一种保温隔热型三层结构式复合竹纤维板的制作方法

文档序号:14105895阅读:138来源:国知局

技术领域
:本发明涉及竹纤维板加工
技术领域
,具体涉及一种保温隔热型三层结构式复合竹纤维板。
背景技术
::纤维板结构均匀,密度适中,表面光滑平整,具有良好的加工性能,因此被广泛用于家具制造业和建筑业。目前,被广泛用于纤维板制备的原料为木质纤维素和脲醛树脂。但是随着森林资源的过度砍伐,如何保证充足的木质纤维素原料供给,已成为纤维板制造业面临的一个重要问题。另外,脲醛树脂来源于不可再生的石化资源,在湿热环境下容易释放出游离甲醛,严重污染环境,危害人类健康。我国竹资源丰富,在竹加工产业中有大量的竹纤维残余被废弃,而竹子与木材相比具有强度高、韧性好的特点,是纤维板的理想原料。但是,在纤维板加工过程中,由于施胶不均,容易造成纤维结团和成毡,直接影响板材性能。此外,目前所加工的竹纤维板不具备保温隔热性能,而通过涂层方式赋予的保温隔热性能较弱,难以满足建筑装修施工对限位板保温隔热性能的要求。技术实现要素::本发明所要解决的技术问题在于提供一种物理力学使用性能优异、使用环保性强且能实现竹材加工业废弃竹纤维资源合理再利用的保温隔热型三层结构式复合竹纤维板。本发明所要解决的技术问题采用以下的技术方案来实现:一种保温隔热型三层结构式复合竹纤维板,包括竹纤维底板、保温隔热层和竹纤维面板,所述保温隔热层设在竹纤维底板与竹纤维面板之间,竹纤维底板与竹纤维面板由竹纤维坯料经预热压工艺制成,保温隔热层由保温隔热材料制成,竹纤维底板、保温隔热层和竹纤维面板再经热压工艺制成复合竹纤维板。所述预热压工艺的工艺参数为热压温度135-145℃、热压压力5-5.5mpa、热压时间3-5min。所述热压工艺的工艺参数为热压温度165-175℃、热压压力6.5-7mpa、热压时间5-8min。所述保温隔热材料的具体制备方法为:先将镁锭加热至熔融状态保温,待镁熔解率达到60%时利用永磁搅拌机开始搅拌,待镁完全熔化后加入石棉绒、海泡石纤维和玻璃纤维,加完后保温搅拌15min以上,再加入发泡剂和纳米二氧化钛,继续保温搅拌,待发泡剂分散均匀后停止搅拌,保温发泡,发泡结束后经自然冷却至室温,即得保温隔热材料。所述镁锭、石棉绒、海泡石纤维、玻璃纤维、发泡剂和纳米二氧化钛的质量比为5-10:10-15:5-10:1-5:0.5-2:0.5-2。所述发泡剂选自白云石、碳酸钙、生石灰、硫酸钙、碳粉、氢化钛中的一种或几种。所述竹纤维坯料的加工工艺包括如下工序:(1)调胶:先将乙氧基化氢化蓖麻油加入45-55℃温水中,经加热至回流状态保温搅拌制成5-15wt%的分散液,再加入疏水改性羟乙基-β-环糊精和5a分子筛活化粉,继续于回流状态下保温搅拌,直至得到均匀膏状物,经自然冷却至室温,即得胶粘剂;(2)施胶:将长度15-20mm、含水量低于5wt%的竹纤维装入拌胶滚筒中,利用压缩空气使滚筒内的竹纤维处于悬浮状态,同时采用喷雾方式将5-15wt%的聚合氯化铝溶液均匀喷洒于竹纤维上,再同样以喷雾方式将上述所制胶粘剂喷洒于竹纤维上,混合均匀,最后于55-65℃下干燥至含水量降低至20-25%,即得竹纤维坯料。所述乙氧基化氢化蓖麻油、疏水改性羟乙基-β-环糊精和5a分子筛活化粉的质量比为1-5:15-25:1-5。所述竹纤维、聚合氯化铝溶液、胶粘剂的质量比为100-200:1-5:15-25。所述疏水改性羟乙基-β-环糊精是由羟乙基-β-环糊精经疏水改性制得,其具体制备方法为:搅拌下向羟乙基-β-环糊精中滴加无水乙醇直至完全溶解,并加入十二磷钨酸和16-巯基十六烷基酸,加热至回流状态保温搅拌2-5h,所得混合物减压浓缩以回收乙醇,待乙醇回收率达到90-95%时将所得固体转入50-60℃烘箱中,烘干至恒重,即得疏水改性羟乙基-β-环糊精。所述羟乙基-β-环糊精、十二磷钨酸和16-巯基十六烷基酸的质量比为15-25:0.05-0.5:5-10。本发明的有益效果是:(1)本发明以保温隔热材料作为保温隔热层,竹纤维板作为底板和面板制得三层结构式复合竹纤维板,先通过预热压工艺将竹纤维坯料制成竹纤维底板和竹纤维面板,再通过热压工艺将保温隔热材料填充到竹纤维底板与竹纤维面板之间,以赋予所制复合竹纤维板优异的保温隔热性能;并利用自制竹纤维底板或竹纤维面板来进一步增强所制复合竹纤维板的保温隔热性能,同时保证所制复合竹纤维板的物理力学使用性能。(2)本发明在调胶工序中以乙氧基化氢化蓖麻油、疏水改性羟乙基-β-环糊精和5a分子筛活化粉为原料制得胶粘剂,该胶粘剂与竹纤维共混相容性好,能快速均匀渗透到竹纤维中,尤其利用5a分子筛活化粉的超强渗透性,从而发挥优异的粘接性能,并赋予所制竹纤维底板或面板一定的防水性能,进而降低吸水膨胀率。(3)本发明在施胶工序中向竹纤维上先均匀喷洒聚合氯化铝溶液再喷洒胶粘剂,通过聚合氯化铝的配合使用,以在降低吸水膨胀率的同时增强所制竹纤维底板或竹纤维面板的物理力学性能,从而提高所制竹纤维底板或竹纤维面板的综合使用性能;并且所制竹纤维底板或竹纤维面板的使用环保性强,保证了使用过程中甲醛的零释放,以符合环保要求;同时实现了竹材加工业废弃竹纤维的资源合理再利用,使竹材最大限度地发挥其利用价值。附图说明:图1为本发明的结构示意图;其中:1-竹纤维底板;2-保温隔热层;3-竹纤维面板。具体实施方式:为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体图示和实施例,进一步阐述本发明。实施例1如图1所示,一种保温隔热型三层结构式复合竹纤维板,包括竹纤维底板1、保温隔热层2和竹纤维面板3,所述保温隔热层设在竹纤维底板与竹纤维面板之间,竹纤维底板与竹纤维面板由竹纤维坯料经预热压工艺制成,保温隔热层由保温隔热材料制成,竹纤维底板、保温隔热层和竹纤维面板再经热压工艺制成复合竹纤维板。预热压工艺的工艺参数为热压温度135-145℃、热压压力5-5.5mpa、热压时间5min,热压工艺的工艺参数为热压温度165-175℃、热压压力6.5-7mpa、热压时间8min。实施例2如图1所示,一种保温隔热型三层结构式复合竹纤维板,包括竹纤维底板1、保温隔热层2和竹纤维面板3,所述保温隔热层设在竹纤维底板与竹纤维面板之间,竹纤维底板与竹纤维面板由竹纤维坯料经预热压工艺制成,保温隔热层由保温隔热材料制成,竹纤维底板、保温隔热层和竹纤维面板再经热压工艺制成复合竹纤维板。预热压工艺的工艺参数为热压温度135-145℃、热压压力5-5.5mpa、热压时间5min,热压工艺的工艺参数为热压温度165-175℃、热压压力6.5-7mpa、热压时间8min。保温隔热材料的制备:先将5g镁锭加热至熔融状态保温,待镁熔解率达到60%时利用永磁搅拌机开始搅拌,待镁完全熔化后加入10g石棉绒、5g海泡石纤维和2g玻璃纤维,加完后保温搅拌15min以上,再加入0.5g发泡剂碳酸钙和0.5g纳米二氧化钛,继续保温搅拌,待发泡剂分散均匀后停止搅拌,保温发泡,发泡结束后经自然冷却至室温,即得保温隔热材料。竹纤维底板与竹纤维面板采用专利cn200710164450.4实施例1所制竹纤维板。实施例3如图1所示,一种保温隔热型三层结构式复合竹纤维板,包括竹纤维底板1、保温隔热层2和竹纤维面板3,所述保温隔热层设在竹纤维底板与竹纤维面板之间,竹纤维底板与竹纤维面板由竹纤维坯料经预热压工艺制成,保温隔热层由保温隔热材料制成,竹纤维底板、保温隔热层和竹纤维面板再经热压工艺制成复合竹纤维板。预热压工艺的工艺参数为热压温度135-145℃、热压压力5-5.5mpa、热压时间5min,热压工艺的工艺参数为热压温度165-175℃、热压压力6.5-7mpa、热压时间8min。保温隔热材料的制备:先将10g镁锭加热至熔融状态保温,待镁熔解率达到60%时利用永磁搅拌机开始搅拌,待镁完全熔化后加入15g石棉绒、5g海泡石纤维和3g玻璃纤维,加完后保温搅拌15min以上,再加入1g发泡剂碳酸钙和1g纳米二氧化钛,继续保温搅拌,待发泡剂分散均匀后停止搅拌,保温发泡,发泡结束后经自然冷却至室温,即得保温隔热材料。竹纤维底板与竹纤维面板采用专利cn200710164450.4实施例1所制竹纤维板。实施例4如图1所示,一种保温隔热型三层结构式复合竹纤维板,包括竹纤维底板1、保温隔热层2和竹纤维面板3,所述保温隔热层设在竹纤维底板与竹纤维面板之间,竹纤维底板与竹纤维面板由竹纤维坯料经预热压工艺制成,保温隔热层由保温隔热材料制成,竹纤维底板、保温隔热层和竹纤维面板再经热压工艺制成复合竹纤维板。预热压工艺的工艺参数为热压温度135-145℃、热压压力5-5.5mpa、热压时间5min,热压工艺的工艺参数为热压温度165-175℃、热压压力6.5-7mpa、热压时间8min。保温隔热材料的制备:先将5g镁锭加热至熔融状态保温,待镁熔解率达到60%时利用永磁搅拌机开始搅拌,待镁完全熔化后加入10g石棉绒、5g海泡石纤维和2g玻璃纤维,加完后保温搅拌15min以上,再加入0.5g发泡剂碳酸钙和0.5g纳米二氧化钛,继续保温搅拌,待发泡剂分散均匀后停止搅拌,保温发泡,发泡结束后经自然冷却至室温,即得保温隔热材料。竹纤维坯料的加工:(1)调胶:先将2g乙氧基化氢化蓖麻油加入45-55℃温水中,经加热至回流状态保温搅拌制成15wt%的分散液,再加入20g疏水改性羟乙基-β-环糊精和3g5a分子筛活化粉,继续于回流状态下保温搅拌,直至得到均匀膏状物,经自然冷却至室温,即得胶粘剂;(2)施胶:将长度15-20mm、含水量低于5wt%的150g竹纤维装入拌胶滚筒中,利用压缩空气使滚筒内的竹纤维处于悬浮状态,同时采用喷雾方式将5g10wt%的聚合氯化铝溶液均匀喷洒于竹纤维上,再同样以喷雾方式将上述所制25g胶粘剂喷洒于竹纤维上,混合均匀,最后于55-65℃下干燥至含水量降低至20-25%,即得竹纤维坯料。疏水改性羟乙基-β-环糊精的制备:搅拌下向15g羟乙基-β-环糊精中滴加无水乙醇直至完全溶解,并加入0.2g十二磷钨酸和5g16-巯基十六烷基酸,加热至回流状态保温搅拌3h,所得混合物减压浓缩以回收乙醇,待乙醇回收率达到90-95%时将所得固体转入50-60℃烘箱中,烘干至恒重,即得疏水改性羟乙基-β-环糊精。实施例5如图1所示,一种保温隔热型三层结构式复合竹纤维板,包括竹纤维底板1、保温隔热层2和竹纤维面板3,所述保温隔热层设在竹纤维底板与竹纤维面板之间,竹纤维底板与竹纤维面板由竹纤维坯料经预热压工艺制成,保温隔热层由保温隔热材料制成,竹纤维底板、保温隔热层和竹纤维面板再经热压工艺制成复合竹纤维板。预热压工艺的工艺参数为热压温度135-145℃、热压压力5-5.5mpa、热压时间5min,热压工艺的工艺参数为热压温度165-175℃、热压压力6.5-7mpa、热压时间8min。保温隔热材料的制备:先将10g镁锭加热至熔融状态保温,待镁熔解率达到60%时利用永磁搅拌机开始搅拌,待镁完全熔化后加入15g石棉绒、5g海泡石纤维和3g玻璃纤维,加完后保温搅拌15min以上,再加入1g发泡剂碳酸钙和1g纳米二氧化钛,继续保温搅拌,待发泡剂分散均匀后停止搅拌,保温发泡,发泡结束后经自然冷却至室温,即得保温隔热材料。竹纤维坯料的加工:(1)调胶:先将3g乙氧基化氢化蓖麻油加入45-55℃温水中,经加热至回流状态保温搅拌制成15wt%的分散液,再加入25g疏水改性羟乙基-β-环糊精和5g5a分子筛活化粉,继续于回流状态下保温搅拌,直至得到均匀膏状物,经自然冷却至室温,即得胶粘剂;(2)施胶:将长度15-20mm、含水量低于5wt%的200g竹纤维装入拌胶滚筒中,利用压缩空气使滚筒内的竹纤维处于悬浮状态,同时采用喷雾方式将5g15wt%的聚合氯化铝溶液均匀喷洒于竹纤维上,再同样以喷雾方式将上述所制25g胶粘剂喷洒于竹纤维上,混合均匀,最后于55-65℃下干燥至含水量降低至20-25%,即得竹纤维坯料。疏水改性羟乙基-β-环糊精的制备:搅拌下向25g羟乙基-β-环糊精中滴加无水乙醇直至完全溶解,并加入0.5g十二磷钨酸和10g16-巯基十六烷基酸,加热至回流状态保温搅拌4h,所得混合物减压浓缩以回收乙醇,待乙醇回收率达到90-95%时将所得固体转入50-60℃烘箱中,烘干至恒重,即得疏水改性羟乙基-β-环糊精。对照例1竹纤维坯料的加工:(1)调胶:先将3g乙氧基化氢化蓖麻油加入45-55℃温水中,经加热至回流状态保温搅拌制成15wt%的分散液,再加入25g疏水改性羟乙基-β-环糊精和5g5a分子筛活化粉,继续于回流状态下保温搅拌,直至得到均匀膏状物,经自然冷却至室温,即得胶粘剂;(2)施胶:将长度15-20mm、含水量低于5wt%的150g竹纤维装入拌胶滚筒中,利用压缩空气使滚筒内的竹纤维处于悬浮状态,同时采用喷雾方式将上述所制25g胶粘剂喷洒于竹纤维上,混合均匀,最后于55-65℃下干燥至含水量降低至20-25%,即得竹纤维坯料。疏水改性羟乙基-β-环糊精的制备:搅拌下向15g羟乙基-β-环糊精中滴加无水乙醇直至完全溶解,并加入0.2g十二磷钨酸和5g16-巯基十六烷基酸,加热至回流状态保温搅拌3h,所得混合物减压浓缩以回收乙醇,待乙醇回收率达到90-95%时将所得固体转入50-60℃烘箱中,烘干至恒重,即得疏水改性羟乙基-β-环糊精。对照例2竹纤维坯料的加工:(1)调胶:先将3g乙氧基化氢化蓖麻油加入45-55℃温水中,经加热至回流状态保温搅拌制成15wt%的分散液,再加入25g疏水改性羟乙基-β-环糊精,继续于回流状态下保温搅拌,直至得到均匀膏状物,经自然冷却至室温,即得胶粘剂;(2)施胶:将长度15-20mm、含水量低于5wt%的200g竹纤维装入拌胶滚筒中,利用压缩空气使滚筒内的竹纤维处于悬浮状态,同时采用喷雾方式将5g15wt%的聚合氯化铝溶液均匀喷洒于竹纤维上,再同样以喷雾方式将上述所制25g胶粘剂喷洒于竹纤维上,混合均匀,最后于55-65℃下干燥至含水量降低至20-25%,即得竹纤维坯料。疏水改性羟乙基-β-环糊精的制备:搅拌下向15g羟乙基-β-环糊精中滴加无水乙醇直至完全溶解,并加入0.2g十二磷钨酸和5g16-巯基十六烷基酸,加热至回流状态保温搅拌3h,所得混合物减压浓缩以回收乙醇,待乙醇回收率达到90-95%时将所得固体转入50-60℃烘箱中,烘干至恒重,即得疏水改性羟乙基-β-环糊精。对照例3竹纤维坯料的加工:(1)调胶:先将3g乙氧基化氢化蓖麻油加入45-55℃温水中,经加热至回流状态保温搅拌制成15wt%的分散液,再加入25g羟乙基-β-环糊精和5g5a分子筛活化粉,继续于回流状态下保温搅拌,直至得到均匀膏状物,经自然冷却至室温,即得胶粘剂;(2)施胶:将长度15-20mm、含水量低于5wt%的200g竹纤维装入拌胶滚筒中,利用压缩空气使滚筒内的竹纤维处于悬浮状态,同时采用喷雾方式将5g15wt%的聚合氯化铝溶液均匀喷洒于竹纤维上,再同样以喷雾方式将上述所制25g胶粘剂喷洒于竹纤维上,混合均匀,最后于55-65℃下干燥至含水量降低至20-25%,即得竹纤维坯料。对照例4以专利cn200710164450.4实施例1所制改性大豆蛋白胶粘剂替换对照例3中的胶粘剂。实施例6分别对实施例2-5所制同厚度的复合竹纤维板进行保温隔热性能测试,结果如表1所示;并设置同厚度的单层竹纤维板作为对照例5,单层竹纤维板的加工工艺同实施例5中竹纤维坯料的加工工艺。表1本发明复合竹纤维板的保温隔热性能测试结果组别导热系数w/(m·k)实施例20.058实施例30.053实施例40.045实施例50.042对照例50.146实施例7将实施例4-5、对照例1-4中所制竹纤维坯料先在热压温度135-145℃、热压压力5-5.5mpa、热压时间5min条件下预热压,再在热压温度165-175℃、热压压力6.5-7mpa、热压时间8min条件下热压,并将所制同厚度的竹纤维板按gb/t17657-2013进行使用性能测试,测试结果如表2所示。表2本发明竹纤维板的使用性能测试结果以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1