的一个表面上形成有单个环状电极152,如图14B所示,在其相对表面上具有多个圆周间隔分布的电极153,如图14A所示。每个电极153与每个电压源154相连接,并与一负载/移动检测电路160相连接,以根据传感盘150在对应于每个电极153的某个部位处的形变程度(电阻)以电压的形式提供监测输出。该负载/移动检测电路160包括一微处理器,它用于进行根据至少来自其中一个电极的监测信号判断负载是否被施加到该振动片的负载检测,并通过分析来自所有电极153的检测输出进行的移动检测。当振动片12E与人体接触时,所产生的电压使传感盘150改变其电阻,从而在电极152与至少其中一个电极153之间的电压发生改变。该电压改变为负载检测的进行提供一个基准。当振动片12E沿着人体皮肤相接触地移动时,施加到振动片12E上的压力不均匀地传到传感盘150使得不同电极之间具有不同的电压。而另一方面,当振动片12E保持静止时,四个电极153都具有相同的电压。因此,当检测到电极153之间的电压不同时,则认为振动片12E是移动的。如图15所示,监测电路100E包括在施放器10E中,并通过与把振荡输出发送到压电元件11E的布线网络171相分离的布线网络172,把它的输出发送到在主壳体中的负载/移动检测电路。
图16示出本发明第七实施例的超声波施放装置,其基本结构与图2中的第一实施例相同,其不同之处在于除了施放器10F与主壳体90F外还具有一个子单元180。该子单元180中包括电源1F、振荡电路20F、负载检测电路40F、移动检测电路50F和控制电路80F,它们的结构与第一实施例所用的相同。压电元件与振荡片被安装与该施放器10F中。施放器10F具有防水的外壳,并通过软导线190连接到子单元180上,使得振动片可以由振荡电路20F所驱动以进行超声振动。通过这种设计,施放器10F可以被做得更紧凑,并且该施放器10F与子单元180更容易被设计为具有适用于浴室中的防水结构。
权利要求
1.一种超声波施放装置,其特征在于,其中包括一具有振动元件的手持施放器,在使用中该振动元件与使用者的皮肤相接触以把超声波施加到皮肤上;一提供直流电压的电源;一由来自该所述电源的直流电压所激励以产生驱动所述的振动元件的振荡输出的振荡电路;一负载检测电路,它用于监测所述振动元件是否被加载,如与皮肤接触,并当所述振动元件被加载时提供一负载检测信号;一移动检测电路,它用于监测所述振动元件是否移动,并在所述振动元件移动时提供移动检测信号;一控制电路,它连接到所述负载检测电路和所述移动检测电路,当在预定第一时间周期内没有接收到所述负载检测信号,或即使在所述第一时间周期内检测到所述负载检测信号,当在预定第二时间周期内在一定时间内所述移动检测信号不连续时,所述控制电路控制所述驱动电路以降低被馈送到所述超声振动元件上的所述振荡输出。
2.根据权利要求1所述的超声波施放装置,其特征在于包括一个监测电路,它用于提供表明所述振动元件已经产生超声振动并且包括由于所述振动元件移动所引起的超声振动的低频成分的一单个监测输出,该低频成分具有比所述超声振动频率低的频率,所述监测输出馈送到所述负载检测电路以及所述移动检测电路,并在这两个电路中被处理产生所述负载检测信号和所述移动检测信号。
3.根据权利要求2所述的超声波施放装置,其特征在于所述振动电路包括具有初级线圈和次级线圈的变压器,由压电元件形成的所述振动元件跨接在所述次级线圈两端,所述初级线圈产生一振荡电压使得所述次级线圈输出用于驱动所述振动元件的振荡输出,所述监测电路包括一与所述变压器磁耦合以提供所述监测输出的副线圈。
4.根据权利要求2所述的超声波施放装置,其特征在于所述振荡电路包括具有初级线圈和次级线圈的变压器,由压电元件形成的所述振动元件跨接在所述次级线圈两端,所述初级线圈产生一振荡电压使得所述次级线圈输出用于驱动所述振动元件的振荡输出,所述监测电路跨接在所述次级线圈两端并与所述振动元件并联,以把所述电压整流为电压形式的所述监测输出。
5.根据权利要求2所述的超声波施放装置,其特征在于,所述振荡电路包括一具有初级线圈和次级线圈的变压器,由一压电元件形成的所述振动元件跨接在所述次级线圈的两端;一跨接在所述初级线圈两端并与所述初级线圈个配合以形成一并联谐振电路的电容器;以及一与所述并联的谐振电路相串联地跨接在一直流电压源上并被驱动以交替的打开和关闭以使所述谐振电路提供一在所述次级线圈中感应所述振荡输出的振荡输出的开关元件;所述监测电路包括与所述开关元件和所述谐振电路相串联地跨接在所述直流电压上并以电压的形式提供所述监测输出的一测流电阻。
6.根据权利要求2所述的超声波施放装置,其特征在于,所述监测电路包括具有初级线圈和次级线圈的一变压器,所述初级线圈与所述由一压电元件形成的振动元件串联在所述振荡电路的输出通道上,使得所述次级线圈提供监测输出。
7.根据权利要求2所述的超声波施放装置,其特征在于,所述负载监测电路包括一把所述监测输出的振幅与预定电平相比较的比较器,其当所述振幅偏离所述预定电平达到一定的程度时提供所述负载检测信号。
8.根据权利要求2所述的超声波施放装置,其特征在于,所述移动监测电路包括一用于从所述监测输出中取得所述低频成分的低通滤波器;以及一用于在所述低平成分的振幅超过一预定标准电平时把所述移动检测信号提供给所述控制电路的判断电路。
9.根据权利要求2所述的超声波施放装置,其特征在于,所述负载电路包括一把所述监测输出的振幅与预定电平相比较的比较器,其当所述振幅偏离所述预定电平达到一定的程度时提供所述负载检测信号;所述移动监测电路包括一用于从所述监测输出中取得所述低频成分的低通滤波器;以及一用于在所述低平成分的振幅超过一预定临界电平时把所述移动检测信号提供给所述控制电路的判断电路。
10.根据权利要求1所述的超声波施放装置,其特征在于,其中还包括一与所述振动元件相邻放置的传感盘,该放置使得当所述振动元件被加载时所述传感盘发生形变,所述传感盘由在发生形变时电阻发生改变的压敏导电橡胶制成,所述传感盘一个表面上具有单个第一电极,在其相对表面上具有多个第二电极;以及多个电压源,其中每个电压源在所述第一电极与每个所述第二电极之间施加一个电源,以提供多个分别表示在所述传感盘上与每个所述第二电极相邻的某个部位形变的程度的监测输出;所述控制电路被设计为用于分析至少其中一监测输出以给出所述负载检测信号,并且用于分析所有的所述监测输出并使它们相互比较以提供所述移动检测信号。
11.根据权利要求1所述的超声波施放装置,其特征在于,其中还包括一温度传感器,它用于感测振动元件的温度并提供一个温度输出指示;以及一保护电路,它在接收到表明所述温度超过临界水平的温度输出指示时,产生一个用于使所述振荡电路停止产生所述振荡输出的停止信号。
12.根据权利要求1所述的超声波施放装置,其特征在于,所述振荡电路产生所述间歇式的振动输出,使得所述振荡输出的相邻脉冲序列之间保留一间歇周期;所述负载检测电路和所述移动检测电路被设计为在所述间歇周期内把所述负载检测信号和所述移动检测信号发送到所述控制电路。
13.根据权利要求1所述的超声波施放装置,其特征在于,所述振荡电路和所述电源与向所述电源提供源电压的电池一同包含于所述手持施放器中,所述手持施放器与包含一提供交流电压的转换器的主壳体是可分离的,所述转换器包括一初级电源线圈,在该线圈两端产生所述交流电压,在所述手持施放器中包含与所述初线级电源线圈磁耦合的次级电源线圈,当所述施放器与所述主壳体物理连接时,在所述次级电源线圈内感应出相应的电压,所述次级电源线圈被连接到所述手持施放器内以通过在所述次级电源线圈中感应的所述电压对所述电池进行充电。
全文摘要
一种使用安全且方便的超声波施放装置。该装置包括一具有振动元件的手持施放器;一提供直流电压的电源;一产生驱动所述的振动元件的振荡输出的振荡电路;一用于监测所述振动元件是否被加载的负载检测电路;一用于监测所述振动元件是否移动的移动检测电路;一根据所述负载检测电路和所述移动检测电路发出的所述负载检测信号和所述移动检测信号控制所述驱动电路的控制电路。
文档编号A61B17/00GK1222846SQ98800491
公开日1999年7月14日 申请日期1998年5月15日 优先权日1997年5月15日
发明者秋定昭辅, 井上博允, 安部秀明, 河井幸三, 武藤元治, 林正之, 西村真司, 斋田至 申请人:松下电工株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1