核反应堆密封外壳及其建设方法

文档序号:1831834阅读:339来源:国知局
专利名称:核反应堆密封外壳及其建设方法
技术领域
本发明涉及原子能发电厂内所建造的原子反应堆建筑物的建设技术,尤其涉及在核反应堆建筑物内放置核反应堆密封外壳,其是钢筋混凝土制的的核反应堆密封外壳及其建设方法。
背景技术
在原子能发电厂内核反应堆密封外壳被放在核反应堆建筑物内。该核反应堆密封外壳,其结构是由钢筋混凝土建造的,在圆筒状钢制套筒的外侧布置了具有内侧配筋和外侧配筋的混凝土构架。例如改进的沸腾水型原子能发电厂(以下简称为ABWR原子能发电厂。)中的核反应堆密封外壳的建设施工是ABWR原子能发电厂建设工程的关键过程。
过去的钢筋混凝土核反应堆密封外壳(以下简称RCCV。)的建设方法,以ABWR原子能发电厂为例用图16~图19进行说明。
图16是表示ABWR原子能发电厂的核反应堆建筑物1内的概况的部分断面图,RCCV2位于核反应堆建筑物1内,核反应堆压力容器3位于该RCCV2内。核反应堆压力容器3由设立在作为基础地面的核反应堆建筑物底垫4上的核反应堆压力容器支承基座(以下简称RTV支承基座)5进行支承。
另一方面,RCVV2如图16所示,是由圆筒形墙壁6和所谓顶板的上部板7构成的钢筋混凝土构筑物,RCCV2在图17~图19所示的建设施工中被安装在ABWR原子能发电厂内。图17是RCCV2的圆筒墙壁6施工时的断面图,图18是表示隔板层(ダイアフラムフロア)8施工的断面图,图19是表示RCCV2顶板施工的断面图。
RCCV2如图17所示,在钢制套筒(ライナ)10的外圆侧设置内侧配筋11和外侧配筋12,另一方面,在钢制套筒10上安装具有向混凝土内的锚固作用的T型固定器(T-shaped anchor)13。钢制套筒10是预先在工厂内或施工现场附近的地上对分段结构的套筒构件进行装配,制造成圆筒状,把半园状、套筒状或环状预制套筒构件堆积成多段结构,以构成圆筒状或套筒状。
在建设RCVV2时,如图16和图17所示,在对核反应堆建筑物底垫4进行施工后,利用起重机把作为套筒构件的第1段套筒15吊入到核反应堆建筑物1内,把第1段套筒15安装到核反应堆建筑物底垫4上。第1段套筒15的高度,一般是把到压力抑制室套筒16和套筒隔板套筒17为止制成一个整体。
在钢制套筒10的第1段套筒15上,如图17所示,安装有穿过核反应堆建筑物1的管道、电缆、仪表管道等的贯穿件(ペネトレ一シヨン)18和人员进出、机器搬运出入用的孔口(ハツチ)19。由于配管贯穿件18的一部分是双重的套管结构,荷重很大,所以,口径大的贯穿件18,由临时设置的斜杆等临时设置构件20临时进行支撑。孔口19也同样用临时设置构件进行支撑,被吊入到现场内。
第1段套筒15被吊入后,在第1段套筒15的外圆侧开始进行钢筋混凝土施工。对RCCV2的内侧配筋11和外侧配筋12进行施工,安装外侧型框22,浇注混凝土。第1段套筒15兼作浇注混凝土时的内侧型框。RCCV混凝土浇注,由于RCCV本身是核反应堆建筑物主体的一部分,所以,一般对核反应堆建筑物1一层一层地进行施工。
在进行第1段套筒15的RCCV混凝土施工的同时,在RCCV2的内部如图16所示对RCCV底部套筒(ライナ)23、RPV支撑基座5、压力抑制室出入遂道24等内部构成建筑物进行装配。RPV支撑基座5是钢制的,其结构是在内部填充水泥浆。
在压力抑制室25的内部构筑物已安装到一定程度时,对下一个套筒构件、即第2段套筒26进行吊入。第2段套筒26也跟第1段套筒15一样,预先在工厂内或施工现场附近的地上把环状分段构件装配成圆筒状。口径大的贯穿件18和孔口19由临时设置构件进行支撑,被吊入到现场内。第2段套筒26,一般是把干井套筒27作为一个整体。在由干井套筒27围起来的内部形成干井28。
第2段套筒26被吊入后,对第1段套筒15和第2段套筒26的周围进行焊接。周围焊接结束后,和图17所示的第1段套筒15一样,在第2段套筒26的外圆侧开始进行钢筋混凝土施工,依次安装RCCV2的内侧配筋11、外侧配筋12和外侧模板框架22,浇注混凝土。
另一方面,在压力抑制室25内的内部构筑物的进入已完成的阶段,如图18所示开始进行隔板层(以下称为DF)施工。隔板层(DF)8是由钢板密封板30和钢筋混凝土31构成的构筑物,以DF8为界把RCCV2内分离成(划分)成下部压力抑制室25和上部干井28。隔板层8在结构上由RCCV圆筒壁6进行支撑,内侧端部用RPV支撑基座5支撑,外侧端部通过隔板套筒17支撑。
隔板层8的施工,首先安装临时设置的支撑结构件33,以便支撑DF8的密封板30和钢筋混凝土31的施工荷重。图18的临时设置的支撑结构件33表示利用从RPV支承基座5中伸出的钢材的支撑方法。但也还有另外的支撑方法,即随着RCCV圆筒部分混凝土主体的进展,采用RPV支撑基座5和RCCV2的两端支撑,并从核反应堆建筑物底垫4,和一般建筑一样安装临时支架进行支撑。
临时设置的支撑结构件33的安装结束后,进行钢板密封板30的安装。密封板30,一般是把分割成3~4个扇区的板构件吊放到临时设置的支撑结构件33上,通过焊接将其装配成环形或半园凸形的一个整体。
当密封板30的安装结束后,并且RPV支撑基座5的内部灌浆结束后,进行配筋施工。隔板层配筋体34是辐射式园周配筋,辐射式园周配筋34的外侧端部通过灌浆纵向对头接合连接法被连接到固定于隔板套筒17上的配筋连接器35上。
配筋施工结束后进行水泥灌注施工。在确认DF钢筋混凝土31的强度后,开始把内部结构件搬入上部干井28内,同时把DF临时设置的支撑结构件33撤掉。
在上部干井28的内部结构件的搬入结束后,并且RCCV2的圆筒部分6的水泥浇注达到顶板(トツプスラブ)7的下面时,如图19所示开始进行RCCV顶板7的施工。顶板7是由钢板顶板套筒37、RCCV内部凸缘38和钢筋混凝土39构成,从RCVV圆筒部分6开始悬臂支撑。
在顶板7施工前,在被安装在上部干井28内的核反应堆屏蔽墙40上安装支撑用柱架并使其能够去掉,另外,在RCCV圆筒部分6的已浇注完水泥的面上安装支撑用的支柱43。
顶板7是预先在现场附近的地上把顶板套筒37、RCCV下部凸缘38、直交配筋44和内部支撑结构件45预制装配成整体结构,然后吊运入内。
内部支撑结构件45被用作为对预制装配成整体结构的顶板7进行吊入内时的支撑结构件,同时用核反应堆屏蔽墙40的支撑用托架41和RCCV圆筒部分的支柱43来支撑内部支撑结构件45材料,其作用是在安装顶板7时和浇注水泥时对荷重进行支撑。
预制装配成为整体结构的顶板7被吊入后,对第2套筒26和顶板套筒37的周围进行焊接。该焊接是从RCCV2内侧的单侧焊接方式进行焊接。
与套筒焊接作业相并行,同时进行RCCV圆筒部分6内侧和外侧配筋11、12以及直交配筋(顶板配筋)44的互拉部分配筋46的施工。互拉部分配筋46结束后,在顶板7的RCCV圆筒部分外侧安装模板框架,进行水泥浇注。并且,在确认顶板水泥39的强度后,把核反应堆屏蔽墙40的支撑用托架41撤去。
在过去的RCCV建设方法中,RCCV圆筒部分6的施工是在把钢制套筒10吊入并安装后,开始进行RCCV2的配筋作业。因此,首先要搭起RCCV内侧配筋作业用的脚手架,然后进行RCCV内侧配筋11的配筋作业。当RCCV内侧配筋11的配筋作业结束后,必须把脚手架拆掉,再搭起RCCV外侧配筋作业用的脚手架,进行外侧配筋12的配筋作业,因此,RCCV2的建设施工需要很长的周期时间。
再者,过去的RCCV隔板层部分的施工,由于是在第2段套筒26被吊入之后,在现场内进行临时设置的支撑结构件33、密封板30和配筋作业34,所以,都要进行向第2段套筒26和RPV支撑基座5之间的狭窄的地方进行搬入的作业,作业效率不高。
另外,过去的RCCV2的顶板部分的施工,由于在顶板7和RCCV圆筒部分6互拉的状态下顶板配筋44是直交配筋,而RCCV圆筒部分6的配筋11、12向上升,形成园周状或圆筒状,所以,若RCCV圆筒部分6的纵向配筋11、12首先上升到顶板固定处,则在把预制装配成整体结构的顶板7吊入时,顶板直交配筋44和RCCV圆筒纵向配筋11、12的固定部分会产生干扰(相碰)。RCCV圆筒部分6的内侧和外侧配筋11、12暂且在顶板7下停止,待顶板7的吊入作业结束后,再进行RCCV圆筒部分配筋46和顶板7的固定部分的互拉配筋作业,该互拉配筋作业是顶板施工工序不能缩短的主要原因。
再者,在RCCV2的顶板部分的施工中,为了支撑安装顶板7时和浇注水泥时的荷重,在核反应堆屏蔽墙40上安装支撑用托架41。为了避免支撑用托架41的内部支撑结构件45的内侧端部和顶板直交配筋44的环状最外钢筋相碰,把内部支撑结构件45的内侧端部停止在最外钢筋的前面。因此,需要支撑用托架41。该支撑用托架41在顶板7的混凝土达到一定强度后必须撤掉,以免影响安装正式设置的结构件。
再者,由于过去的RCCV2的钢制套筒10上所安装的贯穿件18和孔口19,从钢制套筒10用临时斜杆20等进行临时支撑,所以,在RCCV套筒10吊入后开始进行RCCV配筋11、12的配筋作业的阶段,对影响配筋作业的构件要进行改装作业,因此,使RCCV配筋作业复杂化。

发明内容
本发明正是考虑到上述情况而提出的,其目的在于提供一种核反应堆密封外壳及其建设方法,即能够大幅度减少建设现场内的RCCV施工作业,提高RCCV施工作业效率,确保安全,并大幅度减少RCCV施工工序,缩短施工周期。
本发明的再一个目的是提供这样一种核反应堆密封外壳及其建设方法,即在钢制圆筒部套筒的外侧在现场附近的地上独立地对RCCV的内侧配筋进行组装,把钢制套筒和内侧配筋同时吊入到建设现场的规定位置上,省去了建设现场内的RCCV内侧配筋作业(搭脚手架、配置钢筋、拆卸脚手架),能缩短RCCV建设施工工序。
本发明的另一目的是提供这样一种核反应堆密封外壳及其建设方法,即预先在便于作业的地上对隔板层套筒组件、顶板组件进行装配,然后吊入到建设现场内,这样,即可大幅度减少建设现场内的作业。
本发明的再一个目的是提供这样一种核反应堆密封外壳及其建设方法,即顶板配筋体和RCCV圆筒部分的固定部分互拉形状根据RCCV圆筒部分配筋在顶板配筋体上设置配筋接头,弯曲成辐射状,这样能把顶板组件吊入而不影响RCCV圆筒部分配筋,能够减少顶板吊入后的固定部分互拉配筋作业,能大幅度减少顶板施工工序。
再者,本发明的另个一目的是提供这样一种核反应堆密封外壳及其建设方法,即能够从核反应堆屏蔽墙的上面部分来对顶板组件的内部支撑结构件的内侧端部进行支撑,不需要往屏蔽墙上安装支撑用托架,也不需要拆除。
本发明的再一个目的是提供这样一种核反应堆密封外壳及其建设方法,即通过从核反应堆建筑物的先装(先行)的钢筋来对贯穿件和孔口进行支撑,能防止对配筋作业的影响,能减少施工的复杂性。
为达到上述目的,本发明采取以下技术方案一种核反应堆密封外壳,其是钢筋混凝土制的,其用于容纳核反应堆压力容器并容纳于核反应堆建筑物内;上述核反应堆密封外壳包含圆筒墙部,其具有大致圆筒形的形状并安装在核反应堆建筑物的地基部分上;隔板层部,其安置在圆筒墙部中并用于将其所在圆筒墙部中的空间分隔成上下室,屏蔽墙,其安装在隔板层部上并用于环绕着核反应堆压力容器,以屏蔽核反应堆压力容器发出的辐射;以及顶板部,其安装在已安装好的圆筒墙部的上方部分上,以盖住所述上方部分,其特征在于,上述顶板部包含顶板组件,其预先在核反应堆建筑物的外侧装配成组件结构,上述顶板组件被吊运到核反应堆建筑物中,以便安装在圆筒墙部和屏蔽墙上;以及混凝土墙,其通过在顶板组件中浇筑混凝土而成形于顶板组件上。
如技术方案1所述的核反应堆密封外壳,其是钢筋混凝土制的,其特征在于,上述顶板组件包含外形大致为盘状的顶板套筒、顶板配筋体、顶板上面构架插接筋、用于承载顶板组件荷重的支承结构件、以及配合在顶板套筒的内周侧上的凸缘,通过在核反应堆建筑物的外侧组装顶板套筒、顶板配筋体、顶板上面构架插接筋、支承结构件和凸缘,上述顶板组件被装配成大致盘状。
如技术方案2所述的核反应堆密封外壳,其是钢筋混凝土制的,其特征在于,上述顶板组件的支承结构件带有许多支承结构材料,用以承载顶板组件的荷重,上述支承结构材料呈辐射状布置,而且支承结构材料的内侧端部通过第一临时支承装置而分别临时支承在屏蔽墙上,上述第一临时支承装置以可拆除的方式安装在屏蔽墙上,而支承结构材料的外侧端部通过第二临时支承装置而分别支承在圆筒墙部上。
如技术方案3所述的核反应堆密封外壳,其是钢筋混凝土制的,其特征在于,上述顶板配筋体中包含许多顶板配筋,这些顶板配筋整体上布置成大致盘状,每个上述支承结构材料上分别具有最内侧端部,而每个上述顶板配筋上也分别具有最内侧端部,每个支承结构材料上的最内侧端部和每个顶板配筋上的最内侧端部二者中的至少一个被弯曲,这样可防止每个支承结构材料上的最内侧端部和每个顶板配筋上的最内侧端部相冲突。
如技术方案4所述的核反应堆密封外壳,其是钢筋混凝土制的,其特征在于,上述圆筒墙部上带有许多垂直配筋,这些配筋相对于地基部分垂直安置,而且每个上述顶板配筋上分别带有最外侧端部,上述每个顶板配筋的最外侧端部被弯曲而呈辐射状伸展,这样可防止每个顶板配筋的最外侧端部和每个垂直配筋相冲突。
一种用于建设用于容纳核反应堆压力容器的核反应堆密封外壳的方法,其是钢筋混凝土制的,其特征在于,该方法包含以下各步骤将具有大致圆筒形状的圆筒墙部装配在核反应堆建筑物中的地基部分上;将屏蔽墙装配在隔板层部上,上述屏蔽墙用于环绕着核反应堆压力容器,以屏蔽核反应堆压力容器发出的辐射;
将支承件以可拆除的方式装配在圆筒墙部上;预先在核反应堆建筑物的外侧装配顶板组件;将顶板组件吊运到核反应堆建筑物中并安装在支承件和屏蔽墙上;以及在顶板组件中浇筑混凝土,以在顶板组件上成形出混凝土墙。
如技术方案6所述的方法,其特征在于,上述装配步骤包含这样一个步骤准备具有大致盘状的顶板套筒、顶板配筋体、顶板上面构架插接筋、以及用于承载顶板组件的荷重的支承结构件,还包含这样一个步骤在核反应堆建筑物的外侧将顶板套筒、顶板配筋体、顶板上面构架插接筋和支承结构件装配成大致盘状。
如技术方案7所述的方法,其特征在于,上述装配步骤包含这样一个步骤准备具有大致盘状的凸缘,以及这样一个步骤在核反应堆建筑物的外侧将凸缘装配在顶板套筒的下部,上述顶板组件的支承结构件上带有许多支承结构材料,用以承载顶板组件的荷重,每个上述支承结构件具有最内侧端部并且呈辐射状分布,而且上述顶板配筋体中包含许多顶板配筋,这些顶板配筋整体上布置成大致盘状,每个上述顶板配筋具有最内侧端部,而且,还包含这样一个步骤在核反应堆建筑物的外侧处理每个支承结构材料上的最内侧端部和每个顶板配筋上的最内侧端部二者中的至少一个,以将其弯曲,从而防止每个支承结构材料上的最内侧端部和每个顶板配筋上的最内侧端部相互冲突。
如技术方案8所述的方法,其特征在于,上述圆筒墙部带有许多垂直配筋,这些配筋相对于地基部分垂直安置,而且每个上述顶板配筋上分别带有最外侧端部,该方法还包含这样一个步骤处理上述每个顶板配筋的最外侧端部,以将其弯曲并呈辐射状伸展,从而防止每个顶板配筋的最外侧端部和每个垂直配筋相冲突。
如技术方案9所述的方法,其特征在于,每个顶板配筋上的上述最内侧端部和上述最外侧端部分别通过连接部件连接在顶板配筋上。
如技术方案6所述的方法,其特征在于,上述顶板组件的支承结构件上带有许多支承结构材料,上述支承结构材料呈辐射状布置,该方法还包含以下各步骤将第一临时支承装置以可拆除的方式安装在屏蔽墙上;将第二临时支承装置以可拆除的方式安装在圆筒墙部上;将各支承结构材料的内侧端部支承在第一临时支承装置上;以及将各支承结构材料的外侧端部支承在第二临时支承装置上,以使顶板组件的荷重被分别支承在各支承结构材料的内侧端部和外侧端部上。
一种方法,其用于建设一个用于容纳核反应堆压力容器的核反应堆密封外壳,其是钢筋混凝土制的,其特征在于,该方法包含以下各步骤预先在核反应堆建筑物的外侧装配一个圆筒部套筒;预先在核反应堆建筑物的外侧通过使用骨架或支柱装配一个配筋组件,以使配筋组件安置在圆筒部套筒的外周侧;将圆筒部套筒和配筋组件吊运到核反应堆建筑物中,以将圆筒部套筒和配筋组件安装在核反应堆建筑物地基部分上;以及在配筋组件中浇筑混凝土,以在配筋组件上成形出一个圆筒混凝土墙。
所述的方法,其特征在于,上述圆筒部套筒和配筋组件单独且同时吊运到核反应堆建筑物中。
所述的方法,其特征在于,上述配筋组件由许多配筋单元构成,每个配筋单元具有一个大致圆筒形状并同轴布置,而且每个上述配筋单元是通过在圆筒部套筒的圆周方向以等距布置垂直配筋并在垂直配筋上附加水平配筋而构成的,以使水平配筋与垂直配筋正交并沿圆筒部套筒轴向等距布置,该方法还包含以下各步骤预先在地基部分上沿圆筒部套筒的径向等距安装支承配筋单元,每个上述支承配筋单元中分别带有沿圆筒部套筒的圆周方向布置的支承配筋,上述支承配筋与已安装的配筋组件中的每个垂直配筋相面对并在每个支承配筋单元中具有不同的长度;以及将已安装的配筋组件的相应配筋单元中的每个垂直配筋分别与支承配筋单元中的相应支承配筋连接起来。
所述的方法,其特征在于还包含以下各步骤将一个临时支承装置安装在已成形好的混凝土墙上;预先在核反应堆建筑物的外侧装配一个第二圆筒部套筒;预先在核反应堆建筑物的外侧装配一个第二配筋组件,以使第二配筋组件呈辐射状安置在第二圆筒部套筒的外周侧;将第二圆筒部套筒和第二配筋组件吊运到核反应堆建筑物中,以将第二圆筒部套筒安装在已安装在地基部分上的圆筒部套筒上;通过临时支承装置将第二配筋组件支承在核反应堆建筑物中,以使第二配筋组件悬挂在临时支承装置上;以及将第二圆筒部套筒焊接到已安装在地基部分上的圆筒部套筒上,而第二配筋组件则悬挂在临时支承装置上。
一种核反应堆密封外壳,其是钢筋混凝土制的,其用于容纳核反应堆压力容器并容纳于核反应堆建筑物内;其特征在于,上述核反应堆密封外壳包含圆筒部套筒,其预先在核反应堆建筑物的外侧进行装配;配筋部,其包含配筋组件并安置在圆筒部套筒的外周侧中,上述配筋组件通过使用骨架或支柱预先在核反应堆建筑物的外侧进行装配,上述圆筒部套筒和上述配筋组件被吊运到核反应堆建筑物中,以便能够安装在核反应堆建筑物的地基部分上;以及圆筒混凝土墙,其通过在配筋组件中浇筑混凝土而成形于配筋组件上。
所述的核反应堆密封外壳,其特征在于,上述圆筒部套筒和上述配筋组件是在核反应堆建筑物的外侧进行装配的。
所述的核反应堆密封外壳,其特征在于,上述圆筒部套筒上带有一个安置在地基部分上的圆筒部下部套筒、一个同轴连接着该圆筒部下部套筒并从该圆筒部下部套筒向上伸出的环状隔板套筒、以及一个同轴连接着该环状隔板套筒并从该环状隔板套筒向外伸出的圆筒部上部套筒,上述配筋组件上带有一个安装在地基部分上并布置在圆筒部下部套筒外周侧的下部配筋组件、以及一个通过连接部件连接着下部配筋组件并布置在圆筒部上部套筒外周侧的上部配筋组件,并且,上述圆筒部下部套筒和上述下部配筋组件是在核反应堆建筑物的外侧进行装配的,而且上述圆筒部上部套筒和上述上部配筋组件是在核反应堆建筑物的外侧与上述圆筒部下部套筒和上述下部配筋组件分开装配的。
一种核反应堆密封外壳,其是钢筋混凝土制的,其用于容纳一个核反应堆压力容器并容纳于一个核反应堆建筑物内;上述核反应堆密封外壳包含一个核反应堆压力容器支承基座,其安装在核反应堆建筑物的一个地基部分上并用于支承核反应堆压力容器;一个圆筒墙部,其具有大致圆筒形的形状并安装在核反应堆建筑物的地基部分上,上述核反应堆压力容器支承基座安置在圆筒墙部内部;以及一个隔板层部,其支承在圆筒墙部的一个内周边部分上并用于将已安装好的圆筒墙部中的一个空间分隔成一个干井和一个压力抑制室,其特征在于,上述隔板层部包含一个隔板层套筒组件,其预先在核反应堆建筑物的外侧装配为一个组件结构,上述隔板层套筒组件被吊运到核反应堆建筑物内以便安装在其中;以及一个混凝土墙,其通过在隔板层套筒组件中浇筑混凝土而成形于隔板层套筒组件上。
所述的核反应堆密封外壳,其是钢筋混凝土制的,其特征在于,上述隔板层套筒组件中包含一个隔板层配筋体、一个用于承载着隔板层套筒组件的荷重支承结构件、一个用于密封压力抑制室的密封板、以及一个隔板套筒,上述隔板层套筒组件在核反应堆建筑物的外侧由隔板层配筋体、支承结构件、密封板和隔板套筒一体化装配成一个大致盘状,而且,上述核反应堆压力容器支承基座带有一个上部支承部分,上述上部支承部分预先在核反应堆建筑物的外侧装配在隔板层套筒组件的内周侧上,从而与隔板层套筒组件成为一体。
所述的核反应堆密封外壳,其是钢筋混凝土制的,其特征在于,上述隔板层配筋体具有一个大致盘状外形,上述隔板套筒具有一个大致环状外形,上述隔板套筒安装在隔板层配筋体的一个外周侧上,核反应堆压力容器支承基座的上述上部支承部分配合在隔板层配筋体的一个内周侧中,
而且,上述隔板套筒上带有许多抗剪加劲板,用以加强隔板套筒,上述抗剪加劲板以预定间隔沿隔板套筒的圆周方向布置。
所述的核反应堆密封外壳,其是钢筋混凝土制的,其特征在于,每个上述抗剪加劲板呈辐射状贯穿隔板套筒,从而呈辐射状伸入隔板套筒的两侧,而且上述圆筒墙部上带有T型固定器,以加强圆筒墙部,该核反应堆密封外壳还包含临时支承装置,其用于将隔板层套筒组件临时支承在T型固定器上,上述临时支承装置以可拆除的方式分别安置在抗剪加劲板和T型固定器外侧之间。
所述的核反应堆密封外壳,其是钢筋混凝土制的,其特征在于,上述隔板层套筒组件的支承结构件上带有许多支承结构材料,用以承载隔板层套筒组件的荷重,上述各支承结构材料呈辐射状布置,而且各支承结构材料的内侧端部分通过临时支承装置分别支承在核反应堆压力容器支承基座上,而各支承结构材料的外侧端部分则分别支承在隔板套筒的抗剪加劲板上。
一种核反应堆密封外壳,其是钢筋混凝土制的,其用于容纳一个核反应堆压力容器并容纳于一个核反应堆建筑物内;其特征在于,上述核反应堆密封外壳包含一个圆筒部套筒,其预先在核反应堆建筑物的外侧进行装配;一个贯穿构件,其安装在圆筒部套筒上并用于运载着设备进出圆筒部套筒;一个孔口,其安装在圆筒部套筒上,用于使一个操作人员通过并用于穿过至少一根管子;一个配筋体,其安置在圆筒部套筒的外周侧,上述配筋体预先在核反应堆建筑物的外侧进行装配,
上述圆筒部套筒和上述配筋体被吊运到核反应堆建筑物中,以便能够安装在核反应堆建筑物地基部分上;一个支承件,其以可拆除的方式固定在核反应堆建筑物上,并且在圆筒部套筒和配筋体被吊运进核反应堆建筑物中时用于支承贯穿构件和孔口;以及一个圆筒混凝土墙,其通过在配筋组件中浇筑混凝土而成形于配筋组件上。
一种方法,其用于建设一个用于容纳核反应堆压力容器的核反应堆密封外壳,其是钢筋混凝土制的,其特征在于,该方法包含以下各步骤将一个核反应堆压力容器支承基座装配在一个核反应堆建筑物中的地基部分上,上述核反应堆压力容器支承基座用于支承核反应堆压力容器;将一个具有大致圆筒形状的圆筒墙部装配在核反应堆建筑物中的地基部分上,上述核反应堆压力容器支承基座安置在圆筒墙部的内部;预先在核反应堆建筑物的外侧装配一个隔板层套筒组件;将隔板层套筒组件吊运到核反应堆建筑物中,以将隔板层套筒组件固定地支承在圆筒墙部和核反应堆压力容器支承基座上;以及在隔板层套筒组件中浇筑混凝土,以在隔板层套筒组件上成形出一个混凝土墙。
所述的方法,其特征在于,上述装配步骤包含这样一个步骤准备一个隔板层配筋体、一个用于承载隔板层套筒组件的支承结构件、一个密封板和一个隔板套筒,还包含这样一个步骤在核反应堆建筑物的外侧将隔板层配筋体、支承结构件、密封板和隔板套筒一体化装配成一个大致盘状。
所述的方法,其特征在于,上述装配步骤包含这样一个步骤准备一个核反应堆压力容器支承基座的上部支承部分,还包含这样一个步骤预先在核反应堆建筑物的外侧将上部支承部分配合在隔板层配筋体的一个内周侧上,从而构成一个整体。
所述的方法,其特征在于,上述圆筒墙部上带有T型固定器以加强圆筒墙部,而且还包含以下各步骤将一个抗剪加劲板固定地装配在隔板套筒上,以加强隔板套筒;以及将隔板层套筒组件临时支承在圆筒墙部上的T型固定器以及抗剪加劲板上。
所述的方法,其特征在于,上述隔板层套筒组件的支承结构件上带有多个支承结构材料,用以承载顶板组件的荷重,上述支承结构材料呈辐射状布置,而且还包含以下各步骤将一个抗剪加劲板固定地装配在隔板套筒上,以加强隔板套筒;将支承结构材料的内侧端部临时支承在核反应堆压力容器支承基座上;以及将支承结构材料的外侧端部临时支承在隔板套筒的抗剪加劲板上。
一种方法,其用于建设一个用于容纳核反应堆压力容器的核反应堆密封外壳,其是钢筋混凝土制的,其特征在于,该方法包含以下各步骤预先在核反应堆建筑物的外侧装配一个圆筒部套筒;预先在核反应堆建筑物的外侧装配一个配筋组件,以使配筋组件安置在圆筒部套筒的外周侧;
将一个贯穿构件装配在圆筒部套筒上,该贯穿构件用于运载着设备进出圆筒部套筒;将一个孔口装配在圆筒部套筒上,该孔口用于使一个操作人员通过并用于穿过至少一根管子;将圆筒部套筒和配筋组件吊运到核反应堆建筑物中,以将圆筒部套筒和配筋组件安装在核反应堆建筑物地基部分上;以可拆除的方式将一个支承件安装在核反应堆建筑物上,该支承件用于在圆筒部套筒和配筋体被吊运进核反应堆建筑物中时支承贯穿构件和孔口;以及在配筋组件中浇筑混凝土,以在配筋组件上成形出一个圆筒混凝土墙。
涉及本发明的核反应堆密封外壳,为了解决上述问题,如技术方案1所述,在被置于核反应堆建筑物内的钢筋混凝土的核反应堆密封外壳中,构成上述核反应堆密封外壳的圆筒部分套筒。以及布置在该套筒外侧的核反应堆密封外壳的内侧配筋,预先在地上进行装配,然后吊入建设现场内进行安装。
并且,为了解决上述问题,涉及本发明的核反应堆密封外壳,如技术方案2所述,核反应堆密封外壳的圆筒部分套筒是把圆筒下部套筒、隔板套筒和圆筒上部套筒连接成一个整体而构成的,另一方面,核反应堆密封外壳的内侧配筋,是直接地或者通过互拉配筋利用配筋连接方法把内侧下部配筋和内侧上部配筋连接成一个整体,在地上对上述核反应堆密封外壳的圆筒下部套筒和内侧下部配筋进行装配,另外,还在地上对核反应堆密封外壳的圆筒上部套筒和内侧上部配筋进行装置。
再者,涉及本发明的核反应堆密封外壳,为了解决上述问题,如技术方案3所述,在被置于核反应堆建筑物内的钢筋混凝土的核反应堆密封外壳中,用隔板层把上述核反应堆密封外壳内划分成上部的干井和下部的压力抑制室,另一方面,上述隔板层是由预先在地上装配成一个整体的隔板层套筒组件来构成的,把上述套筒组件吊入到核反应堆建筑物内,放置到设立在核反应堆建筑物底座上的核反应堆密封外壳支撑基座和核反应堆密封外壳的圆筒部分套筒上,进行安装。
再者,为了解决上述问题,涉及本发明的核反应堆密封外壳,如技术方案4所述,上述隔板层套筒组件是把隔板层配筋体、内部或外部支撑结构件、密封板和隔板套筒装配成一个整体,构成为盘状或半园凸线脚状,在隔板层套筒组件的内周侧,核反应堆密封外壳支撑基座的上段,预先在地上装配成一个整体,并且,如技术方案5所示,在上述隔板层套筒组件的外周侧,环状或套筒状的隔板套筒被装置成一个整体,该隔板套筒,在园周方向上按一定间隔固定许多抗剪加劲板材(中厚板材)进行加固。
并且,为了解决上述问题,涉及本发明的核反应堆密封外壳如技术方案6所述,切边的中厚板材(抗剪加劲板材)被固定成使隔板套筒穿过辐射方向向两侧突出,在隔板套筒的外侧和对核反应堆密封外壳的圆筒部分套筒进行加固的T型固定器之间,以能够撤除的方式设置临时支撑装置,并且,如技术方案7所述,上述隔板层套筒组件的内部支撑结构件是把许多内部支撑结构件布置成辐射状,上述内部支撑结构件把隔板层配筋体保持在上下部,另一方面,通过临时支撑装置把上述内部支撑结构件的内侧端部支撑在核反应堆密封外壳支撑基座上,上述内部支撑结构件的外侧端部被支撑在隔板套筒的切边的中厚板材上。
另一方面,涉及本发明的核反应堆密封外壳,为了解决上述问题,如技术方案8所述,在位于核反应堆建筑物内的钢筋混凝土制的核反应堆密封外壳中,用顶板覆盖上述核反应堆密封外壳的顶部,而构成上述顶板的顶板组件,预先在地上进行装配的吊装,放置在隔板层上所设立的核反应堆屏蔽墙和核反应堆密封外壳的圆筒部分上,使其受到支承。
再者,为了解决上述问题,涉及本发明的核反应堆密封外壳,如技术方案9所述,顶板组件是预先在地上把顶板配筋体、内部支撑结构件、顶板套筒和顶板上面构架插接装配成一个整体,并且,如技术方案10所述,顶板组件的内部支撑结构件是把许多内部支撑结构件材料布置成辐射状而构成的,各内部支撑结构件的内侧端部通过能够撤掉的临时支撑装置由核反应堆屏蔽墙进行支撑,各内部支撑结构件的外侧端部由核反应堆密封外壳的圆筒部分上所设立的临时支柱进行支撑。
再者,为了解决上述问题,涉及本发明的核反应堆密封外壳,如技术方案11所述,顶板组件在内周侧,至少对上述内侧最外配筋和各内部支撑结构件的内侧端部这二者之一进行弯曲,以免顶板配筋体的内侧最外配筋和内部支撑结构件的内侧端部相碰,另外,如技术方案12所述,顶板组件在外周侧对顶板配筋体的外侧最外配筋进行弯曲,使其延伸成辐射状。
再者,涉及本发明的核反应堆密封外壳,为了解决上述问题如技术方案13所述,在核反应堆建筑物内设置的钢筋混凝土制的核反应堆密封外壳中,从核反应堆建筑物的先行钢筋来对核反应堆密封外壳的圆筒部分套筒上所安装的贯穿件和孔口进行支撑。
再者,涉及本发明的核反应堆密封外壳的建设方法,为了解决上述问题,如技术方案14所述,预先在地上把钢筋混凝土制的核反应堆密封外壳的圆筒部分套筒制作成一个整体,在上述圆筒部分套筒的外侧,在地上对核反应堆密封外壳的内侧配筋独立地进行装配,利用起重机把上部圆筒部分套筒和内部配筋同时吊运到核反应堆建筑物的建设现场的规定位置上进行安装,建设核反应堆密封外壳。
再者,为了解决上述问题,涉及本发明的核反应堆密封外壳的建设方法,如技术方案5所述,对于核反应堆建筑物的建设现场内所固定的底垫差筋等核反应堆密封外壳配筋,以及被吊运进来的核反应堆密封外壳的内侧配筋的连接,每个段分别使长度固定,用配筋连接装置进行连接,另外,如技术方案16所述,核反应堆密封外壳的圆筒部分套筒和内侧配筋同时吊运到建设现场内后,当把圆筒部套筒焊接到已被安装的原有套筒上时,在上述圆筒部分套筒的焊接期间,把上述内侧配筋吊装到核反应堆密封外壳的下部混凝土上所设的临时支柱上,使其受到支承。
再者,涉及本发明的核反应堆密封外壳的建设方法,为了解决上述问题,如技术方案17所述,当在钢筋混凝土制的核反应堆密封外壳内设置隔板层时,预先在地上对构成上述隔板层的隔板层套筒组件进行装配,使其构成盘状整体结构,用起重机对该整体结构的隔板层套筒组件进行吊装,将其吊运到建设现场内,由已设置的圆筒部套筒和核反应堆密封外壳支撑基座对已吊入的隔板层套筒组件进行支撑和固定。
再有,为了解决上述问题,涉及本发明的核反应堆密封外壳的建设方法,如技术方案18所述,隔板层套筒组件具有隔板套筒、隔板层配筋体、密封板和内部或外部支撑结构件,预先在地上将其装配成盘状的整体结构件,如技术方案19所述,隔板层套筒组件在内侧具有核反应堆压力容器支撑底座的上段,预先在地上将该底座上段装配成一个整体。
再者,为了解决上述问题,涉及本发明的核反应堆密封外壳的建设方法,如技术方案20所述,隔板层套筒组件是预先在地上把隔板套筒、隔板层配筋体、密封板和内部支撑结构件装配成一个盘状的整体而构成的,利用起重机对整体结构的隔板层套筒组件进行吊装,将其吊入内部,利用原有的圆筒部分套筒的T型固定器和固定在隔板套筒上的切边的中厚板材对隔板层套筒组件的吊入荷重进行支撑。另外,如技术方案21所述,隔板层套筒组件是预先在地上把隔板套筒、隔板层支撑体、密封板和外部支撑结构材料装配成盘状整体而构成的,利用起重机来对整体结构的隔板层套筒组件进行吊装,将其吊入内部,利用原有的圆筒部分套筒的T型固定器和切边的中厚板材来对隔板层套筒组件的吊入荷重进行支撑。
再者,涉及本发明的核反应堆密封外壳的建设方法,为了解决上述问题,如技术方案22所述,当设置对钢筋混凝土制的核反应堆密封外壳的顶部进行覆盖的顶板时,预先在地上对构成上述顶板的顶板组件进行装配,使其构成整体结构,利用起重机来吊装整体结构的顶板组件,将其吊入建设现场,被吊入的顶板组件由核反应堆密封外壳的圆筒部分内所设立的临时支柱和核反应堆屏蔽墙进行支撑,加以安装。
再者,为了解决上述问题,涉及本发明的核反应堆密封外壳的建设方法,如技术方案23所述,顶板组件具有顶板配筋体、内部支撑结构件、顶板套筒和顶板插接筋,预先在地上将其装配成整体结构,如技术方案24所述,顶板组件在内周侧具有预先在地上装配成整体的核反应堆密封外壳下部凸缘,为了防止在地上进行装配时内部支撑结构件的内周侧和顶板配筋体的内侧最外配筋相碰,对内部支撑结构件的幅射状排列的各内部支撑结构件的内侧端部以及上述内侧最外配筋中的某一种进行加工,使其形成弯曲。另外,如技术方案25所述,顶板组件在地上进行装配时为了防止顶板配筋体的外侧最外配筋和核反应堆密封外壳的圆筒部分的纵向配筋相碰,对上述外侧最外配筋进行弯曲加工,使其延伸成辐射状。
再者,为了解决上述问题,涉及本发明的核反应堆密封外壳的建设方法,如技术方案26所述,内侧最外配筋和外侧最外配筋通过配筋连接装置被连接到顶板配筋体的顶板直交配筋上,并且,如技术方案27所述,被吊运到核反应堆密封外壳的顶部的顶板组件,构成内部支撑结构件的辐射状排列的各内部支撑结构件材料的内侧端部通过可以撤掉的临时支柱被支撑在核反应堆屏蔽墙上,上述内部支撑结构件材料的外侧端部由核反应堆密封外壳的圆筒部上所设立的临时支柱进行支撑,顶板组件的荷重由内周侧和外周侧进行支撑。
再者,涉及本发明的核反应堆密封外壳的建设方法,为了解决上述问题,如技术方案28所述,当构成钢筋混凝土制的核反应堆密封外壳的圆筒部分套筒向建设现场内吊运时把圆筒部分套筒上所安装的贯通穿过洞和孔口的支撑切换到从核反应堆建筑物的先行钢架的支撑上,从核反应堆建筑物的先行钢架方面对被安装的圆筒部套筒的贯通穿过洞和孔口进行支撑。
本发明的效果在于在本发明所涉及的核反应堆密封外壳及其建设方法中,可以大幅度减少核反应堆密封外壳(RCCV)建设施工中在建设现场内的作业,可以确保RCCV建设施工作业的效率和安全性。进而可以大幅度缩短RCCV建设施工的工序并大幅度缩短建设期间。
在本发明所涉及的核反应堆密封外壳及其建设方法中,由于在RCCV套筒的外侧预先在地面上独立组装RCCV内侧配筋,将RCCV套筒和内侧配筋同时吊入并安装在建设现场的规定位置,所以可以减少建设现场内的RCCV内侧配筋作业(脚手架安装、配筋、脚手架拆除),可以大大缩短RCCV建设施工的工序及施工期间。
在本发明所涉及的核反应堆密封外壳及其建设方法中,将隔板层(DF)套筒组件预先在作业性良好的地面上组装成一体成为一体化构造物,通过将该一体化构造物吊入并安装在建设现场的规定位置,从而就不需要组装和拆除为形成隔板层的建设现场内临时支撑构造物、安装密封板、隔板层配筋作业,在改善作业性的同时,可以大幅度减少建设现场内的作业,实现缩短RCCV建设施工的工序及施工期间。
另外,在本发明所涉及的核反应堆密封外壳及其建设方法中,在作业性良好的地面上将顶板组件预先组装成一体成为一体化构造物,可以使一体化的顶板组件对RCCV圆筒的配筋没有干扰地吊入安装,所以可以减少顶板组件吊入后的固定部的结合配筋作业,可以大幅度缩短顶板施工的工序,缩短建设施工期间。
另外,在本发明所涉及的核反应堆密封外壳及其建设方法中,预先在地面上装配的顶板组件,采用的结构能防止该组成构件的内装支撑构件的内侧端部和顶板配筋体的内周侧(环状)最外配筋的干扰,在核反应堆屏蔽墙上可以支撑内装支撑构件的内侧端部,不需要核反应堆屏蔽墙外围上的支撑托架,大幅度减少了托架的安装、撤出作业,提高建设现场的作业效率,大大缩短建设期间。
另外,在本发明所涉及的核反应堆密封外壳及其建设方法中,将RCCV套筒吊入建设现场的规定位置后,由于核反应堆建筑物的先行钢架支撑了RCCV套筒上安装的贯通构件及舱口,从而可以确实而有效地防止与建设现场上RCCV配筋作业的干扰,减少建设作业的交错,提高建设作业的效率。


图1装有本发明核反应堆密封外壳的核反应堆建筑物纵断面图。
图2表示构成本发明核反应堆密封外壳圆筒部的RCCV套筒和RCCV内侧配筋的配置关系的斜视图。
图3表示在建设现场附近的地面上组装的RCCV套筒和RCCV内侧配筋的组装实例的部分纵断面图。
图4(A)和(B)表示吊入建设现场的RCCV套筒和RCCV内侧配筋的安装例,表示RCCV内侧配筋和底座插接钢筋连接的断面图。
图5表示为RCCV套筒的干井套筒和内侧配筋的在建设现场进行吊入时的形状的断面图。
图6将本发明核反应堆密封外壳内所设置的隔板层(DF)套筒组件,预先组装成一体化构造物的状态的斜视图。
图7(A)表示将一体化构造物DF套筒组件吊入建设现场内的状态;(B)表示将图7(A)的A部放大的断面图。
图8(A)表示在本发明核反应堆密封外壳内安装的DF套筒组件的变形例;(B)表示将图8(A)的B部放大的断面图。
图9表示对覆盖在本发明核反应堆密封外壳顶部的RCCV顶板组件预先在地面上组装成一体化构造物的状态的斜视图。
图10(A)表示图9所示的顶板组件的部分平面图;(B)表示图10(A)的B部放大的平面图;(C)表示图10(A)的C部放大的平面图。
图11表示图9的RCCV顶板组件的断面图。
图12表示覆盖在本发明核反应堆密封外壳顶部的顶板组件的变形例,RCCV顶板组件的核反应堆屏蔽墙端的平面放大图。
图13表示安装在本发明核反应堆密封外壳的RCCV套筒上的贯通构件及孔口从先行钢架支持的状态的断面图。
图14沿着图13的XIV-XTV线的侧面图。
图15(A)-(H)简略表示本发明相关的核反应堆密封外壳建设步骤的工序图。
图16表示现有的核反应堆密封外壳(RCCV)构成的断面图。
图17表示核反应堆建筑物的建设现场上现有的RCCV圆筒部的建设施工的断面图。
图18表示现有的RCCV隔板层安装施工的断面图。
图19表示现有的RCCV顶板安装施工的断面图。
具体实施例方式
以下根据附图,说明涉及本发明的钢筋混凝土制的核反应堆密封外壳及其建设方法的实施例。
图1是表示具有涉及本发明的核反应堆密封外壳的ABWR原子能发电厂的核反应堆建筑物1概况的整体断面图,对于和过去的核反应堆建筑物1相同的部分,标注同一代号,进行说明。
核反应堆建筑物1,内部放有钢筋混凝土制的核反应堆密封外壳(RCCV)2,在该核反应堆密封外壳2内放有核反应堆压力容器3。核反应堆压力容器3由核反应堆建筑物底垫4上所设立的核反应堆密封外壳支撑基座(RPV支撑基座)5进行支撑。核反应堆压力容器3由从RPV支撑基座5向上延伸的核反应堆屏蔽墙40进行支撑。核反应堆压力容器3由从RPV支撑基座5向上延伸的核反应堆屏蔽墙40进行包围,该核反应堆屏蔽墙40对来自核反应堆的辐射线进行屏蔽。
再者,核反应堆密封外壳(RCCV)2是钢筋混凝土的容器,其构成部分有设立在核反应堆建筑物底垫4上的圆筒状或套筒状的圆筒墙6、把该圆筒墙6内划分成上下2个室的隔板层8、以及用于覆盖上述圆筒墙6的顶部的被称为顶板的上部地板7。RCCV2内被隔板层8划分成下部压力抑制室25和上部干井28。在压力抑制室25内储存作为冷却水的抑制池水。
在建设RCCV2时,RCCV钢制套筒10,是圆筒部分套筒,预先在工厂或建设现场附近的地上进行预制件装配,把园环状或半园凸状套筒零件堆叠起来,构成圆筒状或套筒状。RCCV10由压力抑制室套筒或干井套筒构成。
图2表示在工厂或建设现场附近的地上,例如在堆置场平台上在RCCV2的圆筒部分钢制套筒10的外周侧上独立地布置RCCV内侧配筋11,进行装配的状态。把RCCV套筒10的园环状套筒零件制作成圆筒状或套筒状后,在RCCV套筒10的外周侧在工厂或建设现场附近的地上例如堆置场平台上进行RCCV内侧配筋11的装配(工地组装)。代号50是管道、电缆、仪表管道等的贯通件。代号51是安装在RCCV套筒10上的机器搬运出入孔口,代号52是作业人员的出入孔口。
(1)核反应堆密封外壳(RCCV)的圆筒墙结构在说明RCCV的圆筒墙结构时,根据图3来说明RCCV内侧配筋11的装配(工地组装)。
图3是在图2所示的RCCV套筒10的外周侧,在工厂内或建设现场附近的地上,例如堆置场平台上进行RCCV内侧配筋11的装配(工地组装)时的局部纵断面图。RCCV内侧配筋11是筒状体配筋59、60、61,例如对直径50mmφ左右的纵向配筋57和横向配筋58分别在纵横方向上布置,将其装配成圆筒状或套筒状,该筒状体配筋有许多组,例如3组59、60、61一起布置成同心园状,构成内侧配筋组件。
最初,在用预制件装配成园环状或套筒状的RCCV套筒10的外周部分,沿园周搭起作业用的脚手架54,在脚手架54的内侧装配设置一种台阶状的骨架55,用于支承RCCV内侧配筋11。骨架55和脚手架54在工厂内或建设现场附近的地上进行装配,建成园环状或套筒状。园环状或套筒状的RCCV套筒10预先在工厂内或建设现场附近的地上,例如堆置场平台上进行预制件装配,由套筒支座56进行支承。在RCCV套筒10上,在外周侧沿园周方向按规定间隔固定许多个(例如20个)T型固定器13,其作用是锚固在混凝土内。T型固定器13沿RCCV套筒10的轴向的几乎整体长度上延伸设置,用于对RCCV套筒10进行加固。
在RCCV套筒10的外侧的RCCV内侧配筋11的装配配筋作业按下述方法进行。RCCV内侧配筋11,首先布置最内侧(第1列、第1段)的纵向配筋57,在该纵向配筋57上从外侧沿园周方向依次安装横向配筋58,由纵、横配筋57、58装配成筒状的框架结构。最内侧的纵、横配筋57、58的荷重由阶梯状的骨架55的第1段进行支撑。也可以把纵向配筋57布置到外侧,使横向配筋58转移到内侧。纵、横配筋57、58的荷重由阶梯状的骨架55进行支承,不附加到RCCV套筒10上。
通过最内侧(第1段)的纵、横配筋57、58的装置,使第1列的筒状体配筋59构成框架结构,在该第1列的筒状体配筋59的外侧依次排列和装配第2列、第3列筒状体配筋60、61。第2列和第3列筒状体配筋60、61也和第1列筒状体配筋59一样对纵配筋57和横配筋58进行排列和装配,以此使其形成一体化,构成分别独立的框架结构。
各列的筒状体配筋59、60、61分别由阶梯状骨架55的各台阶进行支承。骨架55从第1阶向半径方向外方的n阶,例如第3阶上升,构成阶梯状。骨架55为了便于使RCCV内侧配筋11和作为建设现场的上升配筋的底垫插接钢筋63进行互拉,对最内侧(第1列)的纵向配筋57进行支承的部分在最低位置上。骨架55也可以构成环状或半园状,以便对套筒支承台56上所设置的RCCV套筒10的外周侧进行包围,也可以这样构成,即在园周方向上按适当间隔来布置多个骨架55,使整体布置成环状或半园状。
通过RCCV内侧配筋11的配筋作业,使各列的筒状体配筋59、60、61被装配成独立的框架结构,不让各列的筒状体配筋59、60、61的荷重作用到RCCV套筒10上。不让RCCV内侧配筋11的荷重作用到RCCV套筒10上,是因为内侧配筋荷重非常大,而RCCV套筒的厚度10很薄,例如为6.4mm,其刚性强度很小。如果把内侧配筋荷重作为具有力矩的荷重施加到RCCV套筒10上,那么,RCCV套筒10和作为套筒轴向构成材料的T型固定器构件13可能被压曲(纵向弯曲)。但通过不让内侧配筋荷重对其产生作用,就能够防止这种压曲。
当RCCV内侧配筋11设置在RCCV套筒10的外周侧,当RCCV内侧配筋11的安装、装配结束时,把RCCV套筒10和RCCV内侧配筋11吊入到建设现场内。吊入的方法是操纵起重机65,使起吊辅助钩梁66进行升降和移动。利用该起吊辅助钩梁66来同时独立地对RCCV套筒10和RCCV内侧配筋11独立地进行起吊、移动和落吊,这样即可进行吊入,将其搬入建设现场内。起重机是例如能起重1000吨级的大型起重机。
图4是表示把作为RCCV套筒10的第1段圆筒部分套筒的压力抑制室16和RCCV内侧配筋11吊入并放置到核反应堆建筑物底垫4上的状态的断面图。
在核反应堆建筑物底垫4上插植了与RCCV内侧配筋11相连接的内侧底垫插接筋63。RCCV内侧配筋11的底垫插接筋63具有约50mmφ的直径,其内侧的第1列纵向配筋67较长,该纵向配筋67按照第1列、第2列、第3列依次向外排列,其长度依次缩短,形成阶梯状。代号68是底垫插接筋63的横向配筋。
与上相对,被吊运到建设现场内的RCCV内侧配筋11的各列纵向配筋57、57、57,借助于骨架55的阶梯形状而被设定成这样的状态,即最内侧的第1列纵向配筋57较长,第2列、第3列依次向外侧逐渐减短。
于是,如图4所示,利用互拉配筋70把来自核反应堆建筑物底垫4的RCCV内侧底垫插接筋63和RCCV内侧配筋11连接在一起使其互相拉紧。
如图4(A)所示,首先在最内侧的第1列(第1段)上设置互拉配筋70。第1列互拉配筋70是把纵向配筋71和横向配筋72装配在一起而构成的。最初插入第1列纵向配筋71,其长度相当于核反应堆建筑物底垫4上的已设置底垫插接筋63和落吊下来的RCCV内侧配筋11之间的间隔大小,利用作为配筋连接装置的配筋联接器73,通过机械连接法或灌浆连接法对RCCV内侧底垫插接筋63和RCCV内侧配筋11的纵向配筋57与67之间依次进行连接。利用互拉配筋70的纵向配筋71在配筋联接器73中对RCCV内侧底垫插接63和RCCV内侧配筋11依次进行连接,连接成为互拉(互连)部分。利用第1列互拉配筋70的纵向配筋71和配筋联接器73在RCCV内侧底垫插接筋63和RCCV内侧配筋63的第1列纵向配筋之间进行连接后,把横向配筋72安装到互拉配筋70的纵向配筋71上,形成一体化,装配成为互拉配筋70。
利用第1列互拉配筋70来把第1列RCCV内侧底垫插接筋63和RCCV内侧配筋11连接起来后,利用和第1列相同的连接程序来安装第2列和第3列的互拉配筋70、70,利用各列的各个互拉配筋70来对各列的RCCV内侧底垫插接筋63和RCCV内侧配筋11依次进行连接。
互拉部分的互拉配筋70、70、70从第1列向外侧(半径方向外方)第2列、第3列逐渐扩大,因此,各列的互拉配筋70的纵向配筋71的插入、利用配筋联接器73进行的紧固或者水泥浆浇注和横向配筋72的安装,均能顺利、容易地进行,不会影响其他列。
再者,利用起重机65把RCCV套筒10和RCCV内侧配筋11吊入并放置在核反应堆建筑物的底垫4上,然后,RCCV内侧配筋11借助于起重机65的起吊辅助钩梁66在吊装状态下保持数日,在该吊装状态下RCCV内侧底垫插接筋63和RCCV内侧配筋11进行互连互拉。
利用互拉配筋70来把RCCV内侧配筋11连接到来自核反应堆建筑物底垫4的RCCV内侧底垫插接筋63上,待互连互拉过程结束后,在RCCV内侧配筋11的外侧搭建RCCV外侧配筋12安装用的作业用脚手架75,开始进行RCCV外侧配筋作业。
RCCV外侧配筋12是在RCCV内侧配筋11的外侧利用作业用的脚手架75,和RCCV内侧配筋11一样进行布置,在建设现场内用纵向配筋76和横向配筋77来装配成筒状体配筋79、80、81,布置成同心园状,于是RCCV外侧配筋12的配筋作业即告结束。另外,RCCV外侧配筋也可以预先在地上装置成一个整体,利用起重机65将其吊入到建设现场内,放置到RCCV内侧配筋11的外侧进行安装。
当RCCV外侧配筋作业结束后,在RCCV外侧配筋12的外侧安装外侧模板框架82,在由该外侧模板框架82和RCCV套筒10的压力抑制室套筒16所包围的空间内浇注水泥。这时RCCV套筒10,用作为圆筒部分套筒的压力抑制室套筒16来构成内侧模板框架。在浇注水泥后,压力抑制室套筒16受到T型固定器13的辅助,与RCCV内侧配筋11和RCCV外侧配筋12形成一体化,被进行加固。
再者,与RCCV外侧配筋12的配筋作业和混凝土浇注作业相并行,在核反应堆建筑物1的核反应堆建筑物底垫4上设置核反应堆压力容器支撑基座5。该支撑基座5另外在工厂内或建设现场附近的地上(平台上)至少分成基座上段5a和下段5b进行工地组装,然后搬入到核反应堆建筑物1内进行安装固定。
基座上段5a如图6所示,和隔板层套筒组件(以下简称为DF套筒组件)85一起装配成一个整体。DF套筒组件85是由构成隔板层8的盘状隔板层配筋体86和密封板30、内部支撑结构件87和隔板套筒17装配成一个整体,构成一体化结构件。该DF套筒组件85设置和安装在基座下段5b和RCCV套筒10的压力抑制室套筒16上。DF套筒组件85在内周侧具有连成一体的基座上段5a,该基座上段5a被设置在RPV支撑基座5的下段5b上。内部支撑结构件87是把作为强度构件的许多个内部支撑结构件材料88布置成辐射状而构成的,DF配筋体86是把辐射配筋89a和园周配筋89b组合在一起而构成的。
设置在压力抑制室套筒16上的DF套筒组件85,其通过全周焊接隔板套筒17而被固定,在该隔板套筒17上周围焊接固定作为RCCV第2段套筒10的干井套筒27。该干井套筒27沿整个园周从内周侧和外周侧被焊接和固定在DF套筒组件85的隔板套筒17上。
作为RCCV第2段套筒10的圆筒部分套筒,即干井套筒27,以及作为其套筒外侧的RCCV内侧上部配筋的干井内侧配筋90,其结构与图1和图2所示的RCCV套筒10和RCCV内侧配筋11相同。和图1及图2所示的一样在工厂内或建设现场附近的地上(堆置场平台)上进行装配。装配成的干井套筒27和干井内侧配筋90利用图3所示的起重机65的起吊辅助钩梁66进行吊装,并被放置在核反应堆建筑物1的隔板层8上,利用起吊辅助钩梁66使其保持被吊装状态,沿整个周围把干井套筒27焊接到隔板套筒17上。
干井套筒27沿周围向隔板套筒17上焊接,根据原子能方面的法律规定,要从内周侧和外周侧两个方面进行,但无论是仅仅具有哪一侧,都具有足够的焊接强度。在干井套筒27的焊接作业结束之前,不能进行上升到隔板层8之下的RCCV配筋的互拉连接作业。因为干井套筒27的焊接和干井内侧配筋90的互拉连接作业需要数10天时间,所以,实际上不可能利用起重机65使干井内侧配筋90在吊装状态下保持数10天时间。
因此,如图5所示,准备临时支柱91,用该临时支柱91来代替起重机对干井侧配筋90进行吊装。吊装向临时支柱91的转移是在对干井套筒27和作为RCCV内侧上部配筋干井内侧配筋90进行落吊下来后,立即把干井内侧配筋90改为由临时支柱91吊起。
临时支柱91设立在隔板层8的下面已完成施工的RCCV内侧配筋11和外侧配筋12之间的混凝土面上。临时支柱91在园周方向上以适当的间隔设立许多根,例如设立20根。临时支柱91设立的位置不能影响由顶部的吊装悬臂92所吊装的干井套筒27进行焊接作业以及干井内侧配筋90进行互拉连接作业。
干井套筒27的焊接作业结束后,对作为RCCV内侧上部配筋的干井内侧配筋90和作为RCCV内侧配筋的原有RCCV内侧下部配筋11进行互拉连接作业。在此情况下,互拉连接配筋和图4所示的互拉连接配筋70一样形成为阶梯状,其作业方法和内侧底垫插接筋63及压力抑制室套筒16的RCCV内侧配筋11的互拉连接作业相同。干井内侧配筋90的互拉连接配筋作业结束后,搭建一种作为RCCV外侧上部配筋的干井外侧配筋93之间的作业用脚手架(图中末示出)。搭起该作业用脚手架,开始进行RCCV外侧配筋作业,在干井内侧配筋90的外周侧装配干井外侧配筋93。这时,在RCCV外侧配筋作业前撤掉临时支柱91,但如果不影响该外侧配筋作业,那么也可以照原样保存,埋入混凝土内。
这样,图2至图5所示的是预先在工厂内或建设现场附近的地上(堆置场平台上)在RCCV套筒10的外侧装配RCCV内侧配筋11,制成一体化结构,装配后同时吊装RCCV套筒10(包括干井套筒27)及其内侧配筋11(包括干井内侧配筋90),吊入到建设现场内进行安装。该RCCV套筒10和RCCV内侧配筋11的安装方法能够吊入RCCV内配筋11而不压曲RCCV套筒10。因此,能够省去建设现场内的RCCV内侧配筋作业用的脚手架的搭建和RCCV内侧配筋作业,从而能相应地大幅度缩短建设工期。
再者,吊装的RCCV内侧配筋11和建设现场内的RCCV内侧配筋11(压力抑制室套筒16时为插接筋63,干井套筒27时为施工到隔板层8的下部的RCCV内侧配筋11)的互拉连接形状是每个段长度各不相同,逐渐扩大,用机械或灌浆方法进行连接,所以能够很容易地进行互拉连接配筋作业。
另外,把干井套筒27和作为RCCV内侧上部配筋的干井内侧配筋90吊运到建设现场内,吊入的RCCV内侧上部配筋90在干井套筒27焊接期间,从下部的RCCV筋混凝土断面上设立临时支柱91用于进行支撑。用这种方法在改用时临时支柱91来吊装已吊入的RCCV内侧上部配筋90之后,能够立即把起重机65撤离。并且能够进行干井套筒27的焊接和配筋的互拉连接作业,已吊入的RCCV内侧上部配筋90不受影响。
(2)RCCV隔板部分的支撑结构图6和图7表示构成RCCV隔板部分的隔板层套筒组件(DF套筒组件)85。该DF套筒组件85在工厂内或建设现场附近的地上,例如堆置场平台上进行装配。堆置场平台有许多种,例如隔板层套筒组件85用平台、RCCV套筒10和RCCV内侧配筋11用平台、以及核反应堆压力容器支撑基座5用平台。
DF套筒组件85是把隔板平板17、隔板层配筋体86、密封板30以及内部支撑结构件87装配成一体化结构而制成的。隔板层配筋体86如图6和图7所示,把辐射配筋89a和园周配筋89b组合在一起,在隔板层配筋体86的内周侧设置核反应堆密封外壳(RPV)支撑基座5的下段5a并使其形成一体化。
RPV支撑基座5的上段5a被设置在圆筒状基座下段5b上,在与基座下段5b之间形成外周支撑台阶95。由该支撑台阶95来对DF套筒组件85的内周部进行支撑。
在RPV支撑基座5的外周支承台阶95上设立能够撤掉的临时支柱96作为临时支承装置。该临时支柱96被设置在RPV支承基座5上面,对DF套筒组件85的内部支撑结构件87的内端部进行支承。内部支撑结构件87是把多个内部支撑结构件材料88排列成辐射状而构成的,各内部支撑结构件材料88的外端部与隔板套筒17的抗剪加劲板内侧97相结合并得到支撑。隔板套筒17的抗剪加劲板材98使套筒按辐射状穿过,向两侧突出,形成抗剪加劲板内侧97和抗剪加劲板外侧99。在隔板套筒17的抗剪加劲板外侧99和压力抑制室套筒16的T型固定器13之间,插入临时材料或千斤顶等临时支承装置100,防止抗剪加劲板材98和隔板套筒17变形和弯曲。
另一方面,DF套筒组件85的内部支撑结构件材料88由H型或I型工字钢等钢材形成,由隔板层配筋体86的下方来对钢板制的密封板30进行悬垂支承,对RCCV隔板部分的全部荷重进行支承。当对DF套筒组件进行吊入时,利用起重机65来对内部支撑结构件87进行起吊,把RCCV隔板部分吊入到建设现场内。
图7(A)和(B)是把RCCV隔板部分吊运到建设现场内的部分断面图。在地上现场组装成整体结构的DF套筒组件85,在安装完成阶段把压力抑制室套筒16和RPV支承基座5吊装到规定位置,例如DF套筒组件85的下面。当吊入DF套筒组件85是运载DF套筒组件85的内部支撑结构件87进行吊装,把RCCV隔板部分吊入到建设现场内。
被吊入到建设现场内的DF套筒组件85,通过临时支柱96由RPV支承基座5一侧对内部支撑结构件材料88进行支承,通过使内部支撑结构件材料88与抗剪加劲板内侧96相结合而对隔板套筒17一侧进行支承。
利用该RCCV隔板部分的支承结构,能够把一体化结构件DF套筒组件85的荷重垂直地传递到压力抑制室套筒16上。例如,把内侧托架安装到压力抑制室套筒16上,设立临时支柱,当把RCCV隔板部分支撑在该临时支柱上时,RCCV隔板部分的力矩荷重就很大。与此相比,由于RCCV套筒10本身很薄,则刚性强度小,所以,受到RCCV隔板部分的大力矩荷重,有可能使RCCV套筒10和作为其轴向结构材料的T型固定器13被压曲。但是,图7(A)和(B)所示的RCCV隔板部分的荷重支承结构,由把隔板部分的荷重垂直地传递到压力抑制室套筒16上,所以能有效地防止RCCV套筒10和T型固定器13被压曲和产生变形。
在RCCV隔板部分受到RPV支承基座5和RCCV套筒10的压力抑制室套筒16的支承之后,对压力抑制室套筒16和隔板套筒17进行焊接。隔板套筒17的焊接最初从内侧进行,内侧焊完后RCCV隔板部分的荷重通过隔板套筒17能垂直地传递到压力抑制室套筒16上,然后,把压力抑制室套筒16的T型固定器13和隔板套筒17的抗剪加劲板材98之间所插入的临时设置的材料或千斤顶等取下来,沿整个园周进行外侧焊接。
在图6和图7所示的RCCV隔板部分的支承结构中,预先在地上把隔板套筒17、隔板层配筋体86、密封板30和内部支撑结构件87装配成为一体化结构件的组件结构,在工地上对DF套筒组件85进行装配。工地装配的DF套筒组件85约有1000吨,利用大型起重机65把一体化结构件原封不动直接吊运到建设现场内。
DF套筒组件85,其吊入荷重由压力抑制室套筒16的T型固定器13和抗剪加劲板材98进行支承。利用这种支承结构,能够使DF套筒组件85的荷重沿垂直方向作用于压力抑制室16,能够原封不动地直接吊装一体化结构,压力抑制室套筒16不会被压曲。能够省掉作业环境条件差的建设现场内的RCCV隔板部分的装配作业,能够大幅度缩短建设工程周期。并且代号101是作为配筋机构的配筋联接器,将隔板层配筋体86的辐射状配筋89A固定在隔板套管17上。
在吊装DF套筒组件85之后,实施混凝土浇注工程,完成隔板层8。浇注的混凝土产生强度后,开始将内部构件搬入上部的干井28内,同时撤去DF临时支柱96。
当干井28的内部构造物安装结束,而且RCCV2的圆筒部6的混凝土浇注达到顶部附近的阶段,如图9和图10所示,开始RCCV顶板的施工。顶板7具有顶板组件104,该顶板组件104由钢板的顶板衬板37、RCCV内部突缘38、顶板配筋体102、及内部支撑构件103安装成一体。顶板7形成由RCCV圆筒部6悬臂支撑的结构。
在顶板7施工之前,在上部的干井28内安装核反应堆屏蔽墙40。
(3)RCCV隔板部的支撑结构的变形例图8(A)和(B)表示RCCV隔板部的支撑结构的变形例。该RCCV隔板部的支撑结构代替RCCV隔板部的内部支撑构件,采用了外部支撑构件。
RCCV隔板部是对隔板层套筒组件(DF套筒组件)85A预先在工厂或在建设现场附近地面上,例如在堆置场平台上装配的。DF套筒组件85A是将隔板套管17、隔板层配筋体86、密封板30及外部支撑构件105在地面上安装成整体构造物的组件结构的。隔板层配筋体86是将辐射状配筋89a和圆周形配筋89b装配成圆盘状,构成多层结构。
隔板层配筋体86的辐射状配筋89a的外端,通过作为配筋安装机构的配筋联结器101连接在呈环状或套筒状的隔板套管17,形成一体化。位于隔板层配筋体86中最上层和最下层的辐射状配筋89a的内端部相互连接,形成 字形,而被加固。
在圆盘上的隔板层配筋体86的下方,安装了钢板制的密封板30,该密封板30支撑在外部支撑构件105的上面。外部支撑构件105具有排列成辐射状的多个外部支撑构件106,该构件106由H型钢或I型钢等形成。外部支撑构件105的外端部由角撑板107等连接机构连结在隔板套管17上,而其内端部可以支撑在核反应堆压力容器支撑基座5上部外周部突出设置的安装托架108上。
而在DF套筒组件85A的内周侧上,核反应堆压力容器支撑基座5的基座上段5a构成一体,该基座上段5a设置在基座下段5b上,组成核反应堆压力容器支撑基座5。
DF套筒组件85A在作业环境良好的工厂或建筑现场附近的地面上进行现场组装成圆盘状的整体构造物。现场组装的DF套筒组件85A例如重量为1000吨左右,由大型起重机65的起吊辅助钩粱66吊装,搬入建设现场。图8(A)和(B)是将DF套筒组件85A吊卸在建筑现场内的断面图,DF套筒组件85A是吊装外部支撑构件106后,吊入建设现场内。外部支撑构件106的上面支撑密封板30,使之支撑RCCV隔板部的全部重量。
将外部支撑构件106吊装后吊卸在建设现场内的DF套筒组件85A,其RPV支撑基座5一侧支撑在突设在基座外周的安装托架108上,其隔板套管17一侧在以T形断面构件13加固的压力抑制室套筒16的上方,通过隔板套管17支撑。
隔板套管17一侧如图8(B)的放大图所示,在环状或套筒状的隔板套管17上设置有抗剪加劲板98,进行加固。在隔板套管17的抗剪加劲板外侧99和压力抑制室套筒16的T形断面构件13之间,插入临时构件或千斤顶等临时支撑机构100。隔板套管17通过抗剪加劲板98临时支撑在T形断面构件13上。
这时,外部支撑构件106的外端通过角撑板107连结在隔板套管17上,组成一体化。从而,吊入的DF套筒组件85A的外周侧在用起重机65吊设的状态下,可通过隔板套管17、抗剪加劲板98、临时构件或千斤顶等临时支撑机构100,临时支撑在压力抑制室套筒16上。
DF套筒组件85A在临时支撑在压力抑制室套筒16上的状态下,将隔板套管17以全周焊接固定在压力抑制室套筒16上。首先将隔板套管17从内侧焊接在压力抑制室套筒16上,在内侧焊接完成后,RCCV隔板部的负荷通过隔板套管17垂直传送给压力抑制室套筒16。RCCV隔板部的负荷能够垂直传送之后,将压力抑制室套筒16的T形断面构件13上临时设置的临时构件或千斤顶等的临时支撑机构100卸下,撤走。在撤出后,再从外侧对隔板套管17和压力抑制室套筒16全周焊接,使DF套筒组件85A被支撑安装在核反应堆压力容器支撑基座5和压力抑制室套筒16上。
将在DF套筒组件85A安装在规定位置后,在DF套筒组件85A上浇注混凝土,构成RCCV隔板部。
该变形例所示的RCCV隔板部的支撑机构与图6和图7所示的RCCV隔板部的支撑结构具有相同的作用效果,DF套筒组件85A能够垂直地被支撑在压力抑制室套筒16上,可以使压力抑制室套筒16不会纵向弯曲、不会变形地被吊入。可以避免在作业环境恶劣的建设现场进行RCCV隔板部的装配作业,可以使建设方法大幅度缩短。
(4)核反应堆密封外壳的顶板在核反应堆密封外壳(RCCV)2的圆筒壁6的顶部设置的顶板组件104如图9所示构成,在工厂或建设现场附近的地面上,例如在堆置场平台上预先组装成一体。顶板组件104如图9所示,是将环状或套筒状的RCCV下部突缘38、圆盘状钢板制成的顶板衬板37、同样是圆盘状的顶板配筋体102、顶板上面的构架插接钢筋110及内部支撑构件103组装成整体圆盘状的一体化构造物。
内部支撑构件103如图9、图10和图11所示,是由为H型钢材或I型钢材等结构用钢材的内装支撑构件111多根辐射状排列构成的,将各内装用支撑构件111的内侧与RCCV下部的突缘38相结合,形成一体化结构。
RCCV下部突缘38如图11所示,设置在核反应堆屏蔽墙40顶部的并可以撤除的作为临时支撑机构的临时支撑件112的上面,该RCCV下部突缘38的下端外围突缘部分38a焊接在钢板制成的顶板衬板37的内周侧,固定成一体。顶板衬板37的内周端部或RCCV下部突缘38的下端外围突缘38a上,沿着圆周方向立装多根支柱113,由该支柱113支撑内部支撑构件111的内侧端部。
内装支撑构件111是将外侧端按辐射状延伸到RCCV圆筒部(圆筒壁)6,同时是悬垂支撑着顶板衬板37。内装支撑构件111是支撑顶板全负荷的构件。如图9所示,辐射状排列的内装支撑构件111也可用同心圆状的圆周配筋114相互连接,提高物理和机械强度。圆周配筋114沿圆周方向配置,将各内装支撑构件111装配成蛛网状。
顶板配筋体102也可以例如由38mm的顶板直交配筋构成,纵向和横向配筋垂直交叉安装。顶板配筋体102也可以不用的纵向和横向配筋而采用辐射配筋和圆周配筋交叉构成。顶板配筋体102将多层结构,例如3层结构的顶板直交配筋,设置在内装支撑构件111的上下两侧。
如图10(B)和图11所示,顶板配筋体102的最上层和最下层的顶板直交配筋的内周侧,与 字形连结配筋的环状最外钢筋115通过作为配筋连接机构的配筋联结器116,连结起来构成一体。这时,将直交配筋的最外钢筋115弯曲,绕过内装支撑构件111进行设置,使之不影响内装支撑构件103。
即,顶板部的核反应堆屏蔽墙40支撑端部的配筋形状如图10(B)和图11所示,使内装支撑构件111的内侧端部和顶板直交配筋102的环状最外钢筋115互不干扰。因此,在内装支撑构件111的内侧端附近装有为配筋连接的配筋联结器116。采用该配筋联结器116,使顶板直交配筋102和最外钢筋115不会干扰内装支撑构件111,而是绕过去使之容易加工安装。这样,将内装支撑构件111在内侧延伸到核反应堆屏蔽墙40,可在核反应堆屏蔽墙40上支撑。核反应堆屏蔽墙40的上面设置的临时支柱,在顶板浇注混凝土之后,产生混凝土的强度后预以撤除。
另一方面,在地面上现场装配成一体的顶板组件104约1000吨,用大型起重机65吊装,吊入建设现场内。在吊入时,是在实施核反应堆屏蔽墙40和RCCV圆筒部6的配筋至顶板连接处,完成浇注混凝土至顶板下面后的阶段进行的。
图10和图11表示将顶板组件104吊卸在建设现场内的状态的平面图和断面图。在该顶板组件104吊入前,为作为顶板组件104支撑用,在核反应堆屏蔽墙40上面安装了临时支撑构件112,在RCCV圆筒部6的混凝土结束面上安装了临时支柱117。吊入建设现场的顶板组件104将内装支撑构件111的内端部和外端部由临时支撑构件112和临时支柱117支持外周侧和内周侧。
吊卸的顶板组件104的顶板配筋的设置成不影响RCCV圆筒部(圆筒壁)6的纵向配筋57。因此,顶板组件104的顶板直交配筋102和RCCV圆筒部6的纵向配筋57的结合部的形状,如图10(C)和图11所示构成。
在顶板组件104的顶板直交配筋102上,RCCV圆筒部6的纵向配筋57的结合部的附近装有作为配筋连接机构的配筋联结器119,使外周侧的最外配筋119弯成<字形,辐射状延伸设置,使其不影响RCCV圆筒部6的纵向配筋57。从顶板直交配筋102开始将最外配筋119弯成<字形,辐射状延伸,从而在顶板组件104吊卸时,可以避免与RCCV圆筒部6的纵向配筋57的干扰,顺利吊卸,设置在RCCV圆筒部6的上面。
在图9-图11所示的核反应堆密封外壳2的顶板7中,顶板组件104可以在工厂或建设现场附近的地面上组装。预先在地面上组装的顶板组件104由大型起重机将内装支撑构件111搬运到建设现场,吊入建设现场内。在将顶板组件104吊入建设现场时,为使顶板组件104的顶板直交配筋102不影响RCCV圆筒部的纵向配筋57,使顶板直交配筋102的最外配筋119成弯曲形,预先设置成辐射状。在顶板直交配筋102上,与RCCV圆筒部6的纵向配筋57的结合部附近,设置有作为配筋连接机构的配筋联接器118,通过该配筋联接器118使最外配筋119与顶板直交配筋102相结合。
最外配筋119预先弯曲成<字形,如图10(C)所示的顶板直交配筋102的最外配筋119不影响RCCV圆筒部6的纵向配筋57地吊入设置在纵向配筋57之间。
通过将顶板直交配筋102的最外配筋119弯曲成辐射状,如将RCCV圆筒部6的纵向配筋57先行立起到顶板结合部,也可以可靠防止顶板组件104对RCCV圆筒部6的纵向配筋57的影响,顺利地吊卸。
通过顶板组件104的吊卸,可以省去在RCCV圆筒部6上结合配筋作业。现有的做法是将RCCV圆筒部6的纵向配筋57在固定顶板7下,在顶板吊入完成后,进行RCCV圆筒部6的纵向配筋57和顶板部的固定部分的结合配筋作业。省去该结合配筋作业,就可以使顶板部的施工工序大幅度缩短。
另外,顶板组件104为了使半径方向内侧的最外配筋115不影响内装支撑构件111的内侧端部,预先将顶板直交配筋102的最外配筋115弯曲。这时,为能便于进行顶板直交配筋102的组装配筋作业,而在内装支撑构件111的内侧端部附近设置作为配筋连接机构的配筋联结器116。通过该筋联结器116,使为了不影响内装支撑构件111而加工的最外配筋115,可以装卸自由地预先在地面上圆满而顺利安装,就没必要在核反应堆屏蔽墙40的上部外侧面上安装装卸托架了。
通常,在核反应堆屏蔽墙40的外侧面上安装有装卸托架,该装卸托架上支撑内装支撑构件的内侧端部,使内装支撑构件在最外配筋的前面结束,以防止内装支撑构件与最外配筋的相互干扰。但是,在现有的顶板部的支撑结构中,必须有支撑内装支撑构件的装卸托架。而且,装卸托架在顶板部的施工结束,产生混凝土的强度后要卸下。这样大形状的装卸托架在核反应堆屏蔽墙40上安装、卸下是很麻烦的,需要时间长,而且将卸下的装卸托架撤走作业也很困难。
对于这种情况,如图9-图11所示,吊入建设现场的顶板组件104通过临时支撑件112使内装支撑构件111的内侧端部支撑在核反应堆屏蔽墙40上,内装支撑构件111的外侧端部由RCCV圆筒部6上立装的临时支柱117支撑,内装支撑构件111由外周侧和内周侧稳定地支撑。支撑构成顶板的顶板组件104的全负荷的各内装支撑构件111,通过顶板组件104吊入,在核反应堆屏蔽墙40和RCCV圆筒部6的上面,通过临时支撑件112及临时支柱117被稳定地支撑。
顶板组件104的内装支撑构件111在核反应堆屏蔽墙40和RCCV圆筒部6支撑的状态下,从内侧将顶板衬板37全周焊接固定在圆筒部套筒10的顶部。固定后,浇注混凝土,形成RCCV顶板7。
RCCV顶板7在产生浇注混凝土强度后,卸下并撤走核反应堆屏蔽墙40上临时支撑件112。RCCV圆筒部6的临时支柱117在浇注混凝土时,埋设在RCCV圆筒部6的上部内,原封留下。这时,由于只有临时支撑件112设置在核反应堆屏蔽墙40上,所以撤走临时支撑件112的作业很容易。
(5)核反应堆密封外壳的顶板部的变形例图12是表示核反应堆密封外壳2的顶板部的变形例的放大平面图。
该变形例所示的核反应堆密封外壳(RCCV)2的顶板部是对顶板组件104A的核反应堆屏蔽墙40一侧进行改良的形式。顶板组件104A预先在工厂或建设现场附近的地面上组装,这点与图9-图11所示的顶板组件104相同,没有差别。
图12所示的顶板组件104A为了使顶板最外配筋的环状配筋和内装支撑构件111的内侧端部互不干扰,对内装支撑构件111的内侧端部弯曲加工,使弯曲加工的内装支撑构件111的内侧端部绕过顶板最外配筋,与RCCV下部突缘38结合固定。
其他构成及作用由于与图9-图11所示的RCCV顶板部没有差别,因此说明予以省略。
(6)贯通构件及孔口的安装结构图13和图14表示安装在RCCV套筒10上的贯通构件50及孔口51、52的安装结构图。如图2所示,RCCV套筒10上安装有搬入搬出机器用的孔口51、人员通路用的出入口52及管道、电气电缆、计测设备管线等通过用的贯通构件50。
RCCV套筒10在工厂或建设现场附近的地面上焊接,组成一体,构成圆筒状或套筒状。安装在该RCCV套筒10上的贯通构件50及孔口51、52在吊入到建设现场内之前,是由临时斜杆等辅助材料临时支撑在RCCV套筒10上的。当向建设现场吊入RCCV套筒10结束后,从RCCV外部的核反应堆建筑物1通过先行钢架1a,用钢材120、钢丝121等临时支撑贯通构件50及孔口51、52,撤走临时斜杆等。
图13和图14是表示从核反应堆建筑物1的先行钢架1a支撑安装在RCCV套筒10上的贯通构件50及孔口51、52的支撑状态图。吊入建设现场的核反应堆建筑物1内的RCCV套筒10,由核反应堆建筑物1的先行钢架1a临时支撑贯通构件50及孔口51、52。由于核反应堆建筑物1的先行钢架1a临时支撑,就可以防止产生钢材120及钢丝121对RCCV配筋作业的干扰,可减少施工的麻烦。
通常,安装在RCCV套筒10上的贯通构件和孔口上要安装临时构件20。该临时构件20在开始RCCV配筋作业阶段,为使干扰RCCV配筋作业的临时构件不再产生干扰而逐一进行拆换。
这样,如图13和图14所示,安装在RCCV套筒10上的贯通构件50和孔口51、52的临时支撑,在完成将RCCV套筒10吊入核反应堆建筑物内之后,撤出临时构件20,用从核反应堆建筑物1的先行钢架1a垂下的钢材120及钢丝121等临时支撑贯通构件50和孔口51、52,可以有效地将对RCCV配筋作业的干扰防止于未然,可减少施工的交错。
(7)核反应堆密封外壳的建设方法核反应堆建筑物1内放置的钢筋混凝土制成的核反应堆密封外壳(RCCV)2,按图15(A)-(H)所示的步骤建设。
首先,如图15(A)所示,在核反应堆建筑物1的建设现场敷设核反应堆建筑物底座4,从核反应堆建筑物底座4在圆周方向突设底座插接钢筋63。底座插接钢筋63如图15(A)和(B)所示,由内侧底座插接钢筋63a和外侧底座插接钢筋63b构成。内侧底座插接钢筋63a和外侧底座插接钢筋63b,在内侧和外侧之间,例如有600mm-700mm的间隔,分别有多排,例如3排以同心圆状排列,朝着半径方向的外侧方向形成下降阶梯式地突设呈阶梯状。
插设了底座插接钢筋63的核反应堆建筑物1的核反应堆建筑物底座4上,如图15(B)所示。吊入RCCV套筒(套筒第1段的压力抑制室套筒16)10和RCCV内侧配筋11。吊入的RCCV套筒10设置在核反应堆建筑物底座4上,同时RCCV内侧配筋11如图4(A)和(B)所示,通过结合配筋70及作为配筋连接机构的配筋联接器73,连接在内侧底座插接钢筋63a上。在内侧底座插接钢筋63a上首先在全周接合并连接RCCV套筒10的第1段的第1排。第1排的连接结束后,RCCV内侧配筋11的第2排,接着第3排以同样办法用结合配筋70进行接合。
在将RCCV内侧配筋11接合在内侧底座插接钢筋上时,内侧第1层的第1排接合完成后,依此进行第2排、第3排的接合。而且由于第2排、第3排与第1排相比,RCCV内侧配筋11与内侧底座插接钢筋63a之间阶梯状地加大开口,所以可以圆满顺利地进行RCCV内侧配筋11和内侧底座插接钢筋63a的接合配筋作业。
这时,RCCV内侧配筋11及RCCV套筒(套筒第1段的压力抑制室套筒16)10,由于在作业环境良好的工厂或现场附近的地面上,例如在堆置场平台上安装,所以就不需要在建设现场组装作业用脚手架及装配RCCV内侧配筋113。由于不需要在建设现场进行装配RCCV内侧配筋11作业,所以就不需要在核反应堆建筑物1内安装RCCV内侧配筋用的脚手架,也没有拆除已安装的作业用脚手架的作业了。因此,可以使RCCV内侧配筋11的配筋作业与核反应堆建筑物底座4的底座敷设作业并行,能够高效地进行施工。
在核反应堆建筑物底座4上安装完RCCV套筒10及RCCV内侧配筋11之后,如图15(C)所示,在RCCV内侧配筋11的外周侧安装作业用脚手架75,利用该作业用脚手架75,进行RCCV外侧配筋12的配筋作业。使RCCV外侧配筋12接合到核反应堆建筑物底座4的外侧底座插接钢筋63b上,这时,RCCV外侧配筋12的配筋作业也是在进行第1排的纵向、横向配筋作业之后,接着依次进行第2排及第3排的配筋作业,最外周侧的配筋作业结束后,在RCCV外侧配筋12的外侧围设模板框架22,如图15(D)所示进行混凝土浇注。RCCV外侧配筋12也与RCCV内侧配筋11一样,预先在地面上组装之后,吊入建设现场内,安装即可。这样,使建设现场的配筋作业简单化。
这样,在进行RCCV外侧配筋12的配筋作业的同时浇注混凝土,依次升高、垒起核反应堆密封外壳2。与该核反应堆密封外壳2升高相并行,用大型起重机65吊入核反应堆压力容器(RPV)支撑基座5的基座下段5b,安装在核反应堆建筑物底座4上,该RPV支撑基座5也在工厂内或建设现场附近的地面上预先组装成一体化结构。
将RPV支撑基座5的基座下段5b吊入核反应堆建筑物底座4上进行安装后,如图15(E)所示,用大型起重机65吊入隔板层(DF)套筒组件85(85A),吊卸在RPV支撑基座5及RCCV套筒10的压力抑制室套筒16上,设置在RPV支撑基座5及RCCV套筒10上。
这样,DF套筒组件85是在作业环境良好的工厂内或建设现场附近的地面上组装成一体化构件。DF套筒组件85的构成如图6-图7(A)、(B)所示,是在对隔板层配筋体86、内装支撑构件87及隔板套管17进行一体化的同时,将RPV支撑基座5的基座上段5a装入DF套筒组件85的内周侧。DF套筒组件85也可以按图8所示的构成。
DF套筒组件85由大型起重机65吊装,搬运到建设现场,吊卸在建设现场内。DF套筒组件85如图7(A)和(B)所示,内装支撑构件88的内侧部通过临时支柱96支撑在RPV支撑基座5的顶部。另外,内装支撑构件88的外侧端部通过抗剪加劲板98,与隔板套管17相结合,从内周侧和外周侧将该隔板套管17全周焊接在RCCV套筒16上,被垂直支撑在RCCV套筒16上。在该全周焊接时,DF套筒组件85通过起重机65保持吊设状态,使组件负荷不起作用,在DF套筒组件85由起重机65支撑的状态下进行,全周焊接结束后,DF套筒组件85被起重机65释放,由RPV支撑基座5和压力抑制室套筒16支撑。
这样,吊入的DF套筒组件85在RPV支撑基座5及RCCV套筒10上被支撑的状态下,向DF套筒组件85上进行混凝土浇注。浇注的混凝土产生混凝土强度后,卸下、撤走图7(A)和(B)所示的临时构件或千斤顶等临时支撑机构100。这样,形成将核反应堆密封外壳2内划分成上部的干井28和下部的压力抑制室25的隔板层8。
在核反应堆密封外壳2内形成隔板层8期间,核反应堆密封外壳2的圆筒6被浇注混凝土,升高到隔板层8的下方。如图15(F)所示,在RCCV套筒10的外侧浇注的混凝土的上面,立设临时支柱91。临时支柱91在RCCV套筒10的外周侧沿着圆周方向立设安装有多根,例如20根。
另一方面,将DF套筒组件85吊入核反应堆建筑物1内,安装该DF套筒组件85,形成隔板层8后,用大型起重机65吊设包括RCCV套筒(套筒第2段的干井套筒77)10及RCCV内侧配筋的干井内侧配筋90,吊卸在隔板层8上。
吊卸的RCCV套筒10(干井套筒27)在保持吊设期间,从内周侧及外周侧与隔板套管17全周焊接,干井套筒27安装并固定在隔板套管17上。另外,与干井套筒27同时吊卸的干井内侧配筋90,在干井套筒28在过渡到外周焊接之前,从起重机65的支撑转换到临时支柱91的支撑,形成由多根临时支柱91支撑的状态。
用临时支柱91支撑干井内侧配筋90的状态下,利用图4(A)、(B)所示的同样的结合配筋或配筋接头,与已安装的RCCV内侧配筋11相互连接,进行一体化。干井套筒27及干井内侧配筋90是由RCCV套筒上段及RCCV内侧上部配筋组成,如图3所示,是在作业环境良好的工厂内或建筑现场附近的地面上(堆置场平台)上预先进行现场组装的。现场组装的干井套筒27及干井内侧配筋90由大型起重机65吊设,搬运到建设现场,同时吊卸在建设现场内的规定位置。
吊卸在核反应堆密封外壳2的圆筒6上的干井内侧配筋90,如图15(G)所示,通过图中未示的结合配筋及配筋接头与已安装的RCCV内侧(下部)配筋11相连接,形成一体化。将作为RCCV内侧上部配筋的干井内侧配筋90连结在已安装的RCCV内侧(下部)配筋11上之后,根据需要在干井内侧配筋27的外周侧上,安装作业用脚手架,进行干井外侧配筋93的配筋作业。
干井外侧配筋93构成RCCV外侧上部配筋,该干井外侧配筋93也是将纵向配筋和横向配筋组合后,组装成圆筒状或套筒状。在进行干井外侧配筋93的配筋作业的同时,或者在配筋作业结束后,在干井外侧配筋93的外周侧围设模板框架22,在该模板框架22和干井套筒27之间,浇注混凝土,使核反应堆密封外壳2的圆筒部6逐步堆高。这时干井套筒27构成内周侧的模板框架22。
在构筑核反应堆密封外壳2的圆筒部6过程中,在对应于RPV支撑基座5的隔板层8上立设安装核反应堆屏蔽墙40。在将核反应堆屏蔽墙40安装并固定在隔板层8上的状态下,如图15(H)所示,利用大型起重机65,吊入顶板组件104,该顶板组件104支撑在核反应堆屏蔽墙40及RCCV2的临时支柱117上。
顶板组件104如图9-图11所示构成,支撑顶板组件104全部负荷的内装支撑构件111的内侧端部通过临时支撑件112支撑在核反应堆屏蔽墙40上,其外侧端部通过从RCCV2的圆筒部6树起的临时支柱117支撑,支撑在内周侧和外周侧上。在顶板组件104支撑在核反应堆屏蔽墙40上及RCCV2的圆筒部6上的状态下浇注混凝土。
浇注混凝土之后,当产生混凝土的强度时,将临时支柱117从核反应堆屏蔽墙40上卸下、撤走。另外,在RCCV2的圆筒部6上立设的临时支柱117,由于浇注混凝土而被埋设,作为强度构件留在圆筒部6内。
根据核反应堆密封外壳2的建设方法,具有压力抑制室套筒16及干井套筒27的RCCV套筒10、RCCV内侧(下部)配筋11及内侧上部配筋91为主的RCCV内侧配筋11、隔板层套筒组件85(85A)、核反应堆压力容器支撑基座5、核反应堆屏蔽墙40及顶板组件104,都可以在作业环境良好的工厂或者核反应堆建筑物1的建设现场附近组装,在RCCV建设施工中,可使在作业环境恶劣的建设现场的作业大幅度减少,可提高RCCV建筑工程的作业效率。确保安全。另外,可以大幅度减少在作业环境恶劣的建设现场的作业,而且在作业环境良好的工厂或者建设现场附近的地面上作业,可以使用多个堆置场平台,使核反应堆建筑物1的建设并行同时进行。从而就可以大大缩短RCCV建设施工的工程时间,例如即使建设140万KW(1400MW)级的核反应堆,也可以使建设期间在1年数个月例如1年8个月左右,比现有方法大幅度缩短数个月。
权利要求
1.核反应堆密封外壳,其是钢筋混凝土制的,其用于容纳核反应堆压力容器并容纳于核反应堆建筑物内;上述核反应堆密封外壳包含圆筒墙部,其具有大致圆筒形的形状并安装在核反应堆建筑物的地基部分上;隔板层部,其安置在圆筒墙部中并用于将其所在圆筒墙部中的空间分隔成上下室,屏蔽墙,其安装在隔板层部上并用于环绕着核反应堆压力容器,以屏蔽核反应堆压力容器发出的辐射;以及顶板部,其安装在已安装好的圆筒墙部的上方部分上,以盖住所述上方部分,其特征在于,上述顶板部包含顶板组件,其预先在核反应堆建筑物的外侧装配成组件结构,上述顶板组件被吊运到核反应堆建筑物中,以便安装在圆筒墙部和屏蔽墙上;以及混凝土墙,其通过在顶板组件中浇筑混凝土而成形于顶板组件上。
2.如权利要求1所述的核反应堆密封外壳,其是钢筋混凝土制的,其特征在于,上述顶板组件包含外形大致为盘状的顶板套筒、顶板配筋体、顶板上面构架插接筋、用于承载顶板组件荷重的支承结构件、以及配合在顶板套筒的内周侧上的凸缘,通过在核反应堆建筑物的外侧组装顶板套筒、顶板配筋体、顶板上面构架插接筋、支承结构件和凸缘,上述顶板组件被装配成大致盘状。
3.如权利要求2所述的核反应堆密封外壳,其是钢筋混凝土制的,其特征在于,上述顶板组件的支承结构件带有许多支承结构材料,用以承载顶板组件的荷重,上述支承结构材料呈辐射状布置,而且支承结构材料的内侧端部通过第一临时支承装置而分别临时支承在屏蔽墙上,上述第一临时支承装置以可拆除的方式安装在屏蔽墙上,而支承结构材料的外侧端部通过第二临时支承装置而分别支承在圆筒墙部上。
4.如权利要求3所述的核反应堆密封外壳,其是钢筋混凝土制的,其特征在于,上述顶板配筋体中包含许多顶板配筋,这些顶板配筋整体上布置成大致盘状,每个上述支承结构材料上分别具有最内侧端部,而每个上述顶板配筋上也分别具有最内侧端部,每个支承结构材料上的最内侧端部和每个顶板配筋上的最内侧端部二者中的至少一个被弯曲,这样可防止每个支承结构材料上的最内侧端部和每个顶板配筋上的最内侧端部相冲突。
5.如权利要求4所述的核反应堆密封外壳,其是钢筋混凝土制的,其特征在于,上述圆筒墙部上带有许多垂直配筋,这些配筋相对于地基部分垂直安置,而且每个上述顶板配筋上分别带有最外侧端部,上述每个顶板配筋的最外侧端部被弯曲而呈辐射状伸展,这样可防止每个顶板配筋的最外侧端部和每个垂直配筋相冲突。
6.核反应堆密封外壳的建设方法,该密封外壳是用于容纳核反应堆压力容器的,其是钢筋混凝土制的,其特征在于,该方法包含以下各步骤将具有大致圆筒形状的圆筒墙部装配在核反应堆建筑物中的地基部分上;将屏蔽墙装配在隔板层部上,上述屏蔽墙用于环绕着核反应堆压力容器,以屏蔽核反应堆压力容器发出的辐射;将支承件以可拆除的方式装配在圆筒墙部上;预先在核反应堆建筑物的外侧装配顶板组件;将顶板组件吊运到核反应堆建筑物中并安装在支承件和屏蔽墙上;以及在顶板组件中浇筑混凝土,以在顶板组件上成形出混凝土墙。
7.如权利要求6所述的方法,其特征在于,上述装配步骤包含这样一个步骤准备具有大致盘状的顶板套筒、顶板配筋体、顶板上面构架插接筋、以及用于承载顶板组件的荷重的支承结构件,还包含这样一个步骤在核反应堆建筑物的外侧将顶板套筒、顶板配筋体、顶板上面构架插接筋和支承结构件装配成大致盘状。
8.如权利要求7所述的方法,其特征在于,上述装配步骤包含这样一个步骤准备具有大致盘状的凸缘,以及这样一个步骤在核反应堆建筑物的外侧将凸缘装配在顶板套筒的下部,上述顶板组件的支承结构件上带有许多支承结构材料,用以承载顶板组件的荷重,每个上述支承结构件具有最内侧端部并且呈辐射状分布,而且上述顶板配筋体中包含许多顶板配筋,这些顶板配筋整体上布置成大致盘状,每个上述顶板配筋具有最内侧端部,而且,还包含这样一个步骤在核反应堆建筑物的外侧处理每个支承结构材料上的最内侧端部和每个顶板配筋上的最内侧端部二者中的至少一个,以将其弯曲,从而防止每个支承结构材料上的最内侧端部和每个顶板配筋上的最内侧端部相互冲突。
9.如权利要求8所述的方法,其特征在于,上述圆筒墙部带有许多垂直配筋,这些配筋相对于地基部分垂直安置,而且每个上述顶板配筋上分别带有最外侧端部,该方法还包含这样一个步骤处理上述每个顶板配筋的最外侧端部,以将其弯曲并呈辐射状伸展,从而防止每个顶板配筋的最外侧端部和每个垂直配筋相冲突。
10.如权利要求9所述的方法,其特征在于,每个顶板配筋上的上述最内侧端部和上述最外侧端部分别通过连接部件连接在顶板配筋上。
11.如权利要求6所述的方法,其特征在于,上述顶板组件的支承结构件上带有许多支承结构材料,上述支承结构材料呈辐射状布置,该方法还包含以下各步骤将第一临时支承装置以可拆除的方式安装在屏蔽墙上;将第二临时支承装置以可拆除的方式安装在圆筒墙部上;将各支承结构材料的内侧端部支承在第一临时支承装置上;以及将各支承结构材料的外侧端部支承在第二临时支承装置上,以使顶板组件的荷重被分别支承在各支承结构材料的内侧端部和外侧端部上。
全文摘要
一种核反应堆密封外壳,其是钢筋混凝土制的,其容放核反应堆压力容器,该外壳则容纳于核反应堆建筑物内,圆筒部套筒预先在该建筑物的外侧装配,配筋部包含内侧配筋组件并安置在该套筒的外周,内侧配筋组件预先在该建筑物的外侧装配,使该套筒和该组件被吊运到建筑物中并安装在其地基部上,配筋部带有外侧配筋组件,该外侧配筋组件的装配使之布置在内侧配筋组件的外周侧上,圆筒混凝土墙通过浇筑混凝土而成形于内、外侧配筋组件上。
文档编号E04H5/02GK1773630SQ20051010850
公开日2006年5月17日 申请日期1999年5月24日 优先权日1998年5月25日
发明者森浩也 申请人:东芝株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1