一种低温致密化制备质子导体陶瓷的方法

文档序号:1981843阅读:270来源:国知局
专利名称:一种低温致密化制备质子导体陶瓷的方法
技术领域
本发明涉及一质子导体陶瓷的制备方法。
背景技术
具有钙钛矿及相关结构的复合氧化物质子导体是一类重要的功能导电陶瓷,在固体氧化物电解池、透氢膜以及加氢反应器等领域有广泛的应用前景。其中固体氧化物燃料电池(Solid Oxide Fuel Cell,S0FC)是一种在500°C 1000°C高温下运行,能够直接把燃料的化学能转变为电能的发电装置。其突出优点1、效率高,发电效率在50%,热电联供时总效率可达80% ;2、环境友好,运行时SO2和NOx排放极低。因此SOFC而被誉为21世纪的绿色电源,因此受到各国政府的大力发展。固体电解质材料是SOFC的核心部件,要求具有高的离子电导率和离子迁移数,在氧化和还原气氛下稳定,适当的热膨胀系数和足够的机械强度等。目前较为成熟的技术都基于氧离子导体电解质(S0FC-02-),如钇稳定氧化锆 (YSZ),掺杂氧化铈(Sm0.^8Ol9jGd0.!Ce0. A95)等。但它们分别存在中温下电导率不足,易被还原等缺点。高温质子导体为SOFC的低温化提供了一条新的途径。与S0FC-02_相比,质子导体电池(SOFC-H+)具有传导活化能低、电效率高以及H2O在阴极一侧生成,避免了对燃料的稀释等优点。目前高温质子导体的研究主要集中在钙钛矿型复合氧化物BaCeO3基、SrCeO3基、 BaZrO3基和SrZrO3基。在1981年,日本学者Iwahara H.首先发现Yb掺杂SrCeO3在H2 或水蒸气下具有质子导电性,其电导率在800°C时达到约O. OlS/cm。随后他们又发现稀土掺杂BaCeO3具有更高的质子电导率,BaCea8Gda2O3在燃料电池条件下的电导率高达O. IS/ cm(8000C ),是YSZ材料的两倍。但在高温含氧气氛下,掺杂BaCeO3会出现氧离子传导,使得质子迁移系数降低。Nowick等人发现Ba3Cahl8Nbh82CVs (BCN18)具有很高的电导率。锆酸盐也具有质子导电性但偏低,一般在l(T2S/cm l(T3S/cm级。致密化温度过高,通常在1500°C以上,这是目前陶瓷质子导体的实用化所面临的主要问题之一。这不利于薄膜化电池的制备,并使得SOFC-H+的研发速度要落后于 SOFC-O2'高于1500°C的烧结会导致Ba流失和晶粒异常长大,电导率下降。降低致密化温度可以通过减小陶瓷粉体粒径和加助烧剂来实现。通过湿化学方法制备可以克服传统固相法成相、烧结所需温度很高的缺点。使用溶胶-凝胶法可以在1000°C左右合成单相,致密化温度可以降低约100°C。加入助烧剂通过液相烧结则可以显著降低致密化温度。Babilo P.比较了不同过渡族氧化物的助烧行为,结果发现CiuNi和Zn的效果明显而V、Cr和Fe则不利于烧结(J. Am. Ceram. Soc. 2005,88 :2362)。Tao S.等人使用ZnO取得了很好的结果。 使用4mol% ZnO做助烧剂后,BaZra8YQ.1603_S和BaCe0.5Zr0.3Y0.1603_s分别相对密度高达96% 和97% (1325°C,10h),远高于未助烧样品的68% 70%。含ZnO的样品烧结过程被明显加速,其收缩量为未掺杂样品的近十倍。同时加入在少量Zn后样品的抗CO2能力也显著提高(Adv. Mater. 2006,18 :1581)。虽然关于质子导体烧结已取得很大进展,但是现有采用加入微米级的助烧剂降低烧结温度的方法存在助烧剂分布不均匀、元素偏析,且成本偏高的问题。

发明内容
本发明要解决现有采用加入微米级的助烧剂降低烧结温度的方法存在助烧剂分布不均匀、元素偏析,且成本高的问题,而提出一种低温致密化制备质子导体陶瓷的方法。一种低温致密化制备质子导体陶瓷的方法,具体是按以下步骤完成的一、依照结构通SMmCexZryRzCVs,按M元素、Ce元素、Zr元素与R元素按摩尔比为m : x : y : z的比例称取硝酸盐类原料,然后采用溶胶凝胶法合成,得到凝胶状合成产物,将凝胶状合成产物在150°C 250°C恒温烘烤8h 12h,得到黑色粉末,最后将黑色粉末在1000°C 1200°C 下将黑色粉末煅烧4h 8h,即得到MmCexZryRzCVs粉体;二、首先将MmCexZryRz03_s粉体进行浸溃处理,然后经过滤得到浸溃后MmCexZryRzCVs粉体;三、首先将浸溃后MmCexZryRz03_s粉体在100°C 400°C下加热处理IOmin 120min,得到热处理后的MmCexZryRz03_s粉体;四、 将热处理后的MniCexZryRzCVs粉体依次重复步骤二和步骤三操作,共重复操作I 10次,得到含金属氧化物助烧剂的MmCexZryRzCVs粉体;五、首先在压力为50MPa 300MPa下将步骤四得到含金属氧化物的MmCexZryRz03_s粉体进行成型处理,然后在900°C 1300°C下烧结 O. 5h 10h,即得到质子导体陶瓷;步骤一中所述的MmCexZryRz03_s中m为0. 9彡m彡I. 1, X 为0<x< I, y 为0<y< I, z 为0<ζ<0·5,且 x+y+z = I, δ 为氧非化学计量, O彡δ彡0.1,其中所述的M为Ba元素或Sr元素,其中所述的R为Y、La、Pr、Nd、Sm、Eu、 Gd、Tb、Er、Dy、Yb和Lu中的一种或两种。本发明的优点一、本发明的助烧剂以纳米级的溶液形式引入,避免了助烧剂分布不均匀的问题,提高分布均匀性,降低了元素偏析的可能性;二、本发明的浸溃液中含有添加剂,可以改变浸溃液与粉体颗粒的浸润角,提高助烧剂在粉体中得分布均匀性;三、本发明实现低温低烧结得到致密化的质子导体陶瓷,降低制备生产成本。


图I是试验一步骤一制备的BaZraiCea7Ya2CVs粉体的图。图2是含金属氧化物BaZraiCea7Ya2CVs粉体的粉末粒度分布曲线图,图2中的· 表示加入助烧剂ZnO后得到的含金属氧化物BaZraiCea7Ya2CVs粉体的粉末粒度分布曲线, 图2中的·表示试验一步骤四制备的含金属氧化物的BaZraiCea7Ya2CVs粉体的粉末粒度分布曲线。图3是含金属氧化物BaZraiCea7Ya2CVs粉体的烧结温度曲线图,图3中的■表示试验一步骤四制备含金属氧化物的BaZraiCea7Ya2CVs粉体的烧结温度曲线,图3中的〇表示未经过任何处理的BaZraiCea7Ya2CVs粉体的烧结温度曲线。图4是试验一制备质子导体陶瓷10000倍的SEM图。图5是电导率曲线图,图5中的 表示试验一制备质子导体陶瓷的电导率曲线,图 5中的■表示未经过任何处理的BaZraiCea7Ya2CVs粉体制备的质子导体陶瓷的电导率曲线。图6是质子导体陶瓷的相对密度柱形图,图6中a表示在1200°C下采用ZnO作为助烧剂制备质子导体陶瓷的相对密度柱形图,图6中b试验一制备质子导体陶瓷的相对密度柱形图,图6中c试验二制备质子导体陶瓷的相对密度柱形图,图6中d试验三制备质子导体陶瓷的相对密度柱形图,图6中e试验四制备质子导体陶瓷的相对密度柱形图,图6中 f试验五制备质子导体陶瓷的相对密度柱形图。图7是质子导体陶瓷的电导率曲线图,图7中▽表示试验一制备质子导体陶瓷的电导率曲线;图 中□表示试验二制备质子导体陶瓷的电导率曲线;图7中〇表示试验三制备质子导体陶瓷的电导率曲线;图7中Λ表示试验四制备质子导体陶瓷的电导率曲线; 图中 表示试验五制备质子导体陶瓷的电导率曲线。
具体实施例方式本发明技术方案不局限于以下所列具体实施方式
,还包括各具体实施方式
间的任
意组合。
具体实施方式
一本实施方式是一种低温致密化制备质子导体陶瓷的方法,具体是按以下步骤完成的—、依照结构通式MmCexZryRz03_s,按M元素、Ce元素、Zr元素与R元素按摩尔比为m : X : y : z的比例称取硝酸盐类原料,然后采用溶胶凝胶法合成,得到凝胶状合成产物,将凝胶状合成产物在150°C 250°C恒温烘烤8h 12h,得到黑色粉末,最后将黑色粉末在1000°C 1200°C下将黑色粉末煅烧4h 8h,即得到lCexZryRz03_s粉体;二、首先将 MfflCexZryRzO3^5粉体进行浸溃处理,然后经过滤得到浸溃后MmCexZryRz03_s粉体;三、首先将浸溃后MmCexZryRz03_s粉体在100°C 400°C下加热处理IOmin 120min,得到热处理后的 MmCexZryRzO3^5粉体;四、将热处理后的MmCexZryRz03_s粉体依次重复步骤二和步骤三操作,共重复操作I 10次,得到含金属氧化物的MniCexZryRzCVs粉体;五、首先在压力为50MPa 300MPa下将步骤四得到含金属氧化物的MmCexZryRzCVs粉体进行成型处理,然后在900°C 1300°C下烧结O. 5h 10h,即得到质子导体陶瓷。本实施方式步骤一中所述的MniCexZryRzCVs中m为0. 9彡m彡I. l,x为0<χ<1, y 为0<y<l,z 为0<ζ<0·5,且 x+y+z = I, δ 为氧非化学计量,O ^ δ < O. I,其中所述的M为Ba元素或Sr元素,其中所述的R为Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Er、Dy、Yb 和Lu中的一种或任意比的两种。本实施方式的助烧剂以纳米级的氧化物形式引入,避免了助烧剂分布不均匀的问题,提高分布均匀性,降低了元素偏析的可能性。本实施方式实现低温低烧结得到致密化的质子导体陶瓷,降低制备生产成本。
具体实施方式
二 本实施方式与具体实施方式
一的不同点是步骤一中所述的溶胶凝胶法具体是按以下步骤完成的首先将硝酸盐类原料加入到EDTA-氨水溶液中,然后加入朽1檬酸形成混合溶液,并在搅拌速度为80转/min 250转/min、70°C 90°C的恒温水浴条件下加热,至形成凝胶状为止,得到凝胶状合成产物;其中所述加入的EDTA-氨水溶液中EDTA摩尔与混合溶液中金属离子总摩尔的比为(I 2) I ;其中所述加入的柠檬酸与混合溶液中金属离子总摩尔的摩尔比为(I 2) I。其它与具体实施方式
一相同。
具体实施方式
三本实施方式与具体实施方式
一或二之一不同点是步骤二中所述的浸溃处理具体是按下述操作完成的^fMmCexZryRzCVs粉体完全浸入浸溃液中处理 Imin 30min。其它与具体实施方式
一或二相同。
具体实施方式
四本实施方式与具体实施方式
一至三之一不同点是步骤二中于步骤二中所述的浸溃液由溶质、溶剂和添加剂混合而成,其中所述的溶质与溶剂的质量比为(O. I 70) 100,其中所述的添加剂与溶剂的质量比为(O 10) 100。其它与具体
实施方式一至三相同。本实施方式的浸溃液中含有添加剂,可以改变浸溃液与粉体颗粒的浸润角,提高助烧剂在粉体中得分布均匀性。
具体实施方式
五本实施方式与具体实施方式
一至四之一不同点是步骤二中所述的溶质选自硝酸锌、硝酸镍、硝酸钴、硝酸铜、硝酸铁、氯化锌、氯化镍、氯化钴、氯化铜、氯化铁、醋酸锌、醋酸镍、醋酸钴、醋酸铜和醋酸铁。其它与具体实施方式
一至四相同。
具体实施方式
六本实施方式与具体实施方式
一至五之一不同点是步骤二中所述的溶剂为水、甲醇、乙醇、丙酮或水与乙醇的混合物。其它与具体实施方式
一至五相同。
具体实施方式
七本实施方式与具体实施方式
一至六之一不同点是步骤二中所述的添加剂选自尿素、柠檬酸、聚乙二醇、甘氨酸和乙二胺四乙酸。其它与具体实施方式
一至六相同。采用下述试验验证本发明效果试验一一种低温致密化制备质子导体陶瓷的方法,具体是按以下步骤完成的一、制备 BaZr0. fe。. 7Y0.203_ s 粉体:依照结构通式 BaZr0. fe。. 7Y0.203_ s,按 Ba 元素、 Ce元素、Zr元素与Y元素的摩尔比为I : O. 7 : O. I : O. 2的比例称取硝酸盐类原料,然后采用溶胶凝胶法合成,得到凝胶状合成产物,将凝胶状合成产物在200°C恒温烘烤10h, 得到黑色粉末,最后将黑色粉末在1100°C下将黑色粉末煅烧6h,即得到BaZraiCea7Ya2CVs 粉体;二、首先将BaZrtl. Kea 7Y0. A-S粉体进行浸溃处理,然后经过滤得到浸溃后 BaZraiCea7Ya2O"粉体;三、首先将浸溃后BaZraiCea7Ya2O"粉体在250°C下加热处理 60min,得到热处理后的BaZraiCea7Ya2CVs粉体;四、将热处理后的BaZraiCea7Ya2CVs粉体依次重复步骤二和步骤三操作,共重复操作5次,得到含金属氧化物的BaZraiCea7Ya2CVs 粉体;三、烧结首先在压力为200MPa下将步骤二得到含金属氧化物的BaZraiCea7Ya2CVs 粉体进行成型处理,然后在1200°C下烧结5h,得到质子导体陶瓷。本试验步骤一中所述的溶胶凝胶法具体是按以下步骤完成的首先将硝酸盐类原料加入到EDTA-氨水溶液中,然后加入柠檬酸形成混合溶液,并在搅拌速度为150转/min、 80°C的恒温水浴条件下加热,至形成凝胶状为止,得到凝胶状合成产物;其中所述加入的 EDTA-氨水溶液中EDTA摩尔与混合溶液中金属离子总摩尔的比为I : I ;其中所述加入的柠檬酸与混合溶液中金属离子总摩尔的摩尔比为I. 25 I。本试验步骤二中所述的浸溃处理具体是按下述操作完成的将BaZraiCea7Ya2CVs 粉体完全浸入浸溃液中处理15min ;本试验步骤二中于步骤二中所述的浸溃液由溶质和溶剂混合而成,其中所述的溶质与溶剂的质量比为5 100 ;本试验步骤二中所述的溶质为硝酸锌;本试验步骤二中所述的溶剂为水。采用X射线衍射仪检测本试验步骤一制备的BaZra Aa7Ya2CVs粉体,XRD图谱如图I所示,通过图I可知清楚的看出本试验步骤一制备的BaZra Aea7Ya203_s粉体形成了纯相钙钛矿结构。采用激光粒径分布仪检测现有加入助烧剂ZnO后得到的含金属氧化物BaZraiCea7Ya2CVs粉体和本试验步骤四制备的含金属氧化物的BaZraiCea7Ya2CVs粉体,得到粉末粒度分布曲线图,如图2所示,图2中的籲表示通过传统直接加入助烧剂ZnO后得到的含金属氧化物BaZraiCea7Ya2CVs粉体的粉末粒度分布曲线,图2中的■表示本试验步骤四制备的含金属氧化物的BaZra !Ce0.7Υ0.203_δ粉体的粉末粒度分布曲线,通过对比可知本试验步骤四制备的含金属氧化物的BaZra !Ce0.7Υ0.203_ δ粉体的粉末的粒径分布曲线向左移动, 起始点约40nm,因此证明所引入的ZnO颗粒比直接固相加入的小。采用高温热膨胀仪检测未经过任何处理的BaZraiCea7Ya2CVs粉体和本试验步骤四制备含金属氧化物的BaZraiCetl 7Yci 2CVs粉体的烧结温度,检测结果如图3所示,图3中的 ■表示本试验步骤四制备含金属氧化物的BaZraiCea7Ya2CVs粉体的烧结温度曲线,图3中的〇表示未经过任何处理的BaZraiCea7Ya2CVs粉体的烧结温度曲线,通过对比可知本试验步骤四制备含金属氧化物的BaZraiCea7Ya2CVs粉体在900°C就开始烧结收缩,而未经过任何处理的BaZraiCea7Ya2CVs粉体在1300°C附近才开始烧结收缩。采用扫描电镜观察本试验制备的质子导体陶瓷,放大10000倍的SM图如图4所示所示,通过图4可以看出本试验制备的质子导体陶瓷的烧结致密,仅有少量的闭合气孔存在。在H2气氛下采用电化学阻抗谱技术检测未经过任何处理的BaZraiCea7Ya2CVs 粉体制备的质子导体陶瓷和本试验制备的质子导体陶瓷,检测结果如图5所示,图5中的·表示本试验制备的质子导体陶瓷的电导率曲线,图5中的■表示未经过任何处理的 BaZra Aea7Ya203_s粉体制备的质子导体陶瓷的电导率曲线;通过对比可知本试验制备的质子导体陶瓷的电导率的导电性能更高。试验二 一种低温致密化制备质子导体陶瓷的方法,具体是按以下步骤完成的一、制备 BaZra fe。. 7Y0.203_ s 粉体依照结构通式 BaZra fe。. 7Y0.203_ s,按 Ba 元素、 Ce元素、Zr元素与Y元素的摩尔比为I : O. 7 : O. I : O. 2的比例称取硝酸盐类原料,然后采用溶胶凝胶法合成,得到凝胶状合成产物,将凝胶状合成产物在200°C恒温烘烤10h, 得到黑色粉末,最后将黑色粉末在1100°C下将黑色粉末煅烧6h,即得到BaZraiCea7Ya2CVs 粉体;二、首先将BaZrtl. Kea 7Y0. A-S粉体进行浸溃处理,然后经过滤得到浸溃后 BaZraiCea7Ya2O"粉体;三、首先将浸溃后BaZraiCea7Ya2O"粉体在250°C下加热处理 60min,得到热处理后的BaZraiCea7Ya2CVs粉体;四、将热处理后的BaZraiCea7Ya2CVs粉体依次重复步骤二和步骤三操作,共重复操作5次,得到含金属氧化物的BaZraiCea7Ya2CVs 粉体;三、烧结首先在压力为200MPa下将步骤二得到含金属氧化物的BaZraiCea7Ya2CVs 粉体进行成型处理,然后在1200°C下烧结5h,得到质子导体陶瓷。本试验步骤一中所述的溶胶凝胶法具体是按以下步骤完成的首先将硝酸盐类原料加入到EDTA-氨水溶液中,然后加入柠檬酸形成混合溶液,并在搅拌速度为150转/min、 80°C的恒温水浴条件下加热,至形成凝胶状为止,得到凝胶状合成产物;其中所述加入的 EDTA-氨水溶液中EDTA摩尔与混合溶液中金属离子总摩尔的比为I : I ;其中所述加入的柠檬酸与混合溶液中金属离子总摩尔的摩尔比为I. 25 I。本试验步骤二中所述的浸溃处理具体是按下述操作完成的将BaZraiCea7Ya2CVs 粉体完全浸入浸溃液中处理15min ;本试验步骤二中所述的浸溃液由溶质、溶剂和添加剂混合而成,其中所述的溶质与溶剂的质量比为5 100,其中所述的添加剂与溶剂的质量比为3 : 100 ;本试验步骤二中所述的溶质为硝酸锌;本试验步骤二中所述的溶剂为水;本试验步骤二中所述的添加剂为尿素。试验三一种低温致密化制备质子导体陶瓷的方法,具体是按以下步骤完成的一、制备 BaZra fe。. 7Y0.203_ s 粉体依照结构通式 BaZra fe。. 7Y0.203_ s,按 Ba 元素、 Ce元素、Zr元素与Y元素的摩尔比为I : O. 7 : O. I : O. 2的比例称取硝酸盐类原料,然后采用溶胶凝胶法合成,得到凝胶状合成产物,将凝胶状合成产物在200°C恒温烘烤10h, 得到黑色粉末,最后将黑色粉末在1100°C下将黑色粉末煅烧6h,即得到BaZraiCea7Ya2CVs 粉体;二、首先将BaZrtl. Kea 7Y0. A-S粉体进行浸溃处理,然后经过滤得到浸溃后 BaZraiCea7Ya2O"粉体;三、首先将浸溃后BaZraiCea7Ya2O"粉体在250°C下加热处理 60min,得到热处理后的BaZraiCea7Ya2CVs粉体;四、将热处理后的BaZraiCea7Ya2CVs粉体依次重复步骤二和步骤三操作,共重复操作5次,得到含金属氧化物的BaZraiCea7Ya2CVs 粉体;三、烧结首先在压力为200MPa下将步骤二得到含金属氧化物的BaZraiCea7Ya2CVs 粉体进行成型处理,然后在1200°C下烧结5h,得到质子导体陶瓷。本试验步骤一中所述的溶胶凝胶法具体是按以下步骤完成的首先将硝酸盐类原料加入到EDTA-氨水溶液中,然后加入柠檬酸形成混合溶液,并在搅拌速度为150转/min、 80°C的恒温水浴条件下加热,至形成凝胶状为止,得到凝胶状合成产物;其中所述加入的 EDTA-氨水溶液中EDTA摩尔与混合溶液中金属离子总摩尔的比为I : I ;其中所述加入的柠檬酸与混合溶液中金属离子总摩尔的摩尔比为I. 25 I。本试验步骤二中所述的浸溃处理具体是按下述操作完成的将BaZraiCea7Ya2CVs 粉体完全浸入浸溃液中处理15min ;本试验步骤二中所述的浸溃液由溶质、溶剂和添加剂混合而成,其中所述的溶质与溶剂的质量比为5 100,其中所述的添加剂与溶剂的质量比为3 100;本试验步骤二中所述的溶质为硝酸锌;本试验步骤二中所述的溶剂为乙醇;本试验步骤二中所述的添加剂为尿素。试验四一种低温致密化制备质子导体陶瓷的方法,具体是按以下步骤完成的一、制备 BaZr0. fe。. 7Y0.203_ s 粉体:依照结构通式 BaZr0. fe。. 7Y0.203_ s,按 Ba 元素、 Ce元素、Zr元素与Y元素的摩尔比为I : O. 7 : O. I : O. 2的比例称取硝酸盐类原料,然后采用溶胶凝胶法合成,得到凝胶状合成产物,将凝胶状合成产物在200°C恒温烘烤10h, 得到黑色粉末,最后将黑色粉末在1100°C下将黑色粉末煅烧6h,即得到BaZraiCea7Ya2CVs 粉体;二、首先将BaZrtl. Kea 7Y0. A-S粉体进行浸溃处理,然后经过滤得到浸溃后 BaZraiCea7Ya2O"粉体;三、首先将浸溃后BaZraiCea7Ya2O"粉体在250°C下加热处理 60min,得到热处理后的BaZraiCea7Ya2CVs粉体;四、将热处理后的BaZraiCea7Ya2CVs粉体依次重复步骤二和步骤三操作,共重复操作5次,得到含金属氧化物的BaZraiCea7Ya2CVs 粉体;三、烧结首先在压力为200MPa下将步骤二得到含金属氧化物的BaZraiCea7Ya2CVs 粉体进行成型处理,然后在1200°C下烧结5h,得到质子导体陶瓷。本试验步骤一中所述的溶胶凝胶法具体是按以下步骤完成的首先将硝酸盐类原料加入到EDTA-氨水溶液中,然后加入柠檬酸形成混合溶液,并在搅拌速度为150转/min、 80°C的恒温水浴条件下加热,至形成凝胶状为止,得到凝胶状合成产物;其中所述加入的 EDTA-氨水溶液中EDTA摩尔与混合溶液中金属离子总摩尔的比为I : I ;其中所述加入的柠檬酸与混合溶液中金属离子总摩尔的摩尔比为I. 25 I。
本试验步骤二中所述的浸溃处理具体是按下述操作完成的将BaZraiCea7Ya2CVs 粉体完全浸入浸溃液中处理15min ;本试验步骤二中所述的浸溃液由溶质和溶剂混合而成,其中所述的溶质与溶剂的质量比为5 100 ;本试验步骤二中所述的溶质为硝酸锌;本试验步骤二中所述的溶剂为丙酮。试验五一种低温致密化制备质子导体陶瓷的方法,具体是按以下步骤完成的一、制备BaZraiCe0H粉体依照结构通式BaZraiCea7Y0U Ba元素、 Ce元素、Zr元素与Y元素的摩尔比为I : O. 7 : O. I : O. 2的比例称取硝酸盐类原料,然后采用溶胶凝胶法合成,得到凝胶状合成产物,将凝胶状合成产物在200°C恒温烘烤10h, 得到黑色粉末,最后将黑色粉末在1100°C下将黑色粉末煅烧6h,即得到BaZraiCea7Ya2CVs 粉体;二、首先将BaZrtl. Kea 7Y0. A-S粉体进行浸溃处理,然后经过滤得到浸溃后 BaZraiCea7Ya2O"粉体;三、首先将浸溃后BaZraiCea7Ya2O"粉体在250°C下加热处理 60min,得到热处理后的BaZraiCea7Ya2CVs粉体;四、将热处理后的BaZraiCea7Ya2CVs粉体依次重复步骤二和步骤三操作,共重复操作5次,得到含金属氧化物的BaZraiCea7Ya2CVs 粉体;三、烧结首先在压力为200MPa下将步骤二得到含金属氧化物的BaZraiCea7Ya2CVs 粉体进行成型处理,然后在1200°C下烧结5h,得到质子导体陶瓷。本试验步骤一中所述的溶胶凝胶法具体是按以下步骤完成的首先将硝酸盐类原料加入到EDTA-氨水溶液中,然后加入柠檬酸形成混合溶液,并在搅拌速度为150转/min、 80°C的恒温水浴条件下加热,至形成凝胶状为止,得到凝胶状合成产物;其中所述加入的 EDTA-氨水溶液中EDTA摩尔与混合溶液中金属离子总摩尔的比为I : I ;其中所述加入的柠檬酸与混合溶液中金属离子总摩尔的摩尔比为I. 25 I。本试验步骤二中所述的浸溃处理具体是按下述操作完成的将BaZraiCea7Ya2CVs 粉体完全浸入浸溃液中处理15min ;本试验步骤二中所述的浸溃液由溶质和溶剂混合而成,其中所述的溶质与溶剂的质量比为5 100 ;本试验步骤二中所述的溶质为硝酸锌;本试验步骤二中所述的溶剂为乙醇。采用阿基米德法检测在1200°C下采用ZnO作为助烧剂制备质子导体陶瓷、试验一至五制备质子导体陶瓷的相对密度,结果图6所示,通过图6可知试验一制备的质子导体陶瓷的相对密度为88. 2%;可知试验二制备的质子导体陶瓷的相对密度为89. 4%,;可知试验三制备质子导体陶瓷的相对密度为90. 4% ;可知试验四制备的I质子导体陶瓷的相对密度为91. 7% ;可知试验五制备的质子导体陶瓷的相对密度为91. 9% ;且通过图6可知在烧结时间和温度相同的条件下,本发明提供的方法制备的质子导体陶瓷的相对密度比现有采用ZnO作为助烧剂制备的质子导体陶瓷的相对密度大。采用交流阻抗谱技术检测试验一至五制备质子导体陶瓷的导电率,结果如图7所示,通过图7可知在温度为750°C下试验一质子导体陶瓷的导电率为0.0182S/cm,二质子导体陶瓷的导电率为O. 0212S/cm,试验三质子导体陶瓷的导电率为O. 0213S/cm,试验四质子导体陶瓷的导电率为O. 0216S/cm,试验五质子导体陶瓷的导电率为O. 0222S/cm ;因此可知试验一至五制备的质子导体陶瓷电导率高,作为器件在应用时电阻小,因此性能高。
权利要求
1.一种低温致密化制备质子导体陶瓷的方法,其特征在于低温致密化制备质子导体陶瓷的方法是按以下步骤完成的一、依照结构通式MmCexZryRz03_s,按M元素、Ce元素、Zr元素与R元素按摩尔比为 m X y z的比例称取硝酸盐类原料,然后采用溶胶凝胶法合成,得到凝胶状合成产物,将凝胶状合成产物在150°C 250°C恒温烘烤8h 12h,得到黑色粉末,最后将黑色粉末在1000°C 1200°C下将黑色粉末煅烧4h 8h,即得到MmCexZryRz03_s粉体;二、首先将 MfflCexZryRzO3^5粉体进行浸溃处理,然后经过滤得到浸溃后MmCexZryRz03_s粉体;三、首先将浸溃后MmCexZryRz03_s粉体在100°C 400°C下加热处理IOmin 120min,得到热处理后的 MmCexZryRzO3^5粉体;四、将热处理后的MmCexZryRz03_s粉体依次重复步骤二和步骤三操作, 共重复操作I 10次,得到含金属氧化物助烧剂的MmCexZryRz03_s粉体;五、首先在压力为 50MPa 300MPa下将步骤四得到含金属氧化物的MmCexZryRz03_s粉体进行成型处理,然后在 900°C 1300°C下烧结O. 5h 10h,即得到质子导体陶瓷;步骤一中所述的MmCexZryRz03_s 中 m为1.1,X 为0<x< l,y 为0<y< l,z 为0<ζ<0·5,且 x+y+z = 1,δ为氧非化学计量,O彡δ彡O. I,其中所述的M为Ba元素或Sr元素,其中所述的R为 Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Er、Dy、Yb 和 Lu 中的一种或两种。
2.根据权利要求I所述的一种低温致密化制备质子导体陶瓷的方法,其特征在于步骤一中所述的溶胶凝胶法具体是按以下步骤完成的首先将硝酸盐类原料加入到EDTA-氨水溶液中,然后加入朽1檬酸形成混合溶液,并在搅拌速度为80转/min 250转/min、70°C 90°C的恒温水浴条件下加热,至形成凝胶状为止,得到凝胶状合成产物;其中所述加入的 EDTA-氨水溶液中EDTA摩尔与混合溶液中金属离子总摩尔的比为(I 2) I ;其中所述加入的柠檬酸与混合溶液中金属离子总摩尔的摩尔比为(I 2) I。
3.根据权利要求2所述的一种低温致密化制备质子导体陶瓷的方法,其特征在于步骤二中所述的浸溃处理具体是按下述操作完成的JfMmCexZryRzCVs粉体完全浸入浸溃液中处理 Imin 30min。
4.根据权利要求3所述的一种低温致密化制备质子导体陶瓷的方法,其特征在于步骤二中所述的浸溃液由溶质、溶剂和添加剂混合而成,其中所述的溶质与溶剂的质量比为 (O. I 70) 100,其中所述的添加剂与溶剂的质量比为(O 10) 100。
5.根据权利要求4所述的一种低温致密化制备质子导体陶瓷的方法,其特征在于步骤二中所述的溶质选自硝酸锌、硝酸镍、硝酸钴、硝酸铜、硝酸铁、氯化锌、氯化镍、氯化钴、氯化铜、氯化铁、醋酸锌、醋酸镍、醋酸钴、醋酸铜和醋酸铁。
6.根据权利要求5所述的一种低温致密化制备质子导体陶瓷的方法,其特征在于步骤二中所述的溶剂为水、甲醇、乙醇、丙酮或水与乙醇的混合物。
7.根据权利要求6所述的一种低温致密化制备质子导体陶瓷的方法,其特征在于步骤二中所述的添加剂选自尿素、柠檬酸、聚乙二醇、甘氨酸和乙二胺四乙酸。
全文摘要
一种低温致密化制备质子导体陶瓷的方法,它涉及一质子导体陶瓷的制备方法。本发明要解决现有采用加入微米级的助烧剂降低烧结温度的方法存在助烧剂分布不均匀、元素偏析,且成本高的问题。方法首先制备MmCexZryRzO3-δ粉体,然后依次经过浸渍处理和加热处理得到含金属氧化物助烧剂的MmCexZryRzO3-δ粉体,最后经烧结得到质子导体陶瓷。优点一、提高分布均匀性,降低了元素偏析的可能性;二、浸渍液中含有添加剂,提高助烧剂在粉体中得分布均匀性;三、降低烧结温度和制备生产成本。本发明主要用于制备质子导体陶瓷。
文档编号C04B35/622GK102584222SQ20121001276
公开日2012年7月18日 申请日期2012年1月16日 优先权日2012年1月16日
发明者关波, 吕喆, 张耀辉, 徐玲玲, 苏文辉, 魏波, 黄喜强 申请人:哈尔滨工业大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1