光信息记录介质的制作方法

文档序号:1826335阅读:200来源:国知局

专利名称::光信息记录介质的制作方法
技术领域
:本发明涉及光信息记录介质,尤其是,本发明涉及这样一光信息记录介质,它能够以高记录密度记录或读出,在重复记录和再现操作中具有高可靠性。通常,光盘(CD),激光盘(LD),等等广泛地用作光信息记录介质。近来,具有CD七倍记录密度的DVD已达到实用的地步。除了作为只读ROM(DVD-ROM)以外,DVD已研制成作为一种可擦除的记录再现介质,其中信息直接地写在衬底上。此外,DVD实际用作计算机的RAM正在研究中。借助DVD能够用激光获得高密度记录,此激光波长,如650nm,比CD所用的激光波长(波长约为780nm)要短。然而,为了处理大量的信息,如计算机制图等等,就需要获得更高的记录密度,例如为普通高密度记录的一倍半至两倍。为了获得上述的记录密度,比以往有更短波长(波长为520nm至410nm)的绿至蓝色半导体激光器正在研制中。实现较高记录密度的另一种技术,可以指出的是超分辨率膜。超分辨率膜是一个形成在记录介质较低平面处的薄膜,通过减小穿过薄膜的入射光光斑大小,能够获得高记录密度。超分辨率效应的机理之一是吸收饱和现象,这是利用超分辨率膜这样一种非线性光特性的现象,此薄膜允许比其吸收饱和量有较高强度的光通过薄膜,而吸收比其吸收饱和量有较低强度的光。在读出和写入过程中所用激光束的空间强度具有高斯分布。所以,当激光束穿过超分辨率膜时,高斯分布中较低端部分的激光强度低,它被薄膜吸收,高斯分布中间部分的激光强度高,它穿过薄膜,因而,激光束穿过超分辨率膜后,其光束直径可以减小。在JP-A-8-96412(1996)中披露的酞菁属有机薄膜,硫属化物,复合半导体微粒、等等,是当前熟知的上述超分辨率膜。另外,先前使用过的某些有机材料,如在JP-A-6-162564(1994)中披露的热色材料,以及在JP-A-6-267078(1994)中披露出的光色材料,是熟知的超分辨率膜。然而,上述各种材料在可靠性和生产率上存在问题,即,有机薄膜在重复记录和再现操作之后,涉及到薄膜的逐渐退化,因为激光束的能量密度在记录和再现操作时局部增高甚多。所以,在苛刻的使用条件下,很难获得记录和再现操作的足够保证周期,其中记录和再现操作是频繁地进行的,例如用作计算机的RAM等。硫属化物在化学性能上是不稳定的,不能获得长的保证周期,复合半导体微粒在生产过程中有困难。本发明的诸多目的之一是提供有超分辨率膜的光记录介质,它能保证重复记录和再现有足够长的时间,具有很高的生产率和高分辨率效应。解决以上问题的本发明中第一方案是含衬底的光信息记录介质,在此衬底上形成记录信息的记录层;和形成在衬底上的玻璃薄膜,此玻璃薄膜具有这样的特性,照射到玻璃上的光强度分布和穿过玻璃的透射光强度分布按非线性方式改变。衬底最好是透光的,例如,如玻璃及类似的无机材料,如聚碳酸酯,聚对苯二甲酸乙酯,等等的有机材料,是令人满意的。此处,玻璃是指无定形的固态氧化物,以及含上述氧化物作为主要成分的一般无定形材料。在衬底上形成的意思是,直接在衬底表面上形成,和经过另一层,如保护层,间接地在衬底表面上形成。按照以上的组成,可以提供这样的信息记录盘,它具有大容量,以及在重复读出和写入之后退化较少。在第一方案中,记录层能够是凹坑图案记录信息,凹坑图案表示这样一种器件,它是依靠衬底表面上记录的凹坑布置记录信息。按照这个记录方法,记录的信息不能被重写。然而,一旦制成衬底记录信息的母模,就可以很容易地制造大量相同的衬底,所以,这个记录方法用于记录电影,音乐,和计算机程序。第一方案的记录层也可以是一个用光能记录信息的器件,用光能记录信息的器件表示利用所谓相变的有机材料或无机材料作为记录层的信息记录衬底,这些材料的晶体结构随光照而变化。本发明中第二方案是这样一种光信息记录介质,它包括至少一个衬底;记录层,记录在衬底上形成的信息;和反射膜,反射在记录层上形成的光;其中衬底是由玻璃制成,玻璃的光透射率随照射光强度的增大而按非线性方式增大。按照以上的组成,可以提供这样的反射型信息记录盘,它具有大容量,以及在重复读出的写入之后退化较少。第二方案是这样一种类型的信息记录衬底,它是用记录薄膜较低部分处的反射膜反射入射光,用反射光读出信息。第一方案或第二方案中的玻璃最好包含至少一种选自过渡金属元素或稀土金属元素的元素。对于上述过渡金属元素和稀土金属元素,具体地是,选自Ti,V,Cr,Mn,Fe,Co,Ni,Nd,Ce,Pr,Sm,Eu,Tb,Ho,Er和Tm中至少一种元素是理想的。若过渡金属元素,或稀土金属元素制成玻璃薄膜,所含该金属元素作为氧化物与玻璃总重量之比最好是在从重量百分比20%到重量百分比90%的范围内。若金属元素制成玻璃衬底,所含该金属元素作为氧化物与玻璃总重量之比最好是在从重量百分比0.1%到重量百分比29%的范围内。在第一方案中,玻璃最好含有以下化合物的氧化物SiO2重量百分比6-80%,R2O重量百分比0-20%(R=碱金属元素),B2O3重量百分比0-30%,CoO重量百分比20-90%。在第二方案中,玻璃最好含有氧化钴CoO,其重量百分比在0.1-29%范围。本发明中第三方案是这样一种信息记录介质,它包括至少一个衬底,在衬底上形成记录信息的记录层;和在衬底上形成的超分辨率层,其光透射率随照射光强度的增大而按非线性方式增大,其中信息记录介质在重复记录104次之后,其输出保持率至少为90%。输出保持率表示这样一个值,在光照射完成第一次记录之后,在第一次信息再现时取电信号强度为100%,在重复记录和再现104次之后,有多少电信号强度能保持下来。若重复光照之后超分辨率膜退化,到达记录层的激光射线光斑大小被扩大,所以,电输出就下降。这表示,能够使初始输出保持率保持尽可能长的超分辨率膜是合乎要求的。此外,按照本发明中第四方案,提供了一种信息记录介质,它包括透明衬底和形成在衬底上记录信息的记录层,其中在频率为8MHz的记录信号中,输出下降小于1kHz处输出的-30dB,重复记录104次之后的输出保持率至少为90%。图8是一曲线图,表示在有和没有本发明超分辨率膜情况下,记录频率与信息记录介质上输出之间关系。有超分辨率膜的介质能够记录较高频率分量的信号,因为到达记录层的激光射线光斑大小是缩小的。上述组成指明一个指数,表示能够记录多高频率分量。按照本发明中第五方案,分别提供了一种作为等价氧化物的玻璃,它包括SiO2重量百分比6-80%,R2O重量百分比0-20%(R=碱金属元素),B2O3重量百分比0-30%,CoO重量百分比20-90%。上述玻璃不仅可以固定在光盘上,而且也可以固定在有超分辨率效应薄膜的各种介质上。例如,用激光射线照射一个显示设备的待激活荧光体能产生光,把本发明的玻璃膜固定在荧光体的表面上,此显示设备能够实现高分辨率显示,因为激光射线的光斑大小能够被聚合。按照本发明中第六方案,提供了一种含氧化钴的玻璃薄膜,其等价的CoO重量百分比在20-90%范围内。在玻璃薄膜情况下,CoO的含量受到一个上限约束,因为,若CoO添加过量,CoO被析出,造成玻璃失透现象。当结合附图阅读以下的详细描述时,本发明的上述及其他目的和新颖特征会在以下详细描述中充分展示出来。然而,要特别地说明,这些附图仅仅是为了详细描述的目的,而不是打算作为本发明限制的界限。图1是本发明制造的RAM盘剖面示意图,图2是本发明制造的模拟样品剖面示意图,图3是曲线图,表示本发明制造的玻璃薄膜透射率与波长之间关系,图4是本发明制造的玻璃薄膜Co的XPS,图5是曲线图,表示650nm光的透射率与CoO含量之间关系,图6是在有靶组成的玻璃衬底上形成玻璃薄膜的SIMS,图7是本发明制造的ROM盘剖面示意图,图8是曲线图,表示从图7所示ROM盘得到的输出与读出频率之间关系,图9是曲线图,表示从图1所示RAM盘得到的输出变化与记号波长之间关系,图10是曲线图,表示从图1所示RAM盘得到的输出与重复操作次数之间关系,图11是曲线图,表示从图1所示RAM盘得到的读出中输出变化与CoO含量之间关系,图12是本发明制造的RAM盘剖面示意图,图13是本发明制造的ROM盘剖面示意图,图14是曲线图,表示本发明有玻璃膜时和无玻璃膜时激光束直径的变化,图15是流程图,表示使用本发明光盘的设备组成。第一个实施例以下利用优选的几个实施例对本发明的细节给以说明。本发明中研制的玻璃靶组成表示在表1中。表1</tables>在表1中,制成的薄膜从透明度,均匀性等等考虑是均匀时,薄膜质量一列中用○填写,制成的薄膜是非均匀时,薄膜质量一列中用×填写。在此实施例中,碱石灰属玻璃用作母玻璃,在650nm邻近具有很大吸收的氧化钴用作过渡金属。利用Co3O4和CoO作为氧化钴的原材料。序号1至7的靶是由钠钙玻璃和Co3O4组成。其中,序号1至3是玻璃块靶,因为它们是玻璃化的。序号4至7是非玻璃化的,因为Co3O4含量太多不能玻璃化。所以,用玻璃粉末和Co3O4混合物的烧结体制备成烧结靶。序号8是只用Co3O4制成烧结靶的比较实例。在序号9至13中,CoO用作氧化钴的原材料。在这些实例中,序号9是玻璃靶,因为序号9的钴含量为重量百分比28.6%,它是玻璃化的,因为序号10至12是非玻璃化的,采用母玻璃原材料和CoO的烧结靶。序号13是只用CoO制成烧结靶的比较实例。制成玻璃块靶的步骤为称重指定量的原材料粉末,把原材料粉末放入铂制成的坩埚,在电炉中加热坩埚到1500℃左右以熔化原材料,把熔化的玻璃倒入预热到约400℃的石墨模具,在原材料完全熔化之后迅速冷却,重新加热到约600℃后再逐渐冷却完成应力释放,抛光制成的玻璃块背侧。制成烧结靶的步骤为使指定量的原材料粉末成为粒状,把此粉末在模子中加工成预制件,脱蜡之后在指定的温度下热压预制件。当钴原材料为Co3O4时,热处理温度为900℃,当钴原材料为CoO时,热处理温度为1200℃。第一步评价盘的形状,在初步试验中制备如图2所示薄膜形状的玻璃样品,确定玻璃薄膜的基本材料特性。在图2中,数字标记1表示衬底,2是玻璃薄膜。在此研究中,钠钙玻璃为0.55mm厚和30mm见方,用作衬底1。利用薄膜X射线衍射方法测定制成薄膜的结构。于是发现,所有制成的薄膜都是无定形的,与靶是玻璃或烧结体无关,所以制成那种玻璃薄膜。图3表示玻璃薄膜透射率与波长之间关系,此玻璃薄膜是用表1所示的靶制成。利用单色光测量透射率,单色光是利用单色仪对来自光源的白光处理后得到的,根据序号1,表示吸收的尖峰在300nm附近几乎观察不到。因为Co3O4的含量太少。根据序号2至序号4,在500nm至700nm区域,可以观察到由Co引起的吸收尖峰,虽然此尖峰很小。序号3玻璃在波长650nm处的透射率约为85%。序号5和6薄膜的透射率非常低。然而,透射率随波长的减小而下降,说明透射率的下降是由散射造成的。序号7玻璃和序号8Co3O4有很低的透射率。然而,这两个序号玻璃是在溅射气氛下还原的,得到具有金属光泽的薄膜,所以,透射率的下降是反射所致。另一方面,根据序号9至序号11玻璃,这些玻璃的原材料是CoO,在500nm至700nm区域附近观察到由Co引起的吸收尖峰。透射率随Co含量的增多而下降。含80%Co的序号11薄膜在波长650nm处透射率约为5%。含91.9%CoO的序号12玻璃和100%CoO的序号13薄膜显示出与序号8有相同的结果。为了研究图3中透射率曲线的光谱差别,利用XPS分析Co的价键和氧化物状态。序号3和5薄膜中Co的XPS谱表示在图4。在序号3薄膜的光谱中,在786ev附近存在一个称之为抖动峰的尖峰。这表明存在大量的Co2+。与此相反,在序号5薄膜的光谱中观察不到抖动峰。这表示与Co3+共存的Co3O4氧化物状态。因而,出现散射现象,得到图3所示的曲线形状。对其他薄膜也做了同样的研究,我们发现,若钴存在于Co2+状态,光谱出现Co的典型吸收峰,例如序号2,3,10和11若存在Co3+,光谱变成带有散射体的曲线,例如序号5和序号6。图5表示基于序号2,3,10,11薄膜透射率曲线的波长为650nm处透射率与靶中Co离子含量之间关系曲线。透射率随CoO含量的增多而下降,当CoO含量为60%时,透射率变为约30%。接着,为了测算制备的玻璃薄膜中Co的含量,利用二次离子质谱仪(SIMS)完成薄膜的组成分析。从与靶有相同成分的玻璃上切下一片用作衬底,有相同成分的薄膜溅射到此衬底上。分析的进行是从薄膜形成方向到深度方向,所以,能够连续地测算薄膜和衬底的成分。在此实施例中,采用序号3作为靶成分的研究。分析结果表示在图6中,我们发现,薄膜中Co含量多于衬底中Co含量。薄膜中Si含量少于衬底中Si含量。然而,它们的变化量很小,不能期望其成分有大的偏差。所以,薄膜成分可以近似地认为与靶成分相同。根据以上研究,玻璃薄膜中钴氧化物的含量理想的是,CoO氧化物的范围从重量百分比4.5%至重量百分比85%,Co3O4氧化物的范围从重量百分比4.9%至重量百分比91%。若CoO少于重量百分比4.5%,很难获得足够的光吸收。若CoO超过重量百分比85%,该薄膜具有金属光泽,透射率就下降。第二个实施例接着,通过制造ROM盘测算超分辨率效应,在此ROM盘上形成本发明的玻璃膜。图15画出用于本发明中光记录设备组成的流程图。利用有以上组成的光记录设备,测算本发明ROM盘的性能。其他实施例中也使用相同一个设备。图17表示制成的ROM盘剖面示意图。在图7中,数字标记1是聚碳酸酯衬底,2是玻璃薄膜,5是SiO2保护膜,4是Al反射器,6是由信息写成的凹坑。制造ROM盘包括以下步骤。首先,利用激光把含信息的凹坑图案形成在光刻胶上。此凹坑图案复制到Ni模具上,把模塑聚碳酸酯注入Ni模具。利用溅射方法在衬底上形成160nm厚玻璃膜,之后,在玻璃膜上形成140nm厚SiO2保护膜,再形成100nm厚铝反射膜。制成无玻璃膜的ROM盘作为一个比较实例。利用光谱分析仪分析制成的ROM盘再现输出强度与频率之间关系,此结果表示在图8中。再现激光功率为4mW。它显示这样的情况,在较高频率分量以下,带有序号11玻璃薄膜比无玻璃薄膜的ROM盘有较高输出电平。由于信号的高频分量是用更精细的凹坑图案写在ROM盘上的,以上结果表明,在有玻璃膜的情况下,通过读出更精细的凹坑图案再现输出。所以,我们发现,在有玻璃膜时,获得超分辨率效应。对表1中其他玻璃薄膜也进行与上述同样的研究,在序号3至6和序号9至11的玻璃薄膜上也证实了相同的超分辨率效应。接着,制造RAM盘,评价其特性,此RAM盘的上述玻璃薄膜形成在衬底上。图1表示按照本发明制成的RAM剖面示意图。在图1中,数字标记1是聚碳酸酯衬底,2是玻璃超分辨率膜,3是记录薄膜,4是反射膜,5,5’是保护膜。按照本发明,厚为0.6mm和直径为120mm的圆板用作聚碳酸酯衬底1。利用溅射方法在衬底上形成300nm厚的玻璃膜2。在其上面形成80nm厚ZnS-SiO2保护膜之后,利用相同的溅射方法,在保护膜上面形成约20nm厚的Ge-Sb-Te属相变膜作为记录薄膜。于是,在形成约90nm厚的保护膜之后,在其上面形成200nm厚的AlTi反射膜。玻璃薄膜的制作包括以下步骤。即,制成厚5mm和直径120mm的玻璃块或烧结体作为靶,铜制成的垫板用有机真空粘合剂粘贴到靶的背侧。溅射是在氩气下进行的。功率为200mw。在溅射过程中旋转衬底形成均匀薄膜。在此实施例中,序号11样品用作玻璃薄膜。制成盘上面无玻璃薄膜的RAM盘作为一个比较实例。图9表示记录记号长度与RAM盘再现输出强度之间关系,此RAM盘上形成有等间距的相同形状记录记号。读出的激光功率为2mw。按照图9,可以看出,在较短的记号长度区域,在RAM盘上形成序号11玻璃膜的此实施例比没有玻璃膜的比较实例有较高的再现输出。因而,藉助RAM盘能够证实超分辨率效应。当研究表1中所示所有的玻璃膜时,得到了与RAM盘情况相同的结果。然后,在得到以上超分辨率效应的情况中研究反射光的空间强度分布。图14表示在有玻璃膜而获得超分辨率效应和无玻璃膜的两种情况下,示意地画出激光束前进方向上激光的强度分布。按照图14,可以看出,在无玻璃膜情况下,空间强度分布大致是高斯分布,但在有玻璃膜情况下,光束分布偏向激光束前进方向。同时可以看出,与无玻璃膜的情况比较,在读出所需的光束强度处光束直径Q1变得较小。按照以上结果,可以看出,通过形成如本实施例的玻璃膜,读出光的强度和强度分布可以改变。另外还可以看出,在上述情况下能够获得超分辨率效应。第三个实施例接着,通过重复再现评价薄膜的退化。用再现信号光重复地照射制成的RAM盘并测量再现输出来进行评价。凹坑间距为0.3μm。采用序号11的玻璃薄膜。选取聚对苯二甲酸乙酯属有机薄膜作为一个比较实例,进行相同的评价。图10表示输出与重复次数之间关系。按照图10,可以看出,有机属薄膜形成的盘输出在重复次数超过10,000次左右以后逐渐下降。与此相反,用本发明玻璃薄膜制成的盘输出在重复再现次数超过10,000次以后几乎没有下降。如上所述,可以看出,本发明的光盘即使在重复再现多次之后仍然保持超分辨率效应。在表1所示其他的玻璃膜中,采用第二个实施例中获得超分辨率效应的玻璃薄膜,在重复再现多次之后能够保持高稳定性。第四个实施例于是,研究玻璃薄膜的组成。首先,注意玻璃薄膜中钴氧化物的含量,通过制造与第二个实施例中相同的RAM盘研究钴含量与输出功率之间关系,记号长度为0.3μm。激光功率为2mw。图11表示钴含量与输出之间关系,输出功率随钴含量的增多而增大,我们发现,即使在很小的记号长度下能够得到高的输出,换句话说,我们发现,超分辨率效应可以随钴含量的增多而增加。此外,我们发现,当钴含量等于或大于20%时,输出超过5dB,所以能把输出当作一个信号。然而,当钴含量小于20%时,输出小于5dB,所以不能把输出当作一个信号。制成如图7所示的ROM盘,利用光谱分析仪评价输出与高频分量之间关系。于是,可以看出,当钴含量等于或大于20%时,能够读出高频分量,但当钴含量小于20%时,不能观察到添加钴会有多大的效果。按照以上研究,在ROM和RAM任一情况中,钴含量理想的是等于或大于重量百分比20%,按照第一个实施例中的研究,钴含量理想的是等于或小于91%。另外,研究了玻璃膜中所含的化学元素。母玻璃是钠钙玻璃。含选自过渡金属元素Ti,V,Cr,Mn,Fe,Co,Ni,Cu和稀土元素Nd,Ce,Pr,Sm,En,Tb,Ho,Er,Tm组成一层中至少一种元素的玻璃有一个相应元素的典型吸收谱,利用激光束能够获得与第二个实施例中相同的超分辨率效应,此激光束有产生吸收的波段。根据以上结果,采用含选自过渡金属元素和稀土元素Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Nd,Ce,Pr,Sm,Eu,Tb,Ho,Er,Tm中至少一种元素的玻璃薄膜,能够得到有超分辨率效应的光盘。接着,研究母玻璃的组成。在以上各个实施例中,钠钙玻璃用作母玻璃。然而,采用含硼的硼硅酸盐玻璃也能获得相同的效果,然而,当SiO2含量小于重量百分比6%时,作为玻璃的稳定性是低的,由于含过渡元素或稀土元素的氧化物会出现晶化等现象。当SiO2含量超过重量百分比80%时,以上氧化物几乎不能包含在玻璃结构中,所以很难得到稳定的玻璃,根据上述结果,SiO2含量理想的是在从重量百分比6%至重量百分比80%的范围内。当玻璃中碱氧化物含量超过重量百分比20%时,玻璃的耐久性下降,很难得到稳定的玻璃。因而,碱氧化物含量理想的是等于或小于重量百分比20%。此外,当玻璃中硼氧化物含量超过重量百分比30%时,过渡金属或稀土元素的氧化物几乎不能包含在玻璃结构中,很难得到稳定的玻璃,所以,硼氧化物含量理想的是等于或小于重量百分比30%。除了上述不可缺少的成分以外,玻璃中最好含碱土元素氧化物,氧化铝,氧化锆等等作为玻璃的稳定剂。第五个实施例接着,通过制造含过渡金属元素的玻璃衬底研究超分辨率效应。图12表示制成的RAM盘剖面示意图。在图12中,数字标记12是玻璃衬底,3是记录膜,4是反射膜,5,5’是保护膜。衬底的厚度为0.6mm,采用光刻胶作为掩模,利用活性离子刻蚀在衬底表面上形成径迹。图13表示采用相同衬底制成的ROM盘剖面示意图。在图13中,数字标记12是玻璃衬底,4是反射膜,6是用信息写入的记录记号,在此实施例中,钠钙玻璃用作母玻璃,CoO作为过渡金属氧化物含在其中。利用与第二个实施例中相同的评价方法,通过在重量百分比0.01%至30%范围内改变CoO含量研究超分辨率效应。制成的玻璃衬底组成,以及在玻璃化和超分辨率方面评价结果在表2中说明。在玻璃化的评价结果中,玻璃形成时不发生晶化的情况用○表示,发生晶化或失透的情况用×表示。超分辨率效应的评价结果是用记号长度为0.3μm和在空间长度处的输出来说明。读出激光波长为650nm。表2根据样品序号14至19和序号21至23,未观察到晶化和失透现象,所以能够制成稳定的玻璃。序号20玻璃在灌注之后引起相分离,所以不能够得到什么稳定的玻璃。鉴于以上结果,玻璃中CoO含量理想的是等于或小于29%。除了用B2O3替代CaO以外,序号21至23玻璃与序号14至19的一样。关于再现输出,当钴含量等于或大于重量百分比0.10%时,能够得到不小于10dB的输出,可以作为信号读出。与此相反,当钴含量等于或小于重量百分比0.05%时,其输出小于5dB,不可能读出。根据以上结果,钴含量理想的是在重量百分比0.10%至29%范围内。在含B2O3替代CaO的玻璃中具有类似的上述效果。按照本发明,可以提供这样的信息记录盘,它具有大容量以及在重复读出和写入之后退化很少。利用普通光盘制造的过程,本发明能够制成有大容量的光盘。权利要求1.一种光信息记录介质,它通过被光照射再现信息,包括至少一个衬底;固定在所述衬底上用于记录信息的记录层,以及固定在所述衬底上的玻璃层,其中照射光和透射光的强度分布按非线性方式变化。2.按照权利要求1的光信息记录介质,其中所述记录层是记录信息的凹坑图案。3.按照权利要求1的光信息记录介质,其中所述记录层利用光能量记录信息。4.一个光信息记录介质,它包括至少一个衬底,固定在所述衬底上用于记录信息的记录层,以及固定在所述记录层上用于反射光的反射膜,其中所述衬底是由玻璃制成,光透射率随照射光强度的增大而非线性地增长。5.按照权利要求1和4中任一条的光信息记录介质,其中所述玻璃包括至少一种选自过渡金属元素和稀土元素中的元素。6.按照权利要求5的光信息记录介质,其中所述至少一种过渡金属元素或稀土元素是选自Ti,V,Cr,Mn,Fe,Co,Ni,Nd,Ce,Pr,Sm,Eu,Tb,Ho,Er,及Tm组成的组。7.按照权利要求6的光信息记录介质,其中所述至少一种过渡金属元素或稀土元素包含在玻璃中;当玻璃是薄膜时,此元素转变成的氧化物与玻璃总重量之比是在重量百分比20%至90%的范围内,和当玻璃是衬底时,此元素转变成的氧化物与玻璃总重量之比是在重量百分比0.1%至29%的范围内。8.按照权利要求1的光信息记录介质,其中所述玻璃包括;SiO2转变成氧化物的重量百分比为6%至80%,R2O转变成氧化物的重量百分比为0至20%(R=碱金属元素),B2O3转变成氧化物的重量百分比为0至30%,及CoO转变成氧化物的重量百分比为20%至90%。9.按照权利要求4的光信息记录介质,其中所述玻璃包括氧化钴,转变成CoO的重量百分比在0.1%至29%的范围内。10.一种光信息记录介质,它包括衬底,在其上面形成记录信息的记录层,和固定在所述衬底上的超分辨率层,其中光的透射率随照射光强度的增大而非线性地增长,其中所述信息记录介质在重复记录104次之后,能保持至少90%的输出功率。11.一种光信息记录介质,它包括衬底,和固定在所述衬底上用于记录信息的记录层,其中所述信息记录介质在频率8MHz处的记录信号输出是在1kHz输出的-30dB以内,和所述信息记录介质在重复记录104次之后能保持至少90%的输出功率。12.一种玻璃,它包括SiO2转变成氧化物的重量百分比为6%至80%,R2O转变成氧化物的重量百分比为0至20%(R=碱金属元素),B2O3转变成氧化物的重量百分比为0至30%,和CoO转换成氧化物的重量百分比为0.1%至29%。13.一种玻璃薄膜,它包括氧化钴,转变成CoO的重量百分比在20%至90%范围内。全文摘要在衬底1上形成玻璃薄膜2,且在其上面形成记录膜,保护膜,和反射膜,制成一种光信息记录介质,此玻璃薄膜可以改变光的强度或强度分布,该记录介质在反复读出和写入之后不退化。文档编号C03C3/062GK1201976SQ9810981公开日1998年12月16日申请日期1998年6月9日优先权日1997年6月9日发明者山本浩贵,内藤孝,滑川孝,铃木康隆,高桥研,寺尾元康,新谷俊通申请人:株式会社日立制作所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1