用于确定玻璃板的形状的系统和方法

文档序号:1962055阅读:319来源:国知局
专利名称:用于确定玻璃板的形状的系统和方法
技术领域
本发明涉及用于确定玻璃板的形状的系统和方法。更具体地说,提供了用
于在以熔融下拉工艺形成过程中禾Q/或之后确定玻璃板形状的系统和方法。
背景技术
最近,重大关注已集中在用于各种应用的鹏板的微特征上,戶脱应用
包括液晶显示器(LCD)应用。比如,用于LCD应用的玻璃,当具有低的形 状可变性和低的致密度。表征玻璃板皿的能力是一个有用的工艺手段,但是 在形成过程中和之后测量玻璃板形状的现有技术受限于数据的质量和数量两者。
不接触其表面,观糧大土央玻璃的靴,比如,具有一侧表面积淑9m2的 玻璃板,因该玻璃的高的繊狩卩镜面反射而复杂化。目前用于物体形状测量 的很多技术依靠基板表面的光的漫散射,但是由于玻璃的Mlt性质,这些技术 不易适应于玻璃板形状的确定。另外,依靠反射光的方法通常受限于小的观察 领域或非常大的传感器,所述传感器接近所测量的玻璃板的大小。这些传感器 通常必须放置在相对于该玻璃的反射角讨能有效运行。因此, 一般需要一个 传感器阵列或单个传感器追踪来确定该玻璃板的形状,从而增加了这些系统的 成本和复杂性。而且,由于有限的空间和常遇到的恶劣环境,这样的系统常常 太大,不能集成进鹏形成工艺中。
在形成玻璃板的传统的浮法工艺中,熔融的玻璃流到并布满熔融锡的池或 浴的表面。该工艺己经应用了几十年,负责用于各种应用的高质量玻璃板的快 速供应,特别是窗玻璃。
在某些应用中,玻璃板需要具有高于那些适于窗玻璃的特性的特性(比 如,平整、薄、致密等等)。针对这些应用,已经找到熔融下拉工艺来生产异 常高质量(如,表面光洁)的玻璃板,而不需要通常对浮法形成的玻璃板来说 的后续表面调节(如,研磨)。在熔融下拉工艺中,熔融的玻璃St才料提供给一个包含槽的耐火物。该烙 融材料溢出该槽,并且以分离的流束流过该耐火物,仅在该耐火物的底部重新 聚合,形成具有原始表面的玻璃带。在熔融工艺中该玻璃带的照犬^^f制造的 玻璃的质量特征的早期指示物,包括生成的玻璃板的尺寸稳定性,因此期望得 到。

发明内容
公知许多材料在以合适能量受激时会发出荧光。依照本发明,制得包括一 个或多个荧光种类(如,离子)的玻璃,使其通过用^g波长的光照射该玻璃 发出荧光。已知的引起荧光的材料(活化剂材料)包括,但不限于铀、锰、钼、 钛、银、钨、硼、锂、碲、铋、锡、钙、锗、铟和铅。前述的任何一种或多 种,或者导致玻璃材料中的荧光的其它任何材料,当包含进玻璃组合物中时都 可以作为合适的荧光活化剂。导致玻璃中的荧光的必要的光波长依赖于特殊的
材料,但是常常为紫夕卜(uv)波长范围内的一个波长。
该玻璃体内的荧光可以用于通过几何三角测量确定该玻璃在荧光点的位 置。在一个例子中, 一个用于估算玻璃带形状定义内部体积的的系统可以包括 一个光源、 一个图像捕获装置和一个处理器。该光源可以配置劇每光束以预定 的角度沿着预定的发射向量^l寸在该玻璃板的选定部分上。该光束配置ite该 玻璃板的选定部分的体积内弓胞该鹏板发荧光,并且鄉荧光能量。
图像捕获装置可以包括配置成从该玻璃带读出所发射的荧光能量的传感 器。该图像捕获装置还可进一步产生基于映像到该传感器上的光能量的位置和 幅度的信号。该处理器接收该传感器产生的该信号并确定该玻璃的发荧光部分 和该图像捕获装置(如,照相机)之间的向量。给出两个向量(发射的和接收 的)和其它固定的几何系统参数,该处理器可以通an角测量确定荧光,的 位置。
通过改变出射光向量的角度,该处理器可以弓應多賴示该玻璃的离散位 置的发射点产生。从这些离散点,该处理器可以确定该玻璃带或板的形状。或 者,结构化的光可以射在该玻璃板上,弓胞多个鄉点同时产生,大大加快该 形状测量。
在一个实施方式中,公开了一种确定玻璃板形状的方法,包括提供一个玻璃板,利用光束照射该玻璃板的内部部分,其中该光束包括选来引起该玻璃板 的内部部分发射荧光能量的波长,以及确定该发荧光的内部部分的能量质心的位置。
在另一个实施方式中,描述了一种确定玻璃板形状的方法,其包括提供一
个玻璃板和将光束射在该玻璃IO:的多个预定位置,其中该光束包括选来弓胞 该玻璃板的内部部分^l寸荧光能量的波长。该内部部分发射的生成的荧光能量 于是被映像到传,上,从而确定该发荧光的内部部分的育讀质心的位置。这 些步骤可以重复执行于该玻璃feJi的多个位置,从而得到多个能量质iM體, 从中可以确定该玻璃板的皿。
在另外一个实施例中,公开了一个测量玻璃板形状的系统,其包括配置成 将激光束以预定的角度沿着预定的发射向量^l寸在玻璃板上的激光器。该激光 束具有选定波长,其足够弓l起该激光束传播透过的该玻璃板的内部部分发荧光 和发射荧光能量,该发荧光的内部部分包括一个能量质心。该系统进一步包括 图像捕获装置,其配置成接收该荧光能量且将该荧光能量映像到传感器上,其 中该传自产生基于该传感器上的该映像荧光能量的位置的位置信号。处理器 配置成执行下面操作从该图像捕获装置接收该位置信号,确定该图像捕获装 置和该能量质心之间的接收向量,以及基于该鄉向量和该接收向量,确定该 能量质心在该玻璃板的发荧光内部部分中的位置。该系统可以配置为该玻璃板 的多个内部部分发荧光,从而可以在一个或多个选定方向确定该板的形状。该 多个内部部分可以制成i顷序或同时地发荧光。
本发明的其它方面将部分阐述在具体实施方式
和任一个随后的权利要求 中,并且部分将从该具体实施方式
推导得出,或可以由实践本发明得到。可以 理解的是,在前的概述和后面的具体描述都仅仅是示范说明的,并不能将本发 明限制为所公开的和/^0f要求的。


附图将一并结合,并作为这具体说明的一部分,图示出本发明的各个方 面,并且结合描述,用作解释本发明的原理。
图1是部分切掉的透视图,其图示了依照本发明的一个实施方式的示范性 '熔融下拉工艺。图2是依照本发明的一个实施方式确定,板形状的系统的示意图。 图3是g,向量的增加的入射角的影响的示意图。 图4是表示依照本发明的示范性三角测量方法的示意图。
图5是依照本发明利用第二荧光板确定玻璃板形状的另一个系统的示意图。
图6是表示当以波长248nm的光照射时具有不同浓度的锡(Sn)的各种玻 璃板對才的荧光密度的图表,该锡均匀分布于旨玻璃。
图7是表示依照本发明的一个实施方式以一个尺寸测量的自板的形沃的 图表。
具体实施例方式
本发明的不同实施方式的下列描述提供为本发明的辅助教导。为这个目 的,相关技术领域的技术人员会认可和意识到,对于这里描述的不同实施方式 可以做许多变化,而仍得到本发明的有益结果。同样显而易见的是,本发明的 所期望的某些益处可以通M^择本发明的某些特征而不使用其它特征得到。因 此,本领域技术人员将认可,对本发明的许多,和适应是可能的,而且甚至 可以是某些环境中所期望的,是本发明的一部分。因此,下列描述提供作为解 释本发明的原理,且不限于此。
依照本发明的实施方式,描述了在形成过程中和/或之后确定玻璃板形状的 系统和方法。如这里所用的,术语"玻璃板"意味着包括形成过程中或之后的玻 璃,没有限制。因此,例如,术语"玻璃板"可以包括以各种状态(如,粘弹性 的,弹性的,等等)从隔离管根部流下的玻璃带,以及可从玻璃带切下的最终 玻璃板。
虽然这里比照熔融下拉工艺描述,但是可以预料到,这里描述的系统和方 法可以用于确定利用各种已知的玻璃形成工艺中的任一个形成的玻璃带或板的 形状,包括浮法工艺、槽拉工艺、上拉工艺和单边溢出下拉工艺。
在图1描述的形成玻璃板的示范鹏融下拉工艺中,供应管10将熔融鹏 ll提供给耐火物,或隔离管,12,包括一个收集槽14。熔融自从两侧溢出该 槽的顶部,以形成两个独立的玻璃流束,其向下流动,然后沿着该隔离管的收 縮外表面16向内流动,该收縮外表面在该隔离管的拉线或根部18结合。两个
7熔融玻璃流束在根部汇聚,在那里它们融在一起成为单个玻璃带20。该鹏带 然后可以送去拉制和其它最终产生玻璃板的下游工序设备。
玻璃带20在形成过程中经过多,理状态。熔融玻璃以粘性状态溢出隔离
管12的侧边。独泣的流束然后在该隔离管的底部融合形成玻璃带,之后玻璃带
从粘弹性状态转变为弹性状态。在玻璃已经转变为弹性材料之后,该玻璃带可
以被划线和分离(如划线22所示),形成最终的玻璃板24。
依照一个实施方式,图2中所示的系统26可以用于在形成过程(如,下拉 熔融过程)中确定玻璃带的形状,或者可以用于在该板已从该带(或从较大的 板)分离出来后确定单个玻璃板的形状。系统26包括照明设备28、图象捕获装 置30和处理器32。照明设备28可以配置劇每光束、 &^定的发射向量34、以 选定的波长射向鹏板24,该选定的波长引起被i統束照谢的该玻璃的内部部 分36发荧光。内部部分意味着在该板的相对主表面之间(也就是,穿过该板的 厚度)的玻璃的部分。因此,该玻璃从该玻璃的被照射的内部部分发射荧光能 量。图像捕获驢30,齡处理器32,可以用于接收所鄉的光,并确定发荧 光的内部部分的能量质心(如,图3中的58a、 58b)和图像捕获装置之间的向 量37。给定一个主参考系、鄉光向量34、接收光向量37和系统几何幵沐, 处理器32可以计算发荧光的内部部分的會,心在主参考系中的位置。
照明设备28包括光源38,比如激光器、发光二极管(LED),如UVLED 光源、灯等等,但不限于大功率UV灯,或者其它任何一个育,将窄束光以引 发玻璃板的内部部分内的荧光的波长射在玻璃板上的光源。在一个实施方式 中,照明设备28可以包括酉虔为鄉具有紫外范围内波长的激光束40的激光 器38。可选的是,该激光器可以配置成发射具有育,在激光束穿透玻璃传播时 引发该玻璃的荧光的任意波长的光。比如,该激光器可以具有在大约150nm到 大约500nm范围内的、在大约220nm到大约290nm范围内的、或者更优选的 在大约260nm至伏约270nm范围内的波长。示范性的激光器包括,但不限于, 266nm四次谐波YAG激光器、248nm NeCu激光器、248nm ArF激光器或 224nmHeAg激光器。
照明设备28可以进一步包括光学元件42,比如湖器或多面棱镜,其可 以选择性地置于各种预定角度,以接收来自激光源的激光束,并将其射向玻璃 板24上的预定位置。在一个具体的方式中,光学元件42可以包括现有技术中已知的常规镜式检流计。比如,该镜式检流计可包括双轴扫描镜式检流计,或 者包括操作在分段模式的两个斜由描镜式检流计。更优选的是,该检流计可包
括角位置传繊44,用于获得和向处理器32提供该镜的角位置,从而掛共了 从此反射的光束在该主参考系中的角位置。角位置传感器44可以并入反射镜致 动器45。在不使用1t^计或其它扫描或^^置的情况下,角位置传感器可以 直接联合激光器或其它可用光源。如果必要的话,可以执行该结构的初始校 准,以确定照相机和光源的位置,并定义它们在主坐标系中的位置。或者,照 相机和光源两者都可以安装有位置感应装置,其在各自位置上向处理器32提供 信息。
在图2所示的另外一个方面,照明设备28可以任^i也包括空间滤波器^ 束成形器46,以确保该光束的对称會糧分布。照明设备28还可以包括光束扩 展器48,以调节入射在鹏社的光束宽度(如,横截面)。
图像捕获装置30包括成像照相机50,其可以置于使得该玻璃板的至少一 部分在该照相机的观察区域内。照相机50可以配置为将该照相机捕获的该荧光 能量映像到传感器上,以确定从发荧光的内部部分的能量质心到照相机的向 量。只需要使用单个照相机。但是,在某些实施方式中,如果玻璃板24大于单 个照相机的观察区域,则4OT多于一个的照相机。不必要重叠多个观察区域。
成像照相机50包 ,镜系统52和传感器54。透镜系统52配置为接收发荧 光玻璃划寸的光,并将接收的光能量映像到传離上。传繊54可以为,比 如,模拟位置感应探测器(PSD)或像素化阵列传S^。在一个优选实施方式 中,传繊54是像素化阵列传繊。纟雜收的光能量映像到传繊上是将所发 射的荧光能量的角向量转化为传感器上的位置。传感器54将这个位置转化为模 拟或数字输出信号,该模拟,字输出信号M线55提供给处理器32。
因为该荧光点的能量质心是在自板的内部部分之内,系统26可以配置为 补偿玻璃的体 赃。如图3中戶标,当激光束传播敏鹏时,光束的光能量 被吸收(被减弱),由能量强度剖面表示。该减弱,是指数式的。在第一个 位置,假定在这个例子中采取垂直的,3驢分布由包含肯讀质心58a的区域56a 表示。当光束横跨自板从第一 (左)位置(向量34a)扫描至第二 (右)JM G4b)时,入射角a减小(相对于玻璃平面),该光束穿过玻璃的光程长度增 加,而且该光束被更多地减弱。因此,当光束扫描时,探测到的荧光能量质心向更接近玻璃的入射面59的方向移动,而且该粉带会显示出包括一个仅作为
扫描伪迹的弓形。处理器32 配置为祝尝这个效应。
为确定玻璃板的形伏,来自照明设备28的向量34a、 34b和从玻璃板的发 荧光的内部部分的肯衝贡心至鹏像采集装置30的向量37a、 37b的角方向都被 处理器32用于三角测量能量质心在主参考系中的位置。比如,对于笛卡儿 (Cartesian)主参考系,可以计算能量质心的x、 y、 z坐标。
通过移动发射光束越过该玻璃板,且引起该板的多个选定内部部分发荧 光,可以确定玻璃形状图形。例如,依靠该移动的尺寸范围, 一个一维或二维 图形可以M生成点云而产生。该传 可以配置为感测该点云中各个能量质 心的每一个,并且处理器可以配置为确定各个能量质心的每一个的位置。
在一个方面,处理器32配置为确定^肖讀质心和传感器54之间的M 的接收光向量,并且基于其各个的鄉向量和接收光向量确定每个能量质心的 位置。基于该顺序肖遣质心(例如,所述点云)的确定位置,可以非常接近该 玻璃板的,。
依照一个实施方式,确定自板形状的方法如下进行。处理器32与激光器 和镜式检流计电连接,而且酉擅为划寸定位信号至幡式检流计(换句话说,光 学元件42)的促动器。响应于该定位信号,该镜式检流计被置于第一位置, 从 而将激光束以预定的角度、髓该镜式检流计和该板之间的鄉向量34,反射 向玻璃板24,而且该镜式检流计定义在该主参考系之内,且该1^流计的位置信 号沿着线61被导向处理器32。
激光束与玻璃交叉,并照射玻璃的内部部分,引起该玻璃板被照射的内部 部分劍寸荧光f讀。照相机50,或其他图像捕获设备,ilil传感器54感应所 對寸的荧光能量(如,所對才光的能量质心)的角方向。基于成像在该传感器 上的光的位置和幅度,传感器54沿着线55将电信号提供给处理器,从而确定 了来自能量质心的向量。
该透镜系统可以利用对本领域技术人员来说熟知的方法校准,以确保所接 收的荧光能量到光能量在传繊上的{體的精确转换。例如, 一个或多僧镜 效应可能需要这样校准,但不限于焦距、径向对称的透镜畸变、标MI竟透 视、非径向对称的畸变、由于离轴透镜像差导致的质心移动、和玻璃荧光体效 应。在一个示范性的方面,如果传^l是像素化的传感器,单个像素数据可以
由传感器通过整wi拟增益和补偿功能处理,以得到所期望的信躁比。每个像
素可以对于其與虫的增M/补偿斜牛进行校准,以斷氐传麟上的图像噪声。生 成的电信号然后可被送至处理器32。另外,该处理器可以执〗,贞间减法以M^ 设置中变化的背景图像的影响。 一个与成像的能量质心的尺寸相匹配的标准空 间滤波器可以在整个图像上操作以进一步降低噪声。该空间滤波器和其他的信 号处理功能都可以被改变以最小化偏移误差。可以执行常规的点探测和像素质 心算法,从而在像素空间内,计算能量质心在像素化传感器的参考系中的位 置。随后,应用透镜转换算法,以得到实际會讀质心和照相丰/lt间的向量。
处理器32 iOT标准三角法、从^^计到板的发射向量和从板到照相机的荧
光(接收到的)向量、以及已知的光源(如,检流计)和照相机的位置,以三
角测量该玻璃板的发荧光的内部部分的能量质心的位置。图4示出了一个示范
性的方法。依照图4的实施方式,主参考系由x、 y和z轴定义。照明设备28
(更具体地,光学元件42)和图像捕获装置30的位置在该主参考系内被定义并
且已知,而且划寸和接收向量的角方向也是已知的。该玻璃板的发荧光的内部
部分的肖糧质心(如,58a)的位置于是可以从下列方程确定 一 xc tan《tan《+(力—> c)tanec tan《
一凡tan《一少c tan 9C + jcc —、 X — tan《—t肌《
z, = rc tan pc + zc
在d" +U里,脚标"s"与光源有关,脚标"c"与照相机有 关,且脚标r与能M心有关。因此,od,例如,是照相机和能量质心之间的
向量,且xt、 yt和zt分别是该能量质心的x、 y禾Qz坐标。应当注意的是,从光 源到板的向量由光的直接通道源的位置确定,因此该向量由从光学元件42 (如,检流计反射镜或如果不使用反射镜的其他光学元件)到玻璃板确定。
处理器j皿为配置成补偿玻璃板的厚度效应。在一个方面,该系统可以被
初始校准,而且可以基于校准过程中得到的值创建査表。在一方面,校正算法
可以基于这些4直。
上面描述的过程可以顺序重复,以确定玻璃的另外的荧光内部部分(如, 质心58b)的位置。因此,处理器32可以隨为31il^61鄉定位信号,以重 新定位镜式检流计,从而将激光束沿着第二发射向量反射向玻璃板。图像捕获
ii装置配置为感测来自第二能量质心所鄉的荧光能量,并且^t一个相应的电 信号给处理器。正如人们将意识到的,处理翻定織二能量质心和照相te 间的荧光向量,并确定该第二能量质心的位置。类似地,当玻璃内建有多个发 荧光的内部部分时,各个能量质心的位置可以由处理器计算,并且基于各个能 量质心的位置,可以确定玻璃的形状。
在另外一个实施方式中,多个发荧光的内部部分可以由称为"结构化的"光
同时形成。比如,光学元件42可以是多面折射元件,期每光束40分束为照射
玻璃板的多个内部部分的多个光束。
在某些实施方式中,可以对移动的自带确定玻璃的皿,比如由图1中
荧光点60的线所示的沿带的宽度方向。例如,在熔融下拉工艺中拉自隔离管的 移动的玻璃带的皿可以沿给定位置的板的宽度方向确定,比如在玻璃的弹性 区域。在一t般的生产环境中,熔融拉制设备是一M到高温(如,800°C) 的封闭空间,空间的入口被限制以保持环绕玻璃带的空间的范围内的必要的精 确 鹏平衡。因此,必须指引光源穿过窗口射入该空间,从而照射该玻璃带。 在这样的情况下,沿带的宽度方向的一维扫描可能是唯一实际的选择。当然该 系统应当校准以解决窗口引起的畸变。在其它的实施方式中,入口受限较少, 可以进行两维测量,其中该带被光源从沿着该带的宽度向上的多个点和^该 带的长度向下这两个方向扫描,以得到两维形状和/或如多个点62所示的斜 坡。在其它方面,该系统也可以在两个维度扫描切下的玻璃板,以确定其整个 形状,并确保其符合任何所要求的标准。
有利的是,本发明可以用于测量具有玻璃停止具有限定皿(例如,熔融) 的温度之下的任何温度的玻璃的形状。例如,测试表明,本发明可适用于具有 超过80(TC的纟鹏的玻璃的形状观懂。在另一方面,在室湿以下驗的玻璃 板的形状测量可以很容易操作。因此,基于材料本身的物理限制,对要测量的 物品来说有很宽的可能温度范围。对用作显示应用的玻璃来说,形状测量可以 执行,如,在室温(即,23°C)或以下,在超过IOCTC、超过20(TC、超过 300°C、超过400。C、皿500。C、皿600。C、超过700。C以及甚至^l8(XrC 的玻激鹏。测试己经成功操作于至少850'C的驗。
在另外一个实施方式中, 一个第二已知(具有已知形状)平面64可以放在 玻璃板24后面,如图5所示。该已知表面可以^^当被激光束轰击时发荧光的材料的表面。激光束可以从镜式检流计反射且射在玻璃l^,且已知平面放置在该自板后面。如图5中所示,分别引起荧光点从玻璃板的内部部分内和在该已知平面上刻寸。通过参考已知平面上的荧光区域的质心到玻璃板的荧光内部部分的质心,高相对精确度可以M算法处理得到。例如,因为已知表面的形状和位置是已知的,己知表面的"所观懂的"形状(通过多个荧光点)可以从该已知表面的实际形状减去,从而确定该已知表面的测得和实际皿之间的差别。该差别于是可以作为修正参数用于测得的玻璃板形状,从而以高精确度确定实际的玻璃板皿。
在一个前述实施方式的替代方案中,该第二个已知表面可以只是包括扩散表面,使得高度的散射发生在该表面。第二板的表面t^l寸的质心可以用于替代第二板上的表面荧光的质心。
实施例
进行测试以确定三±央玻璃板的玻璃,光谱,包括具有大约0.5%锡重量浓
度的玻璃板(样品A)、具有大约0.1%锡重量浓度的玻5离板(样品B)、具有大约0.01。/。锡重量浓度的玻璃板(样品C)。这些玻璃板!^自NeCu激光源的248nm的光激发。如图6中看到的,该M在350nm到500nm波长范围内,并且实际上在该范围之下或;tJ:(例如,在从约250nm至约700nm的范围内),发荧光,具有取决于各自锡浓度的强度。如所示的,具有较高锡浓度的玻璃发出荧光的弓M高于具有较低锡浓度的玻璃。
进行第二测试以利用图2所示的系统、禾,具有近高斯光束糊犬的脉冲调制的266nm四次谐波YAG激光器来确定鹏板的制犬。
进行两个子测试第一个子测试利用空间滤波器,导致功率的二倍(2x)损耗,但是增加或保持激光束的均匀性。在第二个子测试中,空间滤波器皮移除以得到另外的激光功率,尽管该激光束形状的均匀性有轻構13I化。在两个子测试中,、棘扩展器用于给玻璃体内的生成荧光点从大约lmm到大约5mm的尺寸。
镜式检流计用于两个子测试中以将激光束导向玻璃板。镜式检流计的角位置用于确定反射到目标玻璃板上的激光束的所得角。照相机用于接收生成的荧光,其包括透镜系统和执fi^里,功能的传自。玻璃板放在离照相机和光源大概一米远的地方,而且照相机和检流计固定
在彼此相距大概800mm。各种形状和在相对于照相机和激光器的不同位置处的LCD玻璃板被测量以确定各自的形状。例如, 一个在长度方向测量大概1米的大体上平坦的玻璃板在沿着一个维度的19个点上被扫描,而且各个点处的鹏板的位置用于确定该玻璃板的整体皿。该玻璃板的测得形状,如图7中的曲线66所表示,是名义上平坦的。测量标准偏差也以曲线68示出。该玻璃板于是在X-Y平面中以各种角度倾斜。结果显示只有大约30Mm的随机體。然后该玻璃板在Z-Y平面中以各种角度倾斜。结果也如期望的那样,显示仅有大约30拜的随机i^。
应该强调的是,本发明的上述实施方式,尤其是任何"优选的"实施方式,仅仅是可能的实施例,仅仅为了清楚理解本发明的原理而提出的。针对本发明的上述实施方式,可以在实质上不脱离本发明的精神和原理的情况下做许多变化和修改。比如,如果该板尺寸大,可以采用多个光源和多个照相机,因此可以重复图2中所示的装置或单元(但是可以采用一个中心处理器以控制所有这些单元,而不复制该处理器)。按照这个实施方式,每个单元会扫描该板的预定部分,而且结果和来自其他单元的数据合并以形成,板的复合图像。每个照相机的观察区域不必要重叠,但是如果希望确保该板的完全覆盖可以弓l入某些重叠。
另外,虽然上述描述是基于玻璃板的测量,但是其它材料也可以依照本发明的实施方式测量,提供当以^S波长的光照射时发荧光的材料体。例如,某
些塑料板可以代替该玻璃板。所有这^i虔改和变化在这里都包^ia该公开和本发明的范围中,且被随后的权利要求书保护。
因此,本发明的非限制方面和/或实施方式包括下列Cl. 一种确定玻璃板微的方法,包括
提供一个玻璃板;
利用光束照射该玻璃板的内部部分,该光束包括选来引起该玻璃板的该内部部分发射荧光能量的波长;
确定该发荧光的内部部分的肯讀质心的位置。C2.根据C1的方法,其中该波长是UV波长。C3.根据C1或C2的方法,其中该光束是激光束。C4.根据C1到C3中任一个的方法,其中确定位置的步骤包括用一个斜虫的相机收^0f发射的荧光,并将所^l寸的荧光能量映像到传感器上。
C5.根据Cl到C4中任一个的方法,其中鄉玻璃板的步骤包括禾拥下拉工艺拉拔该玻璃板,而且其中该玻璃板是一个连续移动的玻璃带。
C6.根据Cl到C5中任一个的方法,进一步包擬ij用该光束照明第1面,该第1面相对于该光束的传播方向位于该玻璃板后面,而且其中该第二表面发荧光。
C7.根据Cl到C5中任一个的方法,进一步包括利用该光束照明第1面,该第1面相对于该光束的传播方向位于该玻璃板后面,而且其中该第二表面翻寸该光束,并且确定该散射光的质心。
C8.根据Cl到C7中任一个的方法,其中该玻璃板的温度等于或高于大约100 。C。
C9.根据Cl到C8中任一个的方法,其中该玻璃板包括分布于其旨厚度的锡。
C10.根据C1到C9中任一个的方法,其中照射多个内部部分,且确定多个能量质心的多个位置。
Cll.根据C10的方法,其中" 照射该多个内部部分。
C12.根据C10的方法,其中同时照射该多个内部部分。CB. —种确定玻璃板形状的方法,包括
a) 提供一个玻璃板;
b) 将光束射在该玻璃板的预定位置上,其中该光束包 5^引起该玻璃板的内部部分對寸荧光能量的波长;
c) 将该内部部分发射的荧光會遣成像;
e) 确定该发荧光的内部部分的能SM心的位置;
f) 对该玻璃板上的多个位置重复步骤到b)到e),以得到多个能量质心位置;以及
g) 从该多个能i^iMi置确定该玻璃板的形状。
C14.根据C13的方法,其中该光束是激光束。
C15.根据C13或C14的方法,其中该光束是UV光。
C16.根据C13到C15中任一个的方法,其中步骤a)包括利用下拉工艺拉拔该玻璃板,而且其中该玻璃板是一,续移动的波离带。
C17.根据C13到C16中任一个的方法,其中该自板的温度等于或高于大
约100 。C。
C18,根据C13到C17中任一个的方法,其中该玻璃板包括分布于其齡厚 度的锡。
C19. 一个确定玻璃板形状的系统,包括
激光器,配置劇各激光束以预定的角度沿着预定的发射向量发射在玻璃板 上,其中该激光束具有选定波长,其足够引起该激光束传播M的该玻璃板的
内部部分发荧光和對寸荧光肯遣,该发荧光的内部部^S括肖讀质心;
图像捕获装置,配置成接收该荧光能量且将该荧光能量映像到传感器上,
其中该传感器基于该传麟上的映像荧光能量的4體产生位置信号;以及 处理器,配置成执行下列步骤 从该图像捕获,接收该位置信号, 确定该图像捕获装置和该^4M心之间的接收向量;以及 基于该^l寸向量和该接收向量,确定该玻璃板的发荧光内部部分中的该能
量质心的位置。
C20.根据C19的系统,其中该图像捕获^g是单个的图像捕获装置。 C21.根据C19或C20的系统,其中引发该玻璃的多个内部部分发荧光。 C22.根据C21的系统,其中引发该多个内部部分同时发荧光。 C23. —种确定物品开沐的方法,包括 提供材料板;
利用光束照射该板的内部部分,该光束包括选来弓胞该板的该内部部分发 射荧光肖遣的波长;
确定该发荧光的内部部分的育遣质心的位置。
C24.根据C23的方法,进一步包矛辞,成像系统探测所鄉的荧光能量。 C25.根据C23或C24的方法,进一步包括照射多个内部部分,且确定多个 能量质心的位置。
C26.根据C23到C25中任一个的方法,其中板材料包括,材料。
权利要求
1.一种确定玻璃板形状的方法,包括提供玻璃板;利用光束照射该玻璃板的内部部分,该光束包括选择用来引起该玻璃板的内部部分发射荧光能量的波长;以及确定该发荧光的内部部分的能量质心的位置。
2. 根据权利要求1的方法,其特征在于,所述确定位置的步骤包括用^4虫 的相机收集所魏的荧光,并将所鍋的荧光能量映像到传麟上。
3. 根据权利要求1或2的方法,其特征在于,戶,樹共玻璃板的步骤包括 利用下拉工艺拉拔该鹏板,该玻璃板離续移动的玻璃带。
4. 根据权利要求1到3中任一项的方法,其特征在于,该方法进一步包括 利用光束照明第1面,该第1面位于该玻璃板后面,相对于该光束的传播 方向,并且该第二表面发荧光。
5. 根据权利要求1到3中任一项的方法,其特征在于,该方法进一步包括 利用该光束照明第二表面,该第二表面位于该玻璃板后面,相对于该光束的传 播方向,并且该第1面散射该光束,确定该散射的光的质心。
6. 根据前述任一权利要求的方法,其f寺征在于,该玻璃板包SM布其厚度 的锡。
7. 根据前述任一权利要求的方法,其特征在于,多个内部部分被照射,并 且多个會遣质心的多个位置被确定。
8. —个确定玻璃板,的系统,包括激光器,其构造劍每激光束以预定的角度沿着预定的皿向量對寸在玻璃 板上,其中,该激光束具有选定波长,该波长足以弓胞该激光束传播透过的玻璃板的内部部分发荧光并,荧光育遣,该发荧光的内部部^m括能量质心;图像捕获装置,其构造成接收该荧光能量并将该荧光能量映像到传感器 上,其中,该传繊基于该传感器上的映像的荧光育讀的位置产生位置信号; 以及处理器,构造成执行以下步骤 从该图像捕获装置接收位置信号,确定该图像捕获體和该能MM心之间的接收向量;以及 基于该^l寸向量和该接收向量,确定该玻璃板的发荧光的内部部分中的能 量质心的位置。
全文摘要
本发明涉及用于确定玻璃板的形状的系统和方法,公开了在形成过程中和/或之后确定玻璃板形状的系统和方法。在一个例子中,用于确定定义内部体积的玻璃板形状的系统可以包括一个光源、一个图像捕获装置和一个构造为计算在该玻璃板块体的选定部分中的能量质心位置的处理器。
文档编号C03B17/00GK101676232SQ20091020577
公开日2010年3月24日 申请日期2009年8月26日 优先权日2008年8月27日
发明者C·P·安, D·A·韦布, J·A·史密斯, J·P·特赖斯, P·J·威索罗斯基, P·R·勒布朗克 申请人:康宁股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1