拆散碳纤维丝束及模塑包含该类纤维的组合物的方法

文档序号:1677429阅读:143来源:国知局
拆散碳纤维丝束及模塑包含该类纤维的组合物的方法
【专利摘要】提供一种用于将碳纤维丝束拆散为适合在模塑组合物的配方中使用的分散的短切碳纤维的方法。碳纤维丝束被送入具有流体流动开口的模具,通过它一种流体撞击丝束的一侧来扩大丝束横截面区域。被扩大横截面区域的丝束从模具延伸到一个常规的纤维切断装置的路径来形成短切碳纤维,或者通过机械拆散器的接触式尖齿(contacting tines)。通过流体流动开口相对于纤维丝束通过的模具孔洞的相对位置的调整,在此结合撞击丝束的流体的性质、孔洞的形状,获得一种改进的短切碳纤维分散。然后,获得的短切碳纤维可以用来在配方固化之前根据模塑组合物的配方分散。
【专利说明】拆散碳纤维丝束及模塑包含该类纤维的组合物的方法
[0001]与之相关的专利申请
[0002]该申请主张2012年5月I日递交的序列号为61/641,136的美国临时申请的优先权,据此,其内容通过引用的方式并入。

【技术领域】
[0003]本发明通常涉及一种用于拆散碳纤维丝束的方法,以及特别地涉及一种用于产生服从于内含物模塑组合物的(amenable to inclus1n molding composit1ns)短切的及分散的碳纤维的方法。

【背景技术】
[0004]使用纤维内含物来增强基质是公知的现有技术。用于增强的完善机制包括通过基质减缓和延伸裂纹扩展的路径,和与从周围的基质材料中牵拉出一纤维有关的能量分布。在片状模塑组合物(SMC)配方和团状模塑组合物(BMC)配方,以下被统称为“模塑组合物”的情况下,传统地,纤维增强已经涉及短切玻璃纤维的使用。在模塑组合物领域中用碳纤维替换模塑组合物中的部分或全部的玻璃纤维的认知日益增加。但是,由于玻璃和碳纤维之间的区别,该效果仅获得有限的成功。特别地,这些区别包括纤维直径,用于模塑组合物的玻璃纤维通常具有16和30微米之间的直径,然而碳纤维通常具有2和10微米之间的直径。另外,玻璃粗纱纤维织物,或丝束通常具有数十到数百个单独的纤维,然而碳纤维丝束通常来自数千丝束和甚至数万独立纤维。更进一步的区别存在于纤维-纤维的相互作用(fiber-fiber interact1ns),其中玻璃纤维倾向于散射和基于切断的拆散,范德华力(Vander waals bonding)和其他的纤维间(interfiber)表面相互作用力倾向于使碳纤维丝束无法在被切成作为一模塑组合物中的加固的所需长度后拆散。尽管碳纤维束的拆散是根据实验室规模模塑通过手工操作解决的,碳纤维丝束拆散为单独的短切碳纤维的生产规模存在问题。
[0005]因此,存在一种通过连续方式将碳纤维丝束拆散为单独的短切碳纤维的方法的需求。进一步地,存在一种促进碳纤维和模塑组合物组分之间的相互作用,以提高所得到的SMC或BMC的强度的需求。


【发明内容】

[0006]提供一种用于将共同形成一丝束的大量碳纤维拆散为适合在模塑组合物的配方中使用的分散的短切碳纤维的改进设备和方法。根据本发明的一个实施方式,碳纤维丝束被送入具有流体流动开口的模具,通过它一种流体撞击丝束的一侧来扩大丝束横截面区域。被扩大横截面区域的丝束从模具延伸到常规的纤维切断装置的路径来形成短切碳纤维。通过流体流动开口相对于纤维丝束通过的模具孔洞的相对位置的调整,在此结合撞击丝束的流体的性质、孔洞的形状,获得一种相比现有方法改进的短切碳纤维分散。然后,在某些具体实施中,根据本发明获得的短切碳纤维可以用来在配方固化之前根据模塑组合物的配方分散。通过模塑组合物的单体极性的控制,还得到短切碳纤维的进一步分散和有向性。
[0007]—个机械拆散器(mechanical debundler)容纳丝束状材料,例如碳纤维丝束,输入进一介于两个具有尖齿的对立滚轴之间的顶层输送区域,其中,第一滚轴顺时针旋转并且第二滚轴逆时针旋转,以便于将内部的丝束牵拉向一旋转快于所述的上两个滚轴的下尖齿滚轴,随着丝束通过,它被牵拉开并且扭折(pulled open and kinked),来将丝束在高度上扩大至大约5倍。在实施方式中,机械拆散器(mechanical debundler)也可以与高温、吹气或等离子体同时使用。在使用等离子的实施方式中,对尖齿进行充电以在丝束被拉开的区域中生成等离子体。
[0008]在本发明的另一个实施方式中,一个常规的短切纤维丝束根据一个含有模塑组合物的极性单体分散。

【专利附图】

【附图说明】
[0009]在本说明书的结论声明中特别指出和明确声明的主题被认为是本发明的主题。本发明的前述和其它目标、特征及优势在下列结合附图的详细描述中是显而易见的,其中:
[0010]图1A为一个根据本发明有效拆散碳纤维丝束的模具的横截面示意图;
[0011]图1B为一个在图1A中所示的模具的纵向截面示意图;和
[0012]图2为一个在本发明中有效用于拆散碳纤维丝束的模具的第二种实施方式。
[0013]图3说明了一个根据本发明的一个实施方式的机械拆散器(mechanicaldebundler)。

【具体实施方式】
[0014]本发明具有将共同形成一丝束的大量碳纤维拆散为适合在模塑组合物的配方中使用的分散的短切碳纤维的实用性。根据本发明,碳纤维丝束被送入具有流体流动开口的模具,通过它一种流体撞击丝束的一侧来扩大丝束横截面区域。被扩大横截面区域的丝束从模具延伸到常规的纤维切断装置的路径来形成短切碳纤维。通过流体流动开口相对于纤维丝束通过的模具孔洞的相对位置的调整,在此结合在丝束上撞击的流体的性质、孔洞的形状,获得一种相比现有方法改进的短切碳纤维分散。然后,在某些【具体实施方式】中,根据本发明获得的短切碳纤维可以用来在配方固化之前根据模塑组合物的配方分散。通过模塑组合物的单体极性的控制,得到短切碳纤维的进一步分散和有向性。
[0015]在本发明的另一个实施方式中,一个常规的短切纤维丝束根据一个含有模塑组合物的极性单体分散。
[0016]现在参阅图1A和1B,一个本发明的模具通常按10所示。该模具10具有一个孔洞12,其尺寸上大于通过于此的碳纤维丝束T的横截面区域。至少两个流体流动开口 14,16和18如图1A和IB所示,用于允许流体流入孔洞12并且在碳纤维丝束T的一侧上。孔洞12被示出具有一个三角形的横截面。理应领会,本发明的模具的孔洞具有其他横截面形状,例如圆形、椭圆形、沙漏形和其他多边形横截面形状。流体开口 14,16和18允许流体注入孔洞12中,以便于撞击碳纤维丝束T的一侧并诱导拆散,以便于增加丝束T的横截面区域。根据本发明,提供至少两个流体开口。理应领会流体流入仅需要通过流体开口存在,因为流体能够从靠近一个纤维切断装置A的端子模具表面20离开模具10。通过控制丝束T的输送速度和切碎机A的运行速度,获得一长度可控的拆散的短切纤维C。
[0017]作为流体冲击,流体开口 14,16和18每个分别以一角度与孔洞12相交,阿尔法U),贝它(β)和伽马(Y)。每一个角度都是独立变量。在【具体实施方式】中,角度阿尔法,贝它和伽马每个独立地为30和150度之间,虽然理应领会在此其他角度是可行的。
[0018]不打算与一个特定的理论绑定,据信流体进入孔洞12在如流体渗透到丝束T的情况下在由此产生的被扩大的丝束横截面区域中产生一个较大的空隙容积。流体进入孔洞12作为一膨胀流体倾向于沿着阻力最小的路径,较佳地建立有利于流体渗透通过丝束T的条件,从而在流体通过一个与流体单独进入的开口相比较低压力的流体流动开口流出前增加丝束T的横截面,或者结合通过端子模具表面20的离开。最佳如图1B所示,理应领会流体流动开口不需要都存在于一个单平面,其中,流体流动出口 18在开口 12和16的下游,相对于丝束T的运动。
[0019]本发明的模具的另一个实施方式通常按图2中的30显示,具有圆形孔洞12’和流体开口 14,和16’ ;
[0020]如本文所用,术语“流体”意在包括气体、液体和气溶胶雾化液体。在本文中可操作的用于拆散碳纤维丝束的流体示例性地包括空气、氮气、惰性气体、二氧化碳、一氧化碳和蒸汽。理应领会有机分子和硅烷,上述各自分别的沸腾温度在本文中也是可操作的,作为气态流体用于拆散碳纤维丝。适用于拆散碳纤维丝束的液态流体示例性地包括具有大于0.5的相对极性的高极性液体。除了简单的流体,根据本发明,流体还带有一个添加剂,例如,微粒,基团,偶联剂,及其组合物。适用于在一撞击碳纤维束的流体夹带的微粒示例性地包括炭黑,碳酸钙,胶态二氧化硅,二氧化钛,及其组合物。本文中可操作的偶联剂示例性地包括环氧树脂,有机钛酸盐,有机锆酸盐,羟基甲基间苯二酚,及其组合物。基团可作为添加剂;尤其气态流体,示例性地包括臭氧,单态氧,和等离子体。理应领会因素控制很容易实现,例如孔洞的横截面积区域,孔洞的形状,流体的进气压力,以及流体出口的相对位置影响碳纤维丝束拆散的程度,通过切断装置A切断丝束之后用以生产分散的碳纤维丝束。
[0021]如图2所示,其中相似的数字对应于归结于另外相关的图1A和IB的含义,提供另一个模具作为本发明的方法的一部分。不打算与一个特定的理论绑定,在本发明的实施方式中,为了成功拆散,在限制碳纤维丝束扭曲的情况下,如图2所示同时从两个流体流动开口撞击碳纤维丝束是合适的。
[0022]图3说明一个本发明的机械拆散器(mechanical debundler) 40,容纳丝束状材料,例如碳纤维丝束,作为输入进入一介于两个具有齿尖48的对立滚轴之间的顶层输送区域,其中,第一滚轴42顺时针旋转并且第二滚轴44逆时针旋转,以便于将内部的丝束牵拉向一旋转快于上两个滚轴(42,44)的下尖齿滚轴46,随着丝束通过,它被牵拉开并且扭折(pulled open and kinked),来将丝束在高度上扩大至大约5倍。在实施方式中,机械拆散器(mechanical debundler)也可以与高温、吹气或等离子体同时使用来分开丝束。在某些【具体实施方式】中,施加高温足以去除在碳纤维的表面上的任何涂料或其它常规表面涂层。在其它实施方式中,在隔绝或者还原性气氛下施加高温,从核心碳纤维促进涂料热解。在接合第二滚轴44之前,期间或之后,等离子体很容易通过常规的等离子发生器源生成来处理纤维丝束。在使用等离子体的实施方式中,对尖齿充电以在丝束正被开放拉毛的区域中生成等离子体。理应领会丝束与机械拆散器(mechanical debundler)连接,配合空气拆散或作为一个独立的方法。
[0023]本发明的方法,碳纤维丝束通过模具,伴随丝束一侧受到流体的冲击以及贯穿碳纤维丝束,以便于增加横截面区域,或者通过机械拆散器(mechanical debundler)被输送后,丝束然后切成碳纤维束的预选长度。然后,由此产生的丝束按SMC,BMC或RTM配方分散,用于后续成型和固化。人们已经发现,当模塑组合物具有较强极性,该种短切纤维丝束趋向于分散并实现纤维拆散和有向性两者的更大程度。在本发明的【具体实施方式】中,这样产生的短切碳纤维根据甲基丙烯酸甲酯单体分散。用于模塑组合物配方生产的其它合适的单体示例性地包括不饱和聚酯树脂、环氧树脂及其组合物。基于环氧树脂的模塑组合物配方示例性地包括基于双酌■ A和酌.醒的封端环氧树脂(bis-phenol-A and Novolac based epoxyterminated resins)。合适用于如基于环氧树脂的模塑组合物配方的固化剂示例性地包括酸酐类,例如偏苯三酸酐,甲基四氢邻苯二甲酸酐(MTHPA),纳迪克甲基酸酐(NMA),二-和三-官能胺(d1-and tr1-funct1nal amines),及其组合物。
[0024]本发明的另一个实施方式中,包括根据模塑组合物单体或者包含相对极性大于0.26并在某些【具体实施方式】中大于0.5,但是在其他【具体实施方式】中介于0.5和0.8之间的单体的溶液分散常规的短切和捆绑的碳丝束。相对极性的定义按照克里斯?蒂赖卡特,溶剂以及在有机化学中的溶剂反应,威利-VCH,第3版,2003 (Christian Recihardt, Solventsand Solvent Effects in Organic Chemistry, ffiley-VCH, 3rd edit1n, 2003)。
[0025]根据本发明的方法生产的短切碳纤维丝束很容易先于固化在模塑组合物配方中分散,用于代替或者结合玻璃纤维。作为根据一个本发明的方法拆散碳纤维丝束的结果,形成一个加强的SMC,BMC或者树脂传递模塑(RTM)固化制品,具有较低的密度整体,和按重量较低百分比负荷的纤维。此外,通过使用偶联剂得到优异的拉伸性能。另外,值得注意的是,本发明的方法作为用于制造短切碳纤维的连续方法适合于结合生产规模制造使用。
[0026]由此产生的短切和拆散的碳纤维找到特殊的效用,在一个具备内部的SMC中,其内部包括按重量从10至40%的碳纤维,和基于市售的包含玻璃纤维的TCA(大陆结构塑料公司,Continental Structural Plastics)的SMC表皮,TCA部分包含按重量介于10和60%之间的玻璃纤维,正如在美国专利7,655,297中的实施例。内部和表皮的厚度比例范围为01?10:1。将此产生的SMC内部和表皮层单独地固化并结合,或者彼此接触固化。该具有包含碳纤维的内部的SMC双层被指出具有一个比完全来自TCA形成的可比较的制品低10,20,30甚至40%的密度。以这种方式形成轻质制品,保留了与TCA相关的甲类表面的高表面玻璃。
[0027]本说明书中提及的专利文献和出版物表明本领域技术人员的层次,即本发明所属的层次。这些文献和出版物都通过引用的方式并入本文,其程度如同每个单独的文献或出版物被具体和单独地通过引用的方式并入本文。
[0028]上述描述是本发明的特定的具体实施例的说明,但是此处并不意味着在实施中的限制。以下的权利要求,包括其中的所有等同物,意在限定本发明的范围。
【权利要求】
1.一种用于将碳纤维丝束拆散为短切碳纤维的方法,包括: 将由一束横截面区域和一丝束表面限定的碳纤维丝束输送进一个具有一孔洞的模具,所述的模具具有至少两个流体流动开口,其中,在假设所述的至少两个流体流动开口是两个开口,则两个开口不完全通过一个圆形截面孔洞定位的前提下,所述的孔洞大小大于所述的束横截面区域; 通过所述的至少两个流体流动开口中的一个第一开口用一流速的流体撞击所述的碳纤维丝束,来将碳纤维丝束扩大至一个比在所述的孔洞内的所述的束横截面区域更大的被扩大的横截面区域; 在离开所述的模具时切断所述的被扩大横截面区域的碳纤维丝束,来形成短切碳纤维。
2.根据权利要求1所述的方法,其特征在于,所述的碳纤维丝束中具有至少1000碳纤维。
3.根据权利要求1所述的方法,其特征在于,所述的碳纤维丝束中具有至少10000碳纤维。
4.根据权利要求1所述的方法,其特征在于,切断发生于靠近所述的模具的一端面。
5.根据权利要求1所述的方法,其特征在于,所述的孔洞为一三角形,圆形,椭圆形,或多边形的横截面形状。
6.根据权利要求1所述的方法,其特征在于,沿孔洞的长度在侧向开设至少两个流体流动开口。
7.根据权利要求1所述的方法,其特征在于,所述的流体流动开口中至少一个限定一个流体排放口。
8.根据权利要求1所述的方法,其特征在于,所述的流体为空气。
9.根据权利要求1所述的方法,其特征在于,所述的流体是气态的,并进一步包括微粒状物质。
10.根据权利要求9所述的方法,其特征在于,所述的微粒状物质为炭黑、碳酸钙、二氧化硅或二氧化钛中的至少一种。
11.根据权利要求1所述的方法,其特征在于,所述的流体是气态的,并进一步包括自由基。
12.根据权利要求11所述的方法,其特征在于,所述的自由基包括单线态氧或等离子体。
13.根据权利要求1所述的方法,其特征在于,所述的流体是气态的,并进一步包括一偶联剂。
14.根据权利要求13所述的方法,其特征在于,所述的偶联剂为环氧树脂、一钛酸或一锆酸盐中的至少一种。
15.根据权利要求1所述的方法,进一步包括根据模塑组合物预聚物配方分散短切碳纤维。
16.根据权利要求15所述的方法,其特征在于,所述的模塑组合物预聚物包括极性单体。
17.根据权利要求16所述的方法,其特征在于,所述的极性单体包括除去纤维和填料的所述的模塑组合物重量的绝大部分。
18.根据权利要求16所述的方法,其特征在于,所述的极性单体为甲基丙烯酸甲酯中的至少一种。
19.一种用于将碳纤维丝束拆散为短切碳纤维的方法,包括: 将所述的碳纤维丝束切成短切丝束,并将所述的短切丝束根据一个单体、或者根据一个包含一具有大于0.25的相对极性的上述单体的模塑组合物分散。
20.根据权利要求19所述的方法,其特征在于,所述的相对极性大于0.5。
21.根据权利要求19所述的方法,其特征在于,所述的相对极性介于0.5和0.8之间。
22.根据权利要求1至21中任一项所述的方法,进一步包括连接所述的丝束与多个旋转尖齿。
23.根据权利要求1所述的方法,进一步包括连接所述的丝束与多个旋转尖齿,同时将所述的丝束暴露于高温或等离子体中的至少一个。
24.根据权利要求23所述的方法,其特征在于,在隔绝或者还原环境下施加高温。
25.一制品,其特征在于,包括: 片状模塑组合物的一固化内部,通过短切碳纤维进行显著地强化;和 一第二片状模塑组合物的一固化表皮,通过玻璃纤维进行显著地强化。
26.根据权利要求22所述的制品,其特征在于,所述的固化的内部实质上缺少玻璃纤维。
27.根据权利要求22所述的制品,或其特征在于,所述的表皮具有汽车表面质量油剂。
28.根据权利要求24所述的制品,其特征在于,所述的表皮实质上缺少短切碳纤维。
29.根据权利要求22所述的制品,其特征在于,所述的表皮具有甲类油剂。
30.根据权利要求22所述的制品,其特征在于,所述的内部具有一内层厚度并且所述的表皮具有一表皮厚度,并且所述的内层厚度与表皮厚度的比例介于01?10:1之间。
31.一种用于将碳纤维丝束拆散为短切碳纤维的方法,其特征在于,包括: 将由一束横截面区域和一丝束表面限定的碳纤维丝束输送进一机械拆散器(mechanical debundler),包括:一输送区域,容纳所述的丝束,介于两个具有尖齿的对立滚轴之间,其中,所述的两个对立滚轴中的一个第一滚轴顺时针旋转,并且所述的两个对立滚轴中的一个第二滚轴逆时针旋转,以便于将所述的内部的丝束牵拉向一旋转快于所述的上两个滚轴的下尖齿滚轴; 将所述的丝束在放样室内(1ft)扩大至大约5倍。
32.根据权利要求31所述的方法,进一步包括在离开所述的模具时切断所述的被扩大横截面区域的碳纤维丝束,来形成短切碳纤维。
33.根据权利要求31所述的方法,进一步包括在介于所述的下尖齿滚轴和所述的上两个滚轴之间的一区域中对所述的丝束施加吹气、高温或等离子体中的至少一种。
34.一机械拆散器包括: 一顶部输送区域,容纳丝束材料,例如碳纤维丝束,介于两个具有尖齿的对立滚轴之间,其中,所述的两个对立滚轴中的一个第一滚轴顺时针旋转,并且所述的两个对立滚轴中的一个第二滚轴逆时针旋转,以便于将所述的内部的丝束牵拉向一旋转快于所述的上两个滚轴的下尖齿滚轴;和 一等离子体发生器,形成一靠近所述的上两个滚轴中的一个或者所述的下尖齿滚轴的等离子体。
35.根据权利要求34所述的拆散器,其中,对所述的尖齿充电生成所述的等离子体。
【文档编号】D01G9/00GK104411871SQ201380035292
【公开日】2015年3月11日 申请日期:2013年5月1日 优先权日:2012年5月1日
【发明者】普罗比尔·库马尔·古哈, 迈克尔·J·西瓦耶克, 迈克尔·约瑟夫·希尔图宁, 沙恩·什科普, 克里斯托弗·希尔图宁 申请人:康廷南拓结构塑料有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1