钛酸铝陶瓷制品及其制备方法

文档序号:1836505阅读:456来源:国知局
专利名称:钛酸铝陶瓷制品及其制备方法
本申请要求美国临时专利申请60/564,081的权益和优先权,所述临时专利申请由Ellison等在2004年4月21日提交,名称为“制备钛酸铝体的方法”。
背景技术
本发明涉及具有低热膨胀性、高孔隙度和高强度的钛酸铝陶瓷体,及其制备方法。具体而言,本发明涉及钛酸铝陶瓷体及其制备方法,其中所述陶瓷体和方法中使用了有助于降低烧制温度(firing temperature)并允许使用较广烧制温度范围的烧结添加剂。
目前,在共待批准的专利申请美国专利申请序列号10/626,317(美国公开号2004/0092381)和60/517,348(现为美国专利申请序列号10/955,364)以及美国专利第6,620,751号中,已提出在高温应用(例如汽车排放控制应用)中用钛酸铝(AT)基陶瓷材料替代堇青石和碳化硅(SiC)。
柴油机颗粒过滤器(diesel particulate filter,DPF)要求同时具备低热膨胀系数(CTE)(以产生热抗震性)、高孔隙度和良好孔间互相连通性(以产生低压降和发动机效率)以及高强度(以经受使用中的操作、包装和震动)。
为了获得具有前述特性的钛酸铝基DPF,需要将结构体烧制到通常高于1500℃的高温,以获得有效的颗粒生长(grain growth)而产生低热膨胀性所需的微裂隙(microcracking)。高的烧制温度会不利地提高加工产品中的成本。
期望能生产出用于高温应用中的钛酸铝基体,该基体可在降低的温度下被烧制,而不会显著影响终产物结构体的所需特性。因此,期望得到可使用较低烧制温度且具有上述特性的陶瓷组合物。
发明概述在本发明的第一方面中,提供了一种制备钛酸铝陶瓷体的方法,该方法包括以下步骤首先调配一批无机原料,该无机原料中包括以下物质的原材料(sources)二氧化硅、氧化铝、氧化钛和碱土金属(优选为选自下组中的至少一种锶、钙和钡)。以氧化物的重量百分比为基准表示,将优选量为0.01-10%(在一些实施方式中为0.01-2.0%)的稀土金属氧化物加入到所述原料批料中。已发现加入所述稀土金属氧化物烧结助剂与其它无机材料的混合物可有利地降低进行陶瓷体加工的烧制温度,并与此同时理想地降低了CTE和提高孔隙度,且基本上不会降低最终烧制体的强度。降低烧制温度可有利地显著提高熔炉设备的寿命。所述稀土金属氧化物优选为氧化钇或镧系元素的氧化物。最优选的稀土金属氧化物包括La2O3。这些添加剂还在较广的烧制温度范围内获得了稳定的特性。
将所述原料批料与加工助剂进一步混合,所述加工助剂选自下组增塑剂、润滑剂、粘合剂、成孔剂(pore former)或溶剂(例如水)。将所述加工助剂作为附加物加入到无机原料批料中,以无机原料的重量为100wt%为基准计。
将批料组分和附加物混合在一起优选形成均质和塑化的混合物,然后将其成形为生坯体(green body)。可按照熟知的陶瓷加工技术来进行所述成形步骤,最优选采用将所述塑化混合物通过挤出模头的挤压成形法来进行。在一个实施方式中,将所述塑化混合物挤压通过模头形成生坯体,所述坯体优选在横断单元壁上带有蜂窝状结构。
任选地干燥所述生坯体,然后将其烧制到优选低于1500℃的最高(炉顶)温度,更优选为低于1450℃,最优选为1400-1450℃,在炉顶温度保持足以形成大部分钛酸铝相的保持时间。所述保持时间优选为少于8小时;更优选为6-8小时。优选也形成小部分的碱土金属长石相。在所述陶瓷中还可存在小部分的氧化铝相。
在本发明的一个方面中,将具有蜂窝状结构形式的所得陶瓷制品成形为DPF,所述DPF包括填塞式壁流蜂窝体(plugged wall-flow honeycomb body),该蜂窝体具有入口端和出口端以及从入口端延伸到出口端的多个单元。所述单元优选具有多孔性的单元壁,其中沿长度部分填塞位于入口端的所有单元中的部分单元,形成出口单元,并在出口端沿长度部分填塞在入口端开口的其余部分单元,形成入口单元。在优选的发动机排气过滤应用中,发动机排气流通过蜂窝体的入口单元,从入口端流到出口端,流入开口的入口单元,穿过单元壁,在出口端从开口的出口单元排出结构体。
所述入口单元和出口单元优选具有不相等的横截面,最为优选为正方形。该制品的单元壁的厚度优选小于0.06英寸(1.52mm)。单元密度优选为10-800个单元/英寸2(1.6-124个单元/cm2)。所述制品的内部相连孔隙度优选大于40体积%,在一些实施方式中大于45%,在优选的实施方式中大于50%。优选的中值孔径大于10μm。在室温-1000℃间测定时,所述制品优选具有低的热膨胀系数(CTE),其为15×10-7/℃或更低,更优选小于10×10-7/℃,在一些实施方式中,甚至小于5×10-7/℃。理想的是,某些实施方式中获得了以下特性组合大于40体积%的孔隙度,在室温(RT)-1000℃间测定时10×10-7/℃或更低的CTE。
本发明的另一广泛的方面是一种钛酸铝陶瓷制品,所述制品包括占大部分的晶相钛酸铝和材料组合物,所述材料组合物包括铝、钛、硅、稀土金属和碱土金属。所述碱土金属优选选自下组锶、钙、钡或它们的组合。所述稀土金属优选选自下组钇、镧或它们的组合。应认识到这些金属和硅在所述组合物中通常以氧化物形式存在。
根据优选的实施方式,所述组合物还包括以氧化物的重量百分比为基准计的以下物质a(Al2O3·TiO2)+b(CaO·Al2O3·2SiO2)+c(SrO·Al2O3·2SiO2)+d(BaO·Al2O3·2SiO2)+e(3Al2O3·2SiO2)+f(Al2O3)+g(SiO2)+h(Fe2O3·TiO2)+i(La2O3)+j(La2O3·4TiO2·6Al2O3)+k(LaAlO3),其中a、b、c、d、e、f、g、h、I、j和k为各组分的重量份数,从而使得(a+b+c+d+e+f+g+h+i+j+k=1.000),并且其中0.5≤a≤0.95,0.0≤b≤0.5,0.0≤c≤0.5,0.0≤d≤0.5,0.0≤e≤0.5,0.0≤f≤0.25,0.0≤g≤0.1,0.0≤h≤0.03,i+j+k>0.001且b+c+d>0.001。
根据本发明的其它实施方式,所述组合物还包括以氧化物重量百分比为基准计的以下物质40-65%的Al2O3;25-40%的TiO2;3-12%的SiO2;2-10%的选自SrO、CaO、BaO或它们组合中至少一种的碱土金属氧化物;0.01-10%的稀土氧化物,例如La2O3、Y2O3或它们的组合。优选提供以氧化物重量百分比为基准计0.01-0.35%的氧化铁。
本发明的钛酸铝陶瓷制品尤其适用于高温排气应用中,例如用于柴油机排气过滤的壁流过滤器,和汽车/车辆的催化转换器。除了具有较低的烧制温度和理想的孔隙度及CTE以外,本发明还具有烧制窗较宽这一额外的优点,凭借这一优点所述陶瓷制品的制备更为简便且更具成本效率。


图1为以端部填塞的壁流过滤器形式展现的本发明钛酸铝陶瓷制品的等角图。
图2为本发明另一方面中,包含图1所示钛酸铝陶瓷制品的柴油机颗粒过滤器的部分切面侧视图。
图3为包括互连于发动机的图2所示柴油机颗粒过滤器的系统的等角图。
图4和5分别为显示了大部分为钛酸铝相结构的本发明陶瓷制品代表性内部的500×和1000×显微照片。
图6和7分别为本发明陶瓷制品代表性表面部分的500×和1000×显微照片。
图8为说明本发明另一方面的方法步骤的框图。
图9为另一实施方式中,以端部填塞的壁流过滤器形式展示的本发明的钛酸铝陶瓷制品的部分前视图。
发明详述用于本发明方法中的原料批料包括以下物质的原材料二氧化硅、氧化铝、氧化钛和至少一种碱土金属。所述碱土金属优选选自下组锶、钡、钙或它们的组合。所述原料还可包括与上述原材料混合的氧化铁。更优选上述无机原料批料包括以氧化物重量百分比为基准计的以下物质40-65%的Al2O3;25-40%的TiO2;3-12%的SiO2;和2-10%的选自下组的碱土金属氧化物SrO、CaO、BaO或它们的组合。
适宜的氧化铝的原材料是在不含其它原料时加热到足够高的温度产生基本上为纯的氧化铝的粉末,其包括α-氧化铝、过渡态氧化铝(例如γ-氧化铝或ρ-氧化铝)、水合氧化铝、水铝矿、刚玉、勃姆石(boehmite)、氢氧化铝或它们的混合物。上述氧化铝的中值粒径优选低于35微米。
适宜的二氧化硅的原材料包括方石英、非晶性二氧化硅(例如熔凝二氧化硅或溶胶-凝胶二氧化硅)、有机硅树脂、沸石和硅藻土、高岭石和石英。所述二氧化硅原材料的中值粒径优选小于30微米。适宜的氧化钛的原材料是金红石、锐钛矿或无定形氧化钛。所述氧化钛的原材料的中值粒径对于通过在结构体中快速生长核来避免截留未反应的氧化物而言是很重要的。因此,所述中值粒径优选小于20微米。适宜的锶的原材料是碳酸锶,其中值粒径优选小于20微米。适宜的钡的原材料是碳酸钡、硫酸钡或过氧化钡,其优选的中值粒径为小于20微米。钙的原材料可为碳酸钙或铝酸钙,其中值粒径优选小于20微米。氧化铁的中值粒径优选小于0.5微米。
批量生产图8框31中调配的原料批料,然后将其与框32中的一种或多种稀土氧化物原材料混合,所述稀土氧化物原材料最优选为金属钇的氧化物(Y2O3)或镧系金属的氧化物(La2O3)。所述稀土金属氧化物的中值粒径优选为小于15微米,优选以0.01-10重量%,在一些实施方式中为0.01-2重量%的加入量将其加入到框31中配制的其它无机原料中。
如框33所示,向无机原料组分和稀土金属氧化物的混合物中进一步加入选自下组的加工助剂有机和/或有机金属粘合剂、润滑剂、增塑剂、成孔剂、水性或非水性溶剂,以形成优选为均质和塑性的、可通过模制或挤压成形法成形的混合物。
可任选地加入所述成孔剂(例如石墨、淀粉或聚乙烯)以提高终产物的孔隙度。按照如下公式计算所述加工助剂的重量百分比100×[(加工助剂)/(无机原料总重量)]。
可采用任何适宜的陶瓷制造方法,如框34所示将塑化混合物成形为生坯体,但是优选采用挤压成形法。如本领域所知,挤压成形操作可采用液压柱塞挤压、二级脱气单钻挤出机(two stage de-airing single auger extruder)或具有附设在排出端的模头组件的双螺杆混合机来进行。后者中,根据材料和其它处理条件来选择适当的螺杆组件,从而产生迫使材料批料通过模头的有效压力。所述挤压可为垂直或水平方向。
然后,可优选地干燥所得的成形生坯体。而后如框35所示对其进行加热,优选在空气中,优选在常规干燥炉中加热到低于1500℃的最高(炉顶)温度,较优选加热到1400-1500℃,更优选1400-1450℃,在一些实施方式中加热到1435-1450℃。优选将所述坯体保持在理想的温度范围中一段足够的保持时间以形成占大部分的钛酸铝晶相。此外,可形成小部分的碱土金属长石相。在冷却到室温(RT)前,在烧制温度时的最优选保持时间为少于8小时,更优选约6-8小时。
在一个优选的实施中,本发明的陶瓷制品可成形为最佳如图1所示的蜂窝结构形状。所述蜂窝结构体10优选具有多个单元通道12、14,它们由沿制品10长度轴线从入口端11向出口端17延伸的单元壁18隔开。根据本发明的优选方面,所述陶瓷制品10是壁流过滤器,并优选具有入口端11;出口端17;从入口端向出口端延伸的多个入口单元12;沿入口单元12的侧面从入口端向出口端延伸的多个出口单元14;所述单元12、14具有多孔壁18。较佳为用优选的陶瓷坯泥将所述结构体填塞成棋盘样式,以形成填充塞16、19。所述的填充塞16、19优选与所述蜂窝结构体具有相同或类似的组成,但并非必须相同或相似。可采用任何适宜的填塞材料。优选仅在所述单元的端部进行填塞,填塞的深度通常为约5-20mm。用填充塞19在出口端17处填塞入口单元12,而用填充塞16在入口端11处填塞出口单元14,优选以交替的方式进行填塞。在所述制品中,入口单元12的数量优选基本上等于出口单元14的数量。
因此,应认识到对于填塞式壁流蜂窝结构体,沿长度部分填塞位于入口端11处的全部单元中的部分单元,并在出口端17处沿长度部分填塞在入口端开口的剩余部分的单元。该填塞结构使得发动机排出气流通过所述蜂窝结构体的入口单元12,从入口端11流到出口端17,流入开口的出口单元14,通过单元壁18,在出口端通过开口的出口单元排出所述结构体。具体而言,所述壁流过滤器可用于截留来自柴油发动机排气中的颗粒。在这一应用中,壁流过滤器可称为“柴油机颗粒过滤器”,因为它们可截留并储存来自柴油发动机排气中的颗粒。用于柴油机颗粒过滤器的适宜单元密度为10-800个单元/英寸2(1.6-124个单元/cm2);更优选为70个单元/英寸2(10.9个单元/cm2)-300个单元/英寸2(46.5个单元/cm2)。
最佳如图2所示,可将陶瓷制品10构建成柴油机颗粒过滤器20。所述柴油机颗粒过滤器20优选包括固定于优选为金属筒30中的如上所述具有端部填塞结构的陶瓷制品10。过滤器20包括多个轴向延伸的端部填塞的入口单元12和贯穿过滤器的出口单元14。在操作中,柴油机烟尘被截留并储存于过滤器的入口单元12中和多孔壁18中。优选采用环状衬垫(mat)或者其它纤维性或高温适应性材料40来将陶瓷制品10放置并固定在金属筒30中。端部元件50优选可将制品10定位和保持在相对于金属筒30的轴向上。如图3所示,优选将所述柴油机颗粒过滤器20固定于车辆的排气系统60中(为清楚起见,仅示出了该车辆的部分)。具体而言,用一个或多个管道80将过滤器20与发动机70相互连接。所述系统60还可包括消音器90和附加管道81、82。在操作中,所述过滤器20去除在排气中夹带的颗粒(烟尘)。
为了更完全地说明本发明,用以下非限制性的实施例来说明可获得的组合物和特性。
实施例如下制备批料混合原料,然后将它们与烧结助剂和有机加工助剂成分以下表I所示的比例混合,形成混合物。还提供了产生的陶瓷制品组合物。在本说明书通篇所给出的各个实施例中,以氧化物重量百分比为基准计算和表示该组合物。应理解的是用氧化物的重量百分比为基准来表示该组合物是本领域中常规的表示方法,虽然认识到该氧化物可能并不以其游离形式实际存在于所述陶瓷中,而相反可能在陶瓷中以结合于晶体或玻璃结构或相的氧原子状态存在。
表I.

在不锈钢研磨机中捏和所述混合物,形成塑性块,然后将其通过模头挤压,形成具有蜂窝结构体的生坯体,所述蜂窝结构体的单元密度约为300个单元/英寸2(46.5个单元/cm2),壁厚优选约为0.012英寸(305μm),直径为1-10英寸。干燥该样品并在通有空气的电炉中烧制。烧制中的炉顶温度优选为低于1500℃,较优选约1350-1450℃,更优选1400-1450℃,更优选约1435℃。优选保持该炉顶温度一段足够长的时间,以在烧制制品中形成大部分为钛酸铝相晶体的结构。最为优选的保持时间为8小时或更短,最优选为6-8小时。在保持后冷却到室温(RT)。
具有蜂窝结构的烧制制品样品具有热膨胀系数(CTE)、孔隙度、中值孔径(MPS)和断裂模量(MOR)的特征。CTE是采用膨胀测定法,在室温-1000℃的温度范围内测定的。孔隙度和MPS是采用注汞式孔隙法测定的,而MOR则是采用四点法,在平行于挤压方向的长轴上切割的杆状物上进行。下表II中总结了一个实施例(实施例1)中获得的数据。
表II——实施例1的特性

表II中还给出了用对比样品测得的CTE、孔隙度、MPS和MOR值,所述对比样品用表I所列的类似批料加工而成,但未加入烧结添加剂。然后在1465℃的炉顶温度烧制所述对比样品6小时。该对比样品也显示出用于DPF应用的理想特性。
通过比较,本发明组合物样品的特性与对比样品的特性类似,甚至更优于对比样品。可将氧化镧作为有效的烧结添加剂与其它组分混合,以促使产生低CTE和粗孔径而不降低孔隙度或对强度产生明显的不利影响。因此,本发明中已显示了可在降低的烧制温度和较宽的烧制窗中制备钛酸铝基体,而不会对所得特性产生不良的影响。
在下表III和IV中给出了其它实施例。这些实施例的制备如前所述。已将各实施例样品在多种温度下烧制,以对由此可能产生的不同特性进行说明。
表III——实施例2-5

关于实施例2-5的批料成分如下。氧化铝为RMA氧化铝(500目);二氧化硅为Silverbond 200;氧化钛为Titanox Kronos 3020。在实施例2-5中未使用成孔剂。这些批料中所用的粘合剂为A4M Methocel。将油酸用作润滑剂,以水为溶剂。应认识到的是,所述组合物中的大多数具有大于30体积%的孔隙度,或甚至大于40%的孔隙度;而不使用成孔剂并在1425℃烧制的组合物的孔隙度则大于40%。所述组合物在室温-1000℃温度范围的CTE小于25×10-7/℃;大部分组合物的CTE小于15×10-7/℃或更低,或甚至为10×10-7/℃或更低,某些实施方式中的CTE小于5×10-7/℃。实施例2-5的MPS为10μm或更大;一些实施例的MPS为15μm或更大,或MPS甚至为20μm或更大。可在低于1500℃或甚至低于1450℃的炉顶烧制温度下进行烧制,获得优良的CTE、孔隙度和MPS。多个实施方式中获得的孔隙度大于30体积%,且同时在室温-1000℃温度范围的CTE为10×10-7/℃或更低。上述的实施例2-5和下述的实施例6-7为具有以下性质的样品直径为1英寸,200个单元/英寸2和壁厚为0.016英寸。
表IV——实施例6-7


关于实施例6-7的批料成分如下。氧化铝为购自Alcoa的A-10氧化铝;二氧化硅为Silverbond 200;氧化钛为杜邦Ti-Pure R-100。在实施例6-7中使用了Asbury A625石墨成孔剂。用于这些批料的粘合剂为A4M Methocel。将油酸用作润滑剂,以水为溶剂。上文给出的加工助剂的重量%是以占批料成分总重量的百分比来表示的。可见,实施例6-7的组合物的孔隙度大于40%,或甚至为45%;在一个实施方式中,所述孔隙度大于50%。上述组合物的CTE小于25×10-7/℃;更优选小于10×10-7/℃。实施例6-7中的MPS为10μm或更大。下表V所示为包含钙和粘土的其它实施例8-15。
表V——实施例8-15


表V——实施例8-15续表


关于实施例8-15的批料成分如下。氧化铝为购自Alcoa的A-10氧化铝;二氧化硅为Silverbond 200;氧化钛为杜邦Ti-Pure R-100。使用了Asbury A625石墨成孔剂。用于这些批料的粘合剂为A4M Methocel。将购自S&S Chemical的妥尔油用作润滑剂,以水为溶剂。所述润滑剂体系还包括购自Dow Corning的三乙醇胺99。上文给出的加工助剂的重量%是以占批料成分总重量的百分比来表示的。将各样品在炉顶温度下保持6小时。
可见,实施例8-15组合物的孔隙度大于40%,或甚至为45%;在多个实施方式中,所述孔隙度为50%或更大。所述组合物还具有小于25×10-7/℃的CTE;更优选小于15×10-7/℃的CTE,许多组合物的CTE小于10×10-7/℃。可通过将多种这些组合物在小于或等于1500℃且大于或等于1435℃的温度下烧制来获得小于10×10-7/℃的CTE。当在低于1500℃的温度下烧制时,MOR大于150psi。在1400-1500℃烧制时,许多实施例样品的中值孔径大于10微米。
本文所给出的本发明的陶瓷制品的实施例中,所述陶瓷制品中的主要晶相为钛酸铝。还优选本发明的陶瓷制品中基本上不含富铝红柱石。所述烧制的陶瓷还可优选地包括小部分的碱土金属长石相,可包括更少的氧化铝相。这些相可为非晶相,例如为玻璃状或玻璃相。图4和5所示分别为代表性的陶瓷制品内部的500×和1000×的抛光表面显微照片,显示出其互连内部孔隙、微裂痕和主要的钛酸铝晶相。如上所示,在所述陶瓷中还可存在其它固相。亮白色的小部分相(在图5中标示为21)为锶长石,其优选的存在量约为0-50体积%;更优选为10-30%。根据用于所述组合物中的碱土金属,所述锶长石可被钙长石或钡长石或它们的组合所取代。浅灰色的相(在图5中标示为22)是主要的钛酸铝相,其优选的存在量约为55-95体积%;更优选为60-80%。氧化铝为小部分深灰色的相(在图5中标示为23),其优选的存在量约为0-50体积%;更优选约为0-20%。黑色部分(在图5中标示为24)是内部孔隙。
图6和7为代表性本发明陶瓷制品的烧制表面,显示了表面的粗糙度、表面和互连孔隙(黑色区域)以及微裂隙。图6所示的放大比例为500×,而图7的放大比例则为1000×。
本发明的陶瓷制品优选包含材料组合物,所述材料组合物包括选自下组的元素铝、钛、硅或碱土金属(例如选自下组中的至少一种锶、钙、钡或它们的组合),以及稀土金属。最为优选的是锶和钙的组合。所述稀土优选选自下组钇、镧或它们的组合。最为优选的是镧。
所述陶瓷制品更优选包含如下组合物,所述组合物包括以氧化物重量百分比为基准计的如下物质40-65%的Al2O3;25-40%的TiO2;3-12%的SiO2;2-10%的碱土金属氧化物(例如至少一种选自下组的碱土氧化物SrO、CaO、BaO或它们的组合);和0.01-10%的稀土氧化物,例如La2O3、Y2O3或它们的组合。所述组合物最优选包括2-10%的SrO与0.01-10%的La2O3的组合。然而,所述组合物可任选地包括各种碱土氧化物SrO、BaO和CaO与La2O3的组合,条件是碱土氧化物的氧化物总重量为2-10%。最为优选的是SrO、CaO和La2O3的组合。
根据较为优选的范围,所述组合物基本上由氧化物组分组成,以氧化物重量百分比为基准计45-60%的Al2O3;28-36%的TiO2;5-12%的SiO2;3-8%的SrO;0.1-5%的CaO;以及1-9%的La2O3。
该组分范围中的Ca、Sr和Ba优选来自最终烧制组合物中的碱土长石晶相和/或玻璃相。这些碱土元素不同比例的主要差异在于烧制温度。碱土金属混合物倾向于获得较低的烧制温度和较宽的烧制窗,因此需要进行组合。例如,最为优选的是Ca和Sr的组合,其在扩大烧制窗中十分有效。此外,应认识到钇以及钇和镧的组合在用于与Sr、Ca、Ba或它们的组合混合时,其有效性接近于烧结助剂。
本发明的陶瓷还可任选地包括少量的铁(Fe)。具体而言,如果存在的话,该添加物同样以Fe2O3氧化物的重量百分比来表示。以氧化物重量百分比为基准表示,可加入少于2.0%,更优选少于1.0%,最优选0.01-0.35%的Fe2O3。所加入的Fe2O3在钛酸铝相中产生了Ti和Fe的固体溶液,在置于低于约1300℃的氧化条件的使用状态中时,降低了钛酸铝的分解速率。以氧化物重量百分比为基准计的低铁含量(即低于2.0%,更优选低于0.5%)在罐装应用(canned application)中是所需的,其原因是由于热循环其降低了生长。此外,所述组合物优选不含镁,其原因是由于材料批料中的杂质,例如不多于非常少量的镁(例如少于0.5重量%)存在于材料批料中。
根据本发明的另一广泛的方面,还可替换性地以可能的系统组分来表征所述陶瓷制品的组成。具体而言,本发明的组合物包括以氧化物重量百分比为基准计的以下物质a(Al2O3·TiO2)+b(CaO·Al2O3·2SiO2)+c(SrO·Al2O3·2SiO2)+d(BaO·Al2O3·2SiO2)+e(3Al2O3·2SiO2)+f(Al2O3)+g(SiO2)+h(Fe2O3·TiO2)+i(La2O3)+j(La2O3·4TiO2·6Al2O3)+k(LaAlO3),其中a、b、c、d、e、f、g、h、I、j和k为各组分的重量份数,从而使得(a+b+c+d+e+f+g+h+i+j=1.000)。优选组合物中的a-k如下0.5≤a≤0.95,0.0≤b≤0.5,0.0≤c≤0.5,0.0≤d≤0.5,0.0≤e≤0.5,0.0≤f≤0.25,0.0≤g≤0.1,0.0≤h≤0.03,i+j+k>0.001且b+c+d>0.001。虽然用这些术语来表示所述组合物,但在最终烧制体中需要存在的仅有的晶相为钛酸铝。其它相可为例如非化学计量量或非晶相的。
本发明实施方式中的更优选组合物包括以氧化物重量百分比为基准计的a(Al2O3·TiO2)+b(CaO·Al2O3·2SiO2)+c(SrO·Al2O3·2SiO2)+d(BaO·Al2O3·2SiO2)+e(3Al2O3·2SiO2)+f(Al2O3)+g(SiO2)+h(Fe2O3·TiO2)+i(La2O3)+j(La2O3·4TiO2·6Al2O3)+k(LaAlO3),其中a、b、c、d、e、f、g、h、I、j和k为各组分的重量份数,从而使得(a+b+c+d+e+f+g+h+i+j=1.000)。优选组合物中的a-k如下0.5≤a≤0.95,0.0≤b≤0.5,0.0≤c≤0.5,0.0≤d≤0.5,0.0≤e≤0.5,0.0≤f≤0.15,0.0≤g≤0.1,0.0≤h≤0.01,i+j+k>0.001且b+c+d>0.01。
图9所示为本发明其它方面的优选实施方式中陶瓷制品110的部分横截的部分入口端的视图。具体而言,制品110的这一实施方式是如参照图1所描述相同的壁流过滤器来配置的,用填充塞116在入口端111填塞出口单元114,用填充塞(为了清楚起见未示出)在出口端填塞入口单元112,入口单元112和出口单元114具有优选为正方形的不等横截面。这种不等区域由各个区域界定,而所示各个区域由互连单元壁118的各个横向表面所限定。制品110的壁118的优选厚度为小于0.06英寸(1.52mm)。单元密度优选为10-800个单元/英寸2(1.6-124个单元/cm2)。制品110的孔隙度优选大于40体积%,中值孔径优选大于10μm,在室温-1000℃下测得的热膨胀系数优选为10×10-7/℃或更小。
虽然已显示并描述了本发明的各种实施方式,但应理解的是本发明不限于此。本领域的技术人员可对本发明进行改变、改进和进一步的应用。因此,本发明不仅仅局限于详细描述和上文所述,还包括所有这些变化和改进。
权利要求
1.一种制备钛酸铝制品的方法,所述方法包括(a)调配无机原料批料,所述原料包括二氧化硅、氧化铝、氧化钛以及至少一种碱土金属的原材料,所述碱土金属选自锶、钙或钡;(b)将以氧化物重量百分比为基准表示的0.01-10.0%的稀土金属氧化物加入所述原料批料;(c)将加工助剂与所述无机原料批料和金属氧化物混合,形成塑化混合物,所述加工助剂选自增塑剂、润滑剂、粘合剂、成孔剂或溶剂;(d)将所述塑化混合物成形为生坯体;(e)将所述生坯体加热到低于1500℃的炉顶温度,并保持足以形成占大部分的钛酸铝相的保持时间。
2.如权利要求1所述的方法,其特征在于,所述将塑化混合物成形的步骤是采用通过模头的挤压进行的。
3.如权利要求1所述的方法,其特征在于,所述稀土氧化物选自下组金属钇、镧系金属或它们的组合。
4.如权利要求1所述的方法,其特征在于,所述稀土金属氧化物是La2O3。
5.如权利要求4所述的方法,其特征在于,La2O3的加入量为0.01-2.0重量%,以氧化物的重量百分比为基准表示。
6.如权利要求1所述的方法,其特征在于,烧制所述生坯体的保持时间少于8小时。
7.如权利要求1所述的方法,其特征在于,所述稀土金属氧化物的加入量为0.01-2.0%,以氧化物的重量百分比为基准表示。
8.如权利要求1所述的方法,其特征在于,所述炉顶温度为1400-1450℃。
9.如权利要求1所述的方法,其特征在于,所述炉顶温度低于1450℃。
10.如权利要求1所述的方法,其特征在于,所述保持时间为6-8小时。
11.如权利要求1所述的方法,其特征在于,所述无机原料批料还包括以氧化物重量百分比为基准表示的以下物质40-65%的Al2O3;25-40%的TiO2;3-12%的SiO2;和2-10%的选自下组的一种碱土金属氧化物SrO、CaO、BaO、或它们的组合。
12.一种钛酸铝陶瓷制品,所述制品包括占大部分的钛酸铝晶相;和包含以下物质的材料组合物铝、钛、硅、碱土金属和稀土金属。
13.如权利要求12所述的钛酸铝陶瓷制品,其特征在于,所述碱土金属为选自锶、钙、钡或它们组合中的至少一种,所述稀土金属则为选自钇、镧或它们组合中的至少一种。
14.如权利要求13所述的陶瓷制品,其特征在于,所述组合物还包括以氧化物重量百分比为基准表示的以下物质a(Al2O3·TiO2)+b(CaO·Al2O3·2SiO2)+c(SrO·Al2O3·2SiO2)+d(BaO·Al2O3·2SiO2)+e(3Al2O3·2SiO2)+f(Al2O3)+g(SiO2)+h(Fe2O3·TiO2)+i(La2O3)+j(La2O3·4TiO2·6Al2O3)+k(LaAlO3),其中,a、b、c、d、e、f、g、h、I、j和k为各组分的重量份数,从而使得(a+b+c+d+e+f+g+h+i+j+k=1.000),并且其中,0.5<a≤0.95,0.0≤b≤0.5,0.0≤c≤0.5,0.0≤d≤0.5,0.0≤e≤0.5,0.0≤f≤0.25,0.0≤g≤0.1,0.0≤h≤0.03,i+j+k>0.001且b+c+d>0.001。
15.如权利要求13所述的陶瓷制品,其特征在于,所述组合物还包括以氧化物重量百分比为基准表示的以下物质a(Al2O3·TiO2)+b(CaO·Al2O3·2SiO2)+c(SrO·Al2O3·2SiO2)+d(BaO·Al2O3·2SiO2)+e(3Al2O3·2SiO2)+f(Al2O3)+g(SiO2)+h(Fe2O3·TiO2)+i(La2O3)+j(La2O3·TiO2·Al2O3)+k(LaAlO3),其中a、b、c、d、e、f、g、h、I、j和k为各组分的重量份数,从而使得(a+b+c+d+e+f+g+h+i+j+k=1.00),并且其中,0.5<a≤0.95,0.0≤b≤0.5,0.0≤c≤0.5,0.0≤d≤0.5,0.0≤e≤0.5,0.0≤f≤0.25,0.0≤g≤0.1,0.0≤h≤0.005,i+j+k>0.001且b+c+d>0.01。
16.如权利要求13所述的陶瓷制品,其特征在于,所述组合物还包括以氧化物重量百分比为基准表示的以下物质40-65%的Al2O3;25-40%的TiO2;3-12%的SiO2;2-10%的至少一种选自下组的碱土氧化物SrO、CaO、BaO或它们的组合;以及0.01-10%的至少一种选自下组的稀土氧化物La2O3、Y2O3或它们的组合。
17.如权利要求16所述的陶瓷制品,其特征在于,所述制品还包括0.01-0.35%的Fe2O3,以氧化物的重量百分比为基准表示。
18.如权利要求16所述的陶瓷制品,其特征在于,所述制品还包括6.0%或更多的La2O3,以氧化物的重量百分比为基准表示。
19.如权利要求13所述的陶瓷制品,所述制品基本由氧化物组合物组成,所述氧化物组合物包括以氧化物重量百分比为基准计的以下物质45-60%的Al2O3;28-36%的TiO2;5-12%的SiO2;3-8%的SrO;0.1-5%的CaO;以及1-9%的La2O3。
20.如权利要求12所述的陶瓷制品,所述制品的孔隙度大于40体积%。
21.如权利要求12所述的陶瓷制品,所述制品的中值孔径大于10μm。
22.如权利要求12所述的陶瓷制品,所述制品在室温-1000℃下测得的热膨胀系数为15×10-7/℃或更小。
23.如权利要求12所述的陶瓷制品,所述制品在室温-1000℃下测得的热膨胀系数为10×10-7/℃或更小,且其孔隙度大于40体积%。
24.一种柴油机颗粒过滤器,所述过滤器包括权利要求12所述的陶瓷制品,所述过滤器具有多个轴向延伸的端部填塞的入口单元和出口单元。
25.一种包括权利要求24所述的柴油机颗粒过滤器的系统,所述系统包括发动机和将所述发动机和所述柴油机颗粒过滤器互连的管道。
26.一种钛酸铝陶瓷制品,所述制品包括占大部分的钛酸铝晶相和占小部分的碱土金属长石相,以及材料组合物,所述材料组合物包含铝、钛、硅以及稀土金属。
27.如权利要求26所述的钛酸铝陶瓷制品,其特征在于,所述稀土金属选自钇、镧或它们的组合。
28.如权利要求26所述的钛酸铝陶瓷制品,其特征在于,所述组合物还包含含有至少一种选自下组的元素的碱土金属锶、钙、钡或它们的组合。
29.如权利要求26所述的钛酸铝陶瓷制品,其特征在于,所述制品还包含占小部分的氧化铝相。
全文摘要
本发明描述了一种钛酸铝陶瓷制品,其包括占大部分的钛酸铝晶相和材料组合物,所述材料组合物包含铝、钛、二氧化硅、碱土金属(例如选自下组中的至少一种锶、钙、钡或它们的组合)和稀土金属(例如选自下组中的至少一种钇、镧或它们的组合),并描述了制备该钛酸铝体的方法。优选将金属钇或镧系金属的氧化物用作烧结助剂掺入其它组成成分,从而使得能够在低于1500℃,更优选1400-1450℃的较低加热温度下,以优选为少于8小时,更优选6-8小时的保持时间烧制所得的生坯体。
文档编号C04B35/478GK1942228SQ200580011752
公开日2007年4月4日 申请日期2005年3月22日 优先权日2004年4月21日
发明者A·J·埃利森, P·D·特珀谢, C·J·沃伦 申请人:康宁股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1