自诊断方法和装置的制作方法

文档序号:2317364阅读:141来源:国知局
专利名称:自诊断方法和装置的制作方法
技术领域
本发明的背景本发明的领域本发明的实施例通常涉及工件传送系统的自动校准和诊断。
相关技术的背景半导体衬底工艺典型地这样执行,通过使衬底经过多个顺序工序以在衬底上制造设备、导体和绝缘体。通常在处理室中执行这些工序,该处理室配置为执行生产工艺的一个步骤。为了有效地完成处理步骤的整个序列,多个处理室典型地被接合到中心传送室,其收容一机器人以便于在周围的处理室之间传送衬底。具有这样的结构的半导体工艺平台就是通常所说的组合装置,其例子有PRODUCER、CENTURA和ENDURA族,它们可以从AppliedMaterials,Inc.of Santa Clara,California得到。
通常,组合装置包括中心传送室,其中设置有机器人。传送室通常被一个或多个处理室包围。这些处理室通常被用于处理衬底,例如,执行各种处理步骤,例如蚀刻、物理汽相沉积、离子注入、光刻以及类似的处理。传送室有时被连接到工厂界面,该界面收容有多个可移动的箱、衬底存储仓,其每个收容众多衬底。为了便于在传送室的真空环境和工厂界面的一般周围环境之间传送,装卸锁定室被设置在传送室和工厂界面之间。
因为形成在衬底上的设备的线宽和形体尺寸已经减小,在围绕传送室的各个室中衬底的位置精度变得极为重要,以确保低故障率地制造重复性设备。而且,随着形成在衬底上的设备的数量的增加,由于设备密度增加和更大的衬底直径,每个衬底的值已经大大地增加。相应地,因为衬底对准的要求很高,所以由于不一致而造成衬底损害或生产损失。
为了在整个处理系统中提高衬底的位置精度,而应用了多种策略。例如,通常界面安装有传感器,其检测在衬底存储仓内衬底的未对准。如由Chokshi等人2000年5月2日申请的美国专利申请序列号09/562252,机器人的位置校准已经得到进一步的改进。再如2003年11月18日出版的Chokshi等人的美国专利6648730。另外,已经发明了补偿机器人端部操纵装置上衬底误放的方法。如,1999年11月9日出版的Freerks等人的美国专利申请5980194和1990年7月3 1日出版的T.Matsumoto的专利4944650。因为热从热衬底和处理室内的热表面传递到机器人,所以方法已经发展为补偿机器人的热膨胀收缩。如Freeman等人于2003年4月3日申请的美国专利申请序列号10/406644。
提供提高衬底放置的精度的基本原则是校准工序,该工序教授机器人端部操纵装置的机器人靶位(典型地是衬底传递的位置)。大部分衬底传递机器人被手动地教授每个传递位置。然而,手动校准依赖于操作者的个人技巧,并且为了允许操作者充分地观察目标和端部操纵装置的位置,通常必须将系统室打开到FAB环境中来执行。如果需要随后的校准,处理系统必须再被打开,这样在生产再继续之前需要擦拭和抽气,这会消耗成本和时间。
在端部操纵装置上设置一些机器显示系统,例如2003年8月5日出版的Corrado等人的美国专利6603117中所描述的,允许在真空条件下执行校准。然而,这样的系统需要电池、传感器和其他电子元件,它们不易适用于真空条件或高温中。这些选项被规划集成到现有的机器人运动代码软件中,这通常是复杂的并且极为重要的,因此使实现的成本很高,这是不希望看到的。
因此,需要一种改进的方法,以确定机器人的位置和自动地诊断机器人位置的执行。

发明内容
提供用于工件传送系统的自动校准和诊断的方法。可以预料到在此描述的校准和诊断方法可以适于对其他机器人应用系统有利。在一实施例中,用于对机器人的端部操纵装置定位的方法包括,收回位于机器人的目标位置的工件,通过多个传感器传送在端部操作装置配置的工作,其中响应于至少一个端部操纵装置或工件的位置而至少一个传感器改变状态,记录与传感器状态改变联系的机器人位置量度,确定从记录的机器人位置量度与所期望的端部操纵装置量度的误差,并且对于目标位置校正机器人的教授位置。
在另一实施例中,提供监测机器人传送系统的方法,包括监测机器人传送系统中位置误差的改变。在又一实施例中,监测机器人传送系统的方法包括,检测机器人传送系统中的第一位置误差,以及将该第一位置误差与机器人传送系统中的第二位置误差作比较。
在另一实施例中,提供用于自动教授配置在具有基于传感器的衬底定中心系统的处理系统中的机器人的方法。在一实施例中,用于教授机器人的方法包括,提供在已知位置的衬底,传送衬底到机器人的端部操纵装置,移动衬底通过定中心器,分析衬底中心和端部操纵装置的所期望位置之间的差异,并且校正机器人的运动。
在另一实施例中,本发明包括关于目标位置定位机器人端部操纵装置的位置的定位,其中位于目标位置的衬底被收回并且从机器人端部操纵装置上的目标位置被传送,当在传送期间端部操纵装置传递衬底通过多个传感器(也就是定中心器)时确定衬底关于机器人端部操纵装置的位置,端部操纵装置关于传感器的位置已经被预先确定,并且衬底和端部操纵装置中心之间的误差被用来校正目标的教授位置,其中从该位置收回衬底。
在本发明的另一方面,提供一种用于确定机器人位置的装置。在一实施例中,该装置包括机器人、衬底对准器、定中心器和校准衬底,其中利用校准衬底来消除可由机器人端部操纵装置和衬底之间的相互作用而引入的误差。
附图的简要说明因此,参考附图中示出的实施例更详细的说明本发明和上述的简要概述,并且将详细地得到和理解本发明的上述特征。


图1是半导体处理系统的一实施例的平面图,其中可以实行确定机器人位置的方法;图2是图1中处理系统的局部截面图;图3是半导体传送机器人的一实施例的平面图;图4描述了图3中机器人的腕的一实施例;图5A-C是确定机器人位置的方法的流程图;图6是在预定(例如已知的)位置放置衬底的方法的一实施例的示意性图例;图7是对提升环确定中心的一实施例的截面图;图8是对端部操纵装置确定中心的一实施例的截面图;图9是确定机器人位置(即校准)的方法的另一实施例的流程图;图10是确定机器人位置(即校准)的方法的另一实施例的流程图;图11是当确定机器人位置(即校准)时减少错误的方法的一实施例的流程图;图12是当确定机器人位置(即校准)方法的另一实施例的流程图;图13是自动定中心校准薄片的一实施例;图14A-B是适于在预定位置对准衬底的运动衬底对准设备的实施例;图14C-D是适于在预定位置对准衬底的无源衬底对准设备的实施例;图15是校准薄片的另一实施例。
然而,应该注意,附图示出的仅是本发明的典型的实施例,因此这并不认为是限定了它的范围,因为本发明可以允许其他等效的实施例。
详细说明图1描述了半导体处理系统100的一实施例,其中可以实行确定机器人108位置的方法。示范性的处理系统100通常包括传送室102,其被一个或多个处理室104,工厂界面110和一个或多个装卸锁定室106包围限定。装卸锁定室106通常设置在传送室102和工厂界面110之间以便于在传送室102中保持的真空环境和工厂界面110中保持周围环境之间传送衬底。处理系统的一个实施例是CENTURA处理平台,其可以从Applied Materials,Inc.of Santa Clara,California得到,该处理系统可以适于从本发明受益。虽然参考示范性处理系统100描述确定机器人位置的方法,但是此说明只是一示范性的,相应地,在应用系统中无论机器人的确定或定位如何,都可以实行该方法,其中需要暴露机器人或机器人的组件以改变由机器人传送的衬底的温度或参考位置。
工厂界面110通常收容一个或多个衬底存储箱114。每个箱114定构为在其中存储多个衬底。工厂界面110通常保持在大气压或接近大气压。在一初稿例子中,对工厂界面110提供过滤的空气,以使工厂界面内的粒子浓度最小并且相应地使衬底清洁。适于从本发明受益的、工厂界面的一实施例在由Kroeker于1998年9月28日申请的美国专利申请09/161970中描述,在此一并作为参考。
传送室102通常由一片诸如铝的材料制造。传送室102限定易抽空的内部室128,通过该室在处理室104之间传送衬底,该处理室连接到传送室102的外部。泵送系统(未示出)通过设置在室底板上的部分连接到传送室102,以保持传送室102内的真空。在一实施例中,泵送系统包括低真空泵,其被一前一后地连接到涡轮分子泵或低温泵。
处理室104典型地被栓定到传送室102的外部。可用的处理室104的例子包括,蚀刻室、物理汽相沉积室、化学汽沉积室,离子注入室、定位室,光刻室以及类似的。不同的处理室104可以连接到传送室102以提供处理次序需求,从而在衬底表面上形成预限定的结构或特征。
装卸锁定室106通常被连接在工厂界面110和传送室102之间。装卸锁定室106通常用于便于在传送室102的真空环境和工厂界面110的基本外围环境之间传送衬底,而不泄漏传送室102内的真空。通过使用间缝阀226(见图2)每个装卸锁定室106被选择地从传送室102和工厂界面110隔离。
衬底传送机器人108通常被设置在传送室102的内部容腔128中,以便于在围绕传送室102的各个室之间传送衬底。机器人108可以包括一个或多个端部操纵装置,例如刀片,其用于在传送期间支撑衬底。机器人108可以具有两个刀片,每个连接到独立的可控制的电机(作为双刀片机器人是已知的)或者两个刀片通过公共联接连接到机器人108。
在一实施例中,传送机器人108具有一个端部操纵装置130,其由(蛙腿)联接132连接到机器人108。通常,中心定位系统的一个或多个传感器116设置距每个处理室104最近,以引发在确定机器人的位置中所用到的、机器人的操作参数或量度的数据获得。数据可以分别地或与机器人参数一齐地使用,以确定保持在端部操作装置上的底衬112的参考位置。该连同在系统内联合和/或影响衬底的传送的机构条件,数据也可以分别地或与机器人参数一齐地使用,以监测衬底传送和/或放置的执行。
通常,一组传感器116接近通道地设置在传送室102上或在其中,该通道将传送室102连接到装卸锁定室106和处理室102。传感器116可以包括一个或多个传感器,其用来引发机器人量度和/或衬底位置信息的数据获得。从引发过程所需要的衬底的位置信息和机器人量度,可以决定衬底和端部操纵装置之间的相对位置。这样,通过从预定(例如已知的)目标位置到端部操纵装置传送衬底,可以利用中心定位数据所需的相对位置关系,决定机器人的位置量度,因此允许机器人的自动校准。所以,机器人可以被教授以准确地移动到教授位置,而操作者介入一点或一点也不介入。当系统100在真空下时可以执行校准处理,相对于传统的校准方法,此校准几乎不需介入。
在自动诊断模式中,在衬底移动设备的操作功能中监测位置的误差以确定衬底传送的执行和/或改变的趋势。在一实施例中,在预定传感器组116可以监测一系列薄片(或端部操纵装置通道)的位置误差。随着时间的过去误差中的该改变指示着磨损或其他因素,其导致在薄片和/或端部操纵装置位置的漂移。利用这种自动诊断程序可以监测的参数的例子,其中包括,工厂界面中机器人执行的改变,传送室中机器人工作的改变,衬底中提升机构的改变,以及系统中振动、压力和温度的改变。可以被监测的机器人执行,其中包括,钳子改变,轴承磨损,机器人连杆反冲中的改变,机器人摩擦中的改变,编码器移动,编码器读取偏移,电机反冲中的改变,以及电机性能中的改变。衬底中可被监测的提升机构性能的改变包括,提升针的磨损,其中有提升针孔和导轨,提升针动作设备的磨损和/或未校准,衬底定中心机构的磨损和/或未校淮,连同影响薄片传递的其他设备和/或对象。系统校准、压力和温度中的改变,可以被监测以确定,它们的改变或在位置误差超时中的其他改变是否可以被校正以偏离。可以以经验为根据地确定在传送特征中导致的所述改变的识别,因此,对位置误差超时中改变的分析而得到的信息,可以与在环境条件中系统故障、磨损、改变类型或特殊类型联接。
在另一实施例中,可以监测在用于薄片和/或端部操纵装置位置的传感器组116之间的位置误差确定和自动诊断程序。误差中的改变指示在每组传感器116的传感器状态的改变之间发生的动作或过程。例如那些上述的功能参数,可以利用在传感器组之间移动的作为衬底检测误差中的改变而监测。另外,可以额外地利用这种监测以检测由于环境因素而带来的衬底位置的改变(其中包括由于压力和/或温度和/或振动带来的室中几何形态的改变,和/或端部操纵装置中衬底的滑动)。例如,在一处理室中压力和/或温度中的改变,可以影响传感器组与机器人中心的相对位置。在另一例子中,热改变可以变化机器人联接的长度。在又一例子中,端部操纵装置的减速和/或加速的变化可以使衬底在传送中移动位置。在预定衬底的移动期间,预期可以从监测的位置、任何一个薄片到薄片、和/或传感器到传感器组的改变中得到另一系统诊断信息。
虽然参考在半导体处理系统内改进机器人的移动而描述了自动论断和自动校准顺序,但是本发明可以用于改进其他机器人应用系统的操作,包括半导体制造领域之外的应用系统。而且,在此术语“薄片”和“衬底”可以互换使用,并且可指示机器人可移动的任何工件。
为了便于控制如上所述的系统100,一控制器120连接到该系统100。该控制器120通常包括CPU122、存储器124和配套电路126。该CPU122可以是一个任何形式的计算机处理器,其可以用在工业装配中用于控制各种室和子处理器。存储器124连接到CPU122。存储器124或计算机可读介质,可以是一个或多个易得到的存储器,例如随机存取存储器(RAM)、只读存储器(ROM)、软盘、硬盘、设备缓冲器或任何其他形式的数字存储器,本地的或远地的。支持电路126连接到CPU122,用于以传统方式辅助处理器。这些电路126可以包括超高速缓冲存储器、电源、时钟电路、输入输出电路、子系统和类似的。
图2是系统100的截面图,示出了具有一个连接在其中的装卸锁定室106和一个连接在其中的处理控104的传送室102。示出的处理室104通常包括底242、侧壁240和盖238,它们圈起一个处理容腔244。在一实施例中,处理室104可以是一PVD室。底座246设置在处理容腔244中并且通常在处理期间支撑着衬底112。目标248连接到盖238并且由电源250偏压。气体供给252连接到处理室104并且提供处理和其他气体给处理室244。供给252提供诸如氩的处理气体,其可形成等离子。来自等离子的离子碰撞目标248,去除沉积在衬底112上的材料。可以从本发明受益的PVD和其他处理室,可以从AppliedMaterials,Inc.of Santa Clara,California得到。
示性的装卸锁定室106通常包括室体260,第一提升环(衬底保持器)262,第二提升环264,温度控制底座266和可选择的加热器模块270。室体260优选地由一体的诸如铝的材料的形成。室体260包括第一侧壁268,第二侧壁272,顶274和底276,它们限定了室容腔278。窗口280,通常地由石英组成,设置在室体260的顶274中,并且至少部分地被加热器模块270覆盖。
室容腔278的空气被控制,因此它可以选择性地抽空或排出到基本符合传送室102和工厂界面110的环境。通常,室体260包括排出通道282和泵送通道284。典型地,排出通道282和泵送通道284定位在室体260的相对端部上,从而减小在排出和抽空期间室容腔278内的层流以使微粒污染最小。在一实施例中,排出通道282穿过室体260的顶274设置,而泵送通道284穿过室体260底276设置。阀286连接到相应各自的通道282、284,从而选择性地允许从室容腔278流入流出。可选择地,通道282、284可以设置在一个室壁的相对端或设置在相对的或邻近的壁上。
在一实施例中,排出通道282连接到高效率空气过滤器288,例如可以从Camfil Farr,of Riverdale,New Jersey得到。泵送通道284连接到点泵(point-of-use pump)290例如可以从Alcatel,headquartered in Paris,France得到。该点泵290产生的振动低,从而使位于装卸锁定室106内的衬底112的干扰最小,并且通过最小化室106和泵290之间的流体路径,一般小于三英尺,提高了抽气效率和时间。
第一装卸部分292设置在室体260的第一壁268中,以允许衬底112在装卸锁定室106和工厂界面110之间传送。间缝阀226选择性地密封第一装卸部分292以将装卸锁定室106从工厂界面110隔离。第二装卸部分294设置在室体260的第二壁272中,以允许衬底112在装卸锁定室106和传送室102之间传送。另一间缝阀226选择性地密封第二装卸部分294以将装卸锁定室106从传送室102的真空环境隔离。可以有利地使用的一间缝阀描述在1993年7月13日出版的Tepman等人的美国专利5226632中,在此一并作为参考。
通常,第一提升环262同心地连接到第二提升环264(也就是堆叠在其顶部),该第二提升环设置在室底276之上。提升环262和264通常被安装到一连接到轴298的环带296,该轴延伸穿过室体260的底部276。典型地,每个提升环262、264构造为保持一衬底。轴298连接到提升机构258,其控制提升环262和264在室体260内的提升。风箱256通常设置在轴周围以防止进出室体260的泄漏。
典型地,利用第一提升环262来保持未处理的衬底,而利用第二环264来保持从传送室102返回的处理过的衬底。由于排出通道282和泵送通道284的位置,在排出或抽空期间装卸锁定室106内的气流基本上是层状的,并且构造为使微粒污染最小。位于第二提升环264上的处理过的衬底可以被降下接近或接触温度控制底座266。温度控制底座266连接到热传送系统222,该系统通过形成在底座266上的通道循环热传送流。在一实施例中,在真空下温度控制底座266迅速地冷却衬底,因此在室容腔被排气以允许将衬底传送到工厂界面之后减小了衬底上凝结的机会。可适于从本发明受益的一装卸锁定室描述在由Kraus等人于2003年5月6日申请的美国专利6558509中,在此一并作为参考。
通常,传送室102具有底部236,侧壁234和盖232。传送机器人108通常设置在传送室102的底部236上。第一端口202穿过传送室102的侧壁234形成以便于由传送机器人108在处理室104和处理室104内部之间传送衬底。第一端部202选择性地由间缝阀226密封以将传送室102从处理室104隔离。间缝阀226通常移动到一开口位置,如图2所示,从而允许在室之间传送衬底。
传送室102的盖232通常包括窗口228,其接近于端口202、294设置。传感器116通常设置在窗口228上或其附近,以至于当衬底通过各自端口202、294时传感器116可以观察机器人108和衬底112的一部分。窗口228可能由石英或其他材料制造,其基本上不与传感器116的检测机构干扰,例如光束通过窗口228发射到和反射回传感器116。在另一实施例中,传感器116可以发射穿过窗口228的光束到位于第二窗口外侧上的第二传感器,该第二窗口设置在室102的底部236中(第二传感器和第二窗口未示出)。还企图使定中心系统的传感器116也可以设置在工厂界面110,处理室104或装卸锁定室106内。
传感器116通常设置在窗口228外部,因此传感器116从传送室102的环境隔离。可选择地,可以利用传感器116的其他位置,包括那些在室102内的,只要通过机器人108或衬底112的运动传感器116可以定期地往返。传感器116连接到控制器120并且设定为在传感器状态的每次机会记录一个或多个机器人或衬底的量度。传感器116可以包括分开的发射和接收单元或者是包括例如“thru-beam”和“反射性”的传感器。传感器116可以是光传感器,近程传感器,机械极限开关,霍尔效应,舌簧开关或者其他类型的适于检测机器人108或衬底的出现的检测机构。
在一实施例中,传感器116包括光发射体和接收体,它们设置在传送室的外部。适于使用的一传感器可以从位于Minneapolis,Minnesota的BannerEngineering Corporation得到。传感器116这样定位,以致于机器人108或衬底112打断来自传感器的信号,例如光束240。打断和返回到光束204的非打断状态,导致传感器116的状态改变。例如,传感器116可以具有4-20ma输出,当传感器116处于非打断状态时输出4ma,当传感器处于打断状态时输出20ma。可以利用具有其他输出的传感器来标记传感器状态的改变。
图3是传送机器人108的一实施例的平面图。传送机器人108通常包括机器人本体328,其通过联接132连接到端部操纵装置130,该装置用于支撑衬底112。在一实施例中,联接132具有蛙腿结构。也可以替换地使用联接132的其他结构,例如两极结构。联接132通常包括两个翼310,其在肘310处连接到两臂312。每个翼310还连接到电机(未示出),在机器人主体328内该电机同心地堆叠。每个臂312由衬套318连接到腕330。该腕330将联接132连接到端部操纵装置130。典型地,联接132由铝制造,然而,也可以使用具有足够强度和较小热膨胀系数的材料,例如钛、不锈钢或陶瓷,例如涂有钛的铝。
在环境温度下,每个翼310具有长度“A”,每个臂312具有长度“B”,腕330上衬套318之间的距离的一半具有长度“C”,端部操纵装置130的中点320与衬套318之间的距离是“D”。机器人的伸出长度“R”限定为端部操纵装置130的中点320和机器人的中心314之间沿着线“T”的距离。每个翼310与线T形成一角度“θ”。
每个翼310由一同心堆叠的电机单独控制。当电机以相同方向旋转时,端部操纵装置130以恒定半径关于机器人主体328的中心314旋转一角度ω。当两个电机以相反方向旋转时,联接132相应地展开或收缩,从而沿着T关于机器人108的中心314放射状地来回移动端部操纵装置130。当然,同时结合放射状的和转动的运动导致机器人108能够混合运动。当衬底112被传送机器人108移动时,在达到预定位置时传感器116检测衬底或机器人的一部分,例如最接近端口202的位置。
在一实施例中,传感器116包括传感器组,例如四个传感器,其可以由衬底和/或机器人的不同部分脱扣,从而在机器人108单独通过期间捕获大量数据集。例如,机器人108的腕330的边缘332通过光束204,导致第一传感器302、第二传感器304的状态的改变,然而通过衬底导致第一传感器302、第二传感器304、第三传感器306和第四传感器308的状态改变。虽然本发明描述为衬底112激活传感器302、304、306和308,传感器可以被腕330或机器人108的其他组件激活。此外,预期使传感器116可以包括一个传感器,或一组传感器(两个或多个传感器),并且可以将这些传感器定位以响应于衬底或机器人的一部分通过而改变状态。通常,传感器设置为每次衬底通过、提供至少三个传感器状态改变。
图4示出了机器人的腕330的一实施例。机器人的腕330设置为具有平面上表面402和侧面404,它们通常相互成直角地设置。侧面404和上表面402之间的界面通常具有锐利的边或斜面406以减少传感器光束204散开的光量。上表面402和侧面404之间的锐利边或斜面过渡406提供传感器状态的卷曲(crisp)变化,这提高了数据获得的准确度,如果需要相对于传感器116端部操纵装置的位置量度。
返回到图3,当衬底112通过一个或多个传感器116时,传感器从阻挡状态改变到非阻挡状态,反之亦然。传感器状态的改变通常对应于在关于传感器116的预定位置的衬底112(或机器人108)。每次机器人108通过这些预定位置中的任何一个时,此时机器人的量度衩记录在控制器1 20的存储器中。每次记录的机器人量度通常包括传感器数量、传感器状态(阻挡或者非阻挡)、两个机器人电机中的每个的当前位置、两个机器人电机的速率和时间标记。利用纪录在三次事件的机器人量度,控制器120可以分析位于端部操纵装置130上的衬底112的实际位置。通常,利用符合三次过程的数据可以分析衬底112的中心位置,这三次过程限定了衬底112的周界。控制器120利用中心位置数据来分析衬底和机器人108的端部操纵装置130(或其他参考点)的相对位置。也可以利用传感器116来获得端部操纵装置130的位置数据从而确定机器人相对于衬底112中心位置的位置。可以和端部操纵装置130的位置信息一起或一致地使用衬底中心信息。此外,通过比较端部操纵装置的实际(也就是感应的)位置和端部操纵装置的预期(也就是教授或计划的)位置,机器人的运动可以实时地或在抽样周期被校正,从而校正电机漂移、轴承磨损、联接或电机反冲、热膨胀或其他机器人误差。
这样,利用由定中心传感器116根据衬底112(或如下所述的参考衬底)的位置获得的衬底中心信息,该衬底由机器人从预定位置收回,可以利用衬底中心信息来教授机器人如何到达预定位置。在某些可替换的实施例中,企图可以通过将衬底手动放置(对准)在预定位置,将衬底机械对准在预定位置,将衬底机构对准在刀片上,或者通过将衬底穿过传感器组的反复过程、同时在端部操纵装置上来回移动衬底,来实现将衬底放置在预定位置,所有的将在下面进一步描述。
确定机器人位置的方法通过存储在存储器124中,通常为软件和软件程序。软件程序也可以由第二CPU(未示出)存储和/或执行,该第二CPU位于系统远处,或者由CPU控制。
图5A示出了确定机器人位置的方法500的一实施例的流程图。该方法500以步骤502开始,该步骤将衬底放置在已知(也就是预定)位置。
该方法500以步骤502开始,该步骤将衬底提供在已知(也就是预定)位置。在步骤502中,通过将在机器人的运动范围内的支撑或其他物体上的衬底手动定中心,而可以将衬底提供在已知位置,并且能够与机器人互换位于其上的衬底。可替换地,衬底可以被放置在衬底支架上并且被运动学地移动到已知位置,例如在对准器或机械地将衬底定中心的其他设备上,如下面参考图14A-D所讨论的。
在步骤504中,衬底112被传送到机器人的端部操纵装置130。然后,将支架在端部操纵装置上的衬底移动通过定中心器(例如传感器116)以获得一组量度,该量度指示衬底关于端部操纵装置的位置。通常,当机器人108通过传感器116而将衬底移动通过传送室102时,响应状态的改变(也就是脱扣(trip)一个或多个传感器116)而记录机器人的量度。当衬底通过传感器组,衬底边缘触发传感器时,记录机器人的量度。利用衬底112周围的数据点使衬底的中心位置成三角形。
在一实施例中,通过将每个被锁定的衬底的边缘位置转换为X、Y坐标系统来执行定中心的法则,其中0,0是端部操纵装置130的中心,Y是从机器人的中心向外延伸。接下来,检查(来自被锁定的边缘位置的)点列表,将那些与其他点完全不共圆的点从考虑中去除。适当的点可以落下,例如出现在一些衬底112通过一个传感器116中作为凹槽或平面被锁定的点。每个保留下来的点结组为3点组合,以限定三角形或圆。如果三角形区域很小,点的组合将是对于圆周计算误差非常敏感的,并且被排除进一步的考虑之外。接下来,计算圆周的中心和半径,该圆周通过每个保留下来的3点组合限定。所有这些圆周中心的X和Y坐标被平均而得到衬底112的X和Y中心,这些圆周具有在可接收的范围内的半径。
将X和Y衬底数据与从定触发事件中记录的机器人量度获得的X和Y端部操纵装置位置作比较。如果衬底正确地位于机器人的中心,那么衬底和端部操纵装置之间的X和Y偏移(dx,dy)就是零。非零的dx,dy表示衬底112和端部操纵装置中心之间的偏移,其指示机器人的位置误差。在步骤506中分析dx,dy(例如,衬底/机器人的偏移)以校正机器人运动,从而当在预定位置传递衬底时端部操纵装置/衬底中心对中心地匹配。一旦在步骤508中分析了dx和dy偏移,机器人的运动法则将在步骤510中调整以完成机器人的校准处理。
任意地,步骤502、504、506和508可以在步骤512重复以确认校准成功或者重复地提高机器人运动的精确度。可替换地,步骤512可以是周期地或在衬底往返经过传感器116的每个瞬间执行,从而连续地监测和校正机器人运动,例如在下面进一步描述的自动诊断模式中。
在本发明的另一实施例中,可以利用定中心设备在步骤502中将衬底定位在预定位置。例如,提升设置在至少一个容器(pocket)上的衬底定中心,组合装置机器人端部操纵装置或专用衬底为设备定中心。也可以利用在组合装置中的定中心方法。如果利用机器人端部操纵装置来对其上的衬底定中心,步骤502和504可以合并和/或颠倒。假设机器人具有“测错”能力(也就是衬底边缘定位),并且可以利用夹子机构对衬底机械地定中心。基本途经是机械地对衬底关于端部操纵装置和目标定中心,然后利用现有的定中心系统确定其位置。
根据在前的讨论,许多类型的室已经包括定中心提升环或容器以在衬底严重地错放时对衬底定中心。例如,图3的装卸锁定室106可以包括提升环264上的定中心设备210,该提升环将衬底从端部操纵装置130传送到设置在装卸锁定室106中的温度控制底座266。
如图6的示意图所示,提升环264包括多个针形式的定中心设备210,这些针向温度控制底座266中心放射状地张开。这样,当衬底由提升环提升时,如例图(B)所示,当未对准时衬底接触定中心设备210的至少一个针,从而将衬底导入中心位置,如例图(C)所示。如图6的例图(A)中,通过端部操纵装置将衬底112定位在目标位置。将衬底放低到温度控制底座上,衬底被定中心在关于室的预定位置,如例图(D)所示。当衬底被提升环再次提升时,衬底从预定位置被传送到端部操纵装置。企图可以将定中心设备210或类似的衬底对准机构,有源的或无源的,并入在系统100内的另一衬底支架中,包括独立的对准底座。还企图定中心设备210可以并入端部操纵装置130中。
图7中示出了具有衬底定中心设备710的提升环264的一实施例。设备710包括具有张开壁的定中心容器712。定中心容器直径DCP比衬底直径DW足够大,以致于在正常的系统操作中不影响衬底112的位置。提升容器的最外部的直径DLP的尺寸足够大以将放置于预设室位置的衬底定中心。
类似地,每个组合装置机器人端部操纵装置130还包括衬底定中心容器812,如图8所示。再次,定中心容器直径DCP比衬底直径DW足够大,以致于在正常的系统操作中不影响衬底的位置。提升容器的最外部的直径DEP的尺寸足够大以处理端部操纵装置和旋转在预设室位置的衬底之间误差。
图5B示出了确定机器人位置的方法的另一实施例的流程图。假设定中心系统已经被校准,可以使用传感器116以确定端部操纵装置上的薄片和端部操纵装置容器的中心之间的误差。为了将机器人端部操纵装置教授到目标位置,在步骤552中薄片必须物理地定位在所要的位置。在步骤554中机器人延伸到所要的位置,然后在步骤556中将薄片拾起。在步骤558中,机器人传送衬底通过步骤504中的定中心传感器组。然后利用薄片校正系统来建立薄片关于端部操纵装置的位置的误差,这样也与步骤560中实际目标位置和当前教授的目标位置之间的误差一样。利用该信息,目标位置的机器人校准值在步骤562中更新,以致于教授的位置与实际目标位置一致。所建议的半自动化教授方法从校准处理中消除了所有的主观性。
描述的处理还使处理自动化,除了最初将校准薄片放置在所要的目标位置上的第一步骤。有大量的方法使该步骤自动化,而导致全面的自动校准处理。全面的自动校准方法是有益的,因为它可以在不去除室盖或将系统排气至大气压的情况下执行。使校准处理570自动化的基本步骤在图5C中示出。过程570包括在步骤572中首先将薄片或校准薄片放置在教授的目标位置,在步骤574中运动学地将薄片与实际目标位置对准。还企图使薄片可以无源地对准在目标位置。
当结合现有的定中心系统使用时,这两个添加到当前系统硬件的衬底定中心端部操纵装置和提升环可以执行所要的功能。实现这个的过程将在下面更详细地描述。
机器人至装卸锁定的校准企图通过本发明整个校准可以自动化。在一实施例中,位于温度控制底座上的机器人、装卸锁定衬底提升针和/或定中心部件,执行将衬底自动定位在预定位置的功能,如图9中示出的流程图所示。
图9是在装卸锁定室中放置薄片并且利用方法900校准的功能流程图。方法900以步骤902开始,其中从机器人端部操纵装置上的FOUP去除薄片。在步骤904中,机器人将衬底移动到预定认位置(也就是目标位置)。预设位置是具有运动学地或无源地对准机构的位置,该机构用于将薄片定位在关于端部操纵装置的已知位置。在步骤906中,薄片从端部操纵装置被提升。在步骤908中,消除薄片收回端部操纵装置。在步骤910中,将薄片降下到定中心设备上。在步骤912中,将薄片从定中心设备升回到交换的位置。在升高的位置,薄片被定位在预定位置,在此衬底的实际位置可以利用衬底作为参考而确定。
现在,在装卸锁定中将衬底初始定位的过程是自动的,剩下的程序与图5A中所描述的一样。然而,现在整个顺序可以自动化,如图10中所描述的。
图10示出了装卸锁定校过程1000的一实施例的功能流程图。过程1000以步骤1002开始,其中薄片被定位在关于端部操纵装置的已知位置。在图10示出的实施例中,步骤1002可以利用上述的方法900执行。在步骤1004中,在装卸室中端部操纵装置回延伸到薄片的目标位置并且接收薄片,该位置在定中心设备之上。在步骤1006中,具有定位在其上的衬底的端部操纵装置被稍微升起到改变传感器状态的位置。在步骤1008中,为了每个传感器转变(也就是传感器状态的改变)机器人电机的锁定位置(也就是在器的存储器中存储)。如果观察到传感器的转变少于两个,方法1000继续步骤1010,其中端部操纵装置延伸一小距离。在步骤1012中,端部操纵装置被稍微降下以改变至少一个传感器的状态。在步骤1013中,为了每个传感器的转变,锁定机器人电机的位置。如果观察到传感器的转变少于两个,方法1000继续步骤1014,其中端部操纵装置延伸一小距离。然后重复步骤1006和1008。
如果步骤1008或1013后观察到两个传感器改变,方法1000继续步骤1016,其中从锁定电机数据计算薄片的位置和厚度。在步骤1018中,将计算的薄片位置和厚度与薄片的厚度和位置的临界度作比较。如果计算的位置和厚度不能被接受,方法1000继续步骤1020,其中薄片从端部操纵装置的装卸锁定的预定位置上被拾起,并且被移动到步骤1002的重新定位的预定位置。如果计算的位置和厚度数据可以接受,方法1000继续步骤1022,其中控制器存储薄片底面的高度。在步骤1024中,收回端部操纵装置。
在步骤1026中,其上具有薄片的端部操纵装置延伸到薄片位置。在步骤1028中,移动端部操纵装置以致于至少一个传感器被薄片阻挡。在步骤1030中,收回端部操纵装置而不阻挡传感器。在步骤1032中,移动端部操纵装置以致于传感器再一次被薄片阻挡。在步骤1034中,锁定机器人电机位置。在步骤1036中,确定需要改变传感器的状态的所期望的机器人延伸与实际机器人延伸的径向距离或误差。在一实施例中,径向距离是腕从所期望位置移动到薄片边缘解扣(trips)传感器位置的距离。假设解扣传感器所要的机器人延伸已经增加并且已找不到最小径向距离,方法1000继续步骤1038,其中控制器基于先前腕角度计算角度,因此不复制其它一点。步骤1040中,关于腕将机器人旋转一小角度。在步骤1040之后,重复步骤1030、1032、1034和1036直到得到任一预定数量的数据点,找到最小径向距离,或者已经找到一个薄片中心线或边缘。如果在步骤1036中得到最小径向延伸,方法继续步骤1042,其中控制器从最小范围和角度估计薄片中心。在步骤1044中,基于得出的薄片中心位置存储机器人目标位置。企图可以利用另一薄片触发传感器执行该程序。
因为衬底定中心容器尺寸稍微过大,所以将引起一些误差量;然而,如图11所示重复传递过程将减少该误差。在该方法中,机器人端部操纵装置提交在每次放置在稍微不同位置上的衬底。通过每次在放置的衬底被室提升器定中心之后测错(sniffing),可以获得校正值的变量。然后可以利用许多技术来将该组点转换为机器人教授的一位置。
图11示出了利用方法1100以减少误差的平均位置功能图。当运动学地和/或无源地(passively)定位在已知位置的衬底被传送到端部操纵装置时,可以选择性地使用方法1100。
系统1100以步骤1102开始,其中将薄片传送到端部操纵装置上。在步骤1104中,将端部操纵装置移动一小距离。端部操纵装置移动的该距离可以是延伸、旋转或者两者都可。在步骤1106中,从端部操纵装置提升薄片,并且在步骤1108中收回没有薄片的端部操纵装置。在步骤1110中,将薄片降下到薄片定中心设备,例如运动学的定中心或无源的定中心设备,其将衬底定位在已知位置。在步骤1112中,提升衬底并且回延伸端部操纵装置到教授位置以接收薄片。在测错步骤1114中,移动端部操纵装置上的薄片通过一个或多个块感器以确定端部操纵装置和薄片之间的相对位置。将端部操纵装置移动到所期望的最接近传感器的位置。响应实际端部操纵装置位置和期望机器人电机位置的机器人电机锁定之间的差异指示移动或位置误差。步骤102至1114是反复地重复预定次数以校正多个指示端部操纵装置和薄片相对位置的数据点。在步骤1116中,在收集数据点之后,基于得自收集数据的平均位置误差确定教授位置和已知薄片位置之间的误差。
组合装置机器人到装卸锁定的校准组合装置校准自动化的另一方法与上述机器人到装卸锁定的方法类似,其中机器人具有用夹子机构对衬底定中心能力。然而,组合装置机器人最初不知道端部操纵装置上的衬底在哪。可以利用定中心系统(例如传感器116)来确定衬底位置。然而,定中心系统在使用之前必须校准。为了校准定中心系统,衬底必须被定中心在端部操纵装置上;但是,不利用定中心系统就不能将衬底定中心在端部操纵装置上。
提出两个校准组合装置的方法。第一需要先校准定中心系统。一旦校准了定中心,然后就可以利用定中心来校准机器人,该过程与前面部分中建议的校准类似。在第二个方法中,先将端部操纵装置教授到装卸锁定。一旦教授到该位置,可以从装卸锁定再移动定中心的衬底,并且利用该定中心的衬底来校准定中心系统。
定中心的第一方法类似于尺寸过大衬底的一特殊装置(tool)被机器人装载入装卸锁定,其被组合装置机器人收回并且用于校准定中心系统。装置的直径符合端部操纵装置的容器直径,因此该装置紧密地内配合在容器中。可替换地,特别设计的端部操纵装置可以与一些其他运动学安装部件一起使用,该部件具有定中心校准装置并且被设置到界面。尺寸过大衬底的方法对于具有现有硬件的工具最可能是最简单的。一旦校准了定中心系统,然后就以类似于装卸锁定校准中提出的方式将传送室机器人教授到目标位置。
机器人的第一方法该方法也与装卸锁定校准过程类似,然而该方法不同的是必须先将端部操纵装置定位(图12)。该程序开始时,假设衬底已经被机器人放置在装卸锁定的中心。组合装置机器人移动到装卸锁定的预设位置,在此定中心的衬底被降下到端部操纵装置上。然后,衬底滑到端部操纵装置上衬底定中心容器中的位置。机器人收回并且利用定中心传感器来确定衬底关于传感器的位置。
因为还没有校准,所以定中心系统不能用来确定衬底是否在端部操纵装置的中心;但是它可被用于确定衬底从一操作到下一操作移动了多少。利用这一基本原则,在装卸锁定中传送室机器人重复拾起和放下衬底;每次都收回以确定衬底移动了多少。在这初始过程期间,利用翼片来从端部操纵装置提升衬底,但是在装卸锁定内不把衬底降下到定中心环上。此第一步骤只需关于衬底定位端部操纵装置。
图12是将机器人端部操纵装置定位的方法1200的功能流程图。方法1200以步骤1202开始,其中旋转端部操纵装置以面对预设装卸位置。在步骤1204中,端部操纵装置缓慢延伸,在步骤1206监测定中心传感器组的状态。如果检测没有传感器转变,那么在端部操纵装置小旋转位移之后重复步骤1204、1206。在步骤1208中,响应于检测的传感器传送装置(transmitter)停止端部操纵装置的延伸。
在步骤1210中缓慢旋转端部操纵装置,而在步骤1212中监测传感器的状态。如果检测没有传感器转变,重复步骤1210和1212。在步骤1214中,停止端部操纵装置的旋转。
在步骤1216中,将端部操纵装置旋转在装卸锁定室开口中将端部操纵装置定中心的一半距离。在步骤1218中,端部操纵装置被延伸到达充分的预设到达位置。
在步骤1220中,将端部操纵装置移动小距离。该距离可以是延伸、旋转或延伸和旋转的结合。在步骤1222中,将薄片降下到端部操纵装置上。在步骤1224中,从目标室收回端部操纵装置。在步骤1226中,当薄片通过传感器时记录薄片对于端部操纵装置的位置。在步骤1228中,将薄片回处理到装卸所定室中,并且在步骤1230将薄片从端部操纵装置提升。该过程反复重复预定次数,如善于方法1100所述的,从而进一步的减少在机器人位置中的误差。在一实施例中,将端部操纵装置反复地旋转45角度,从而从围绕目标位置的传递位置360得到8数据点。
在步骤1232中,从装卸所定室收回机器人。在步骤1234中,利用在步骤1226校正的薄片中心点计算定中心薄片的位置。在步骤1236中,算出的从预设装卸位置的误差从端部操纵装置的教授位置减去,并且作为装卸锁定的新的教授位置存储。在步骤1238中,将端部操纵装置回延伸到装卸锁定室中。在步骤1240中,将薄片降下到端部操纵装置上。
在一实施例中,可以利用方法1260分析步骤1234。在方法1200期间执行方法1260以确定衬底关于端部操纵装置的偏移在预定范围或界限内。方法1260以步骤1262开始,其中从端部操纵装置的移动量中减去薄片的移动量,端部操纵装置的移动量在步骤1226中确定。在步骤1264中,将移动量的差异与预定或建立的界限作比较。如果移动差异在建立的界限内,那么在步骤1266中就将误差设定到零。如果不是所有的差异都在建立的界限内,那么在步骤1268中确定最大误差的机器人移动。在步骤1270中,通过误差加上间隙距离(clearancedistance)的一半来校正目标位置,其中间隙距离是定中心设备中容器尺寸和薄片直径之间的差异。
一旦关于端部操纵装置的衬底位置是已知的,校准室位置的过程与前面提出的一样。定中心系统可以利用在初始端部操纵装置定位过程中用到的相同的标准衬底来校准,或者一旦完成机器人教授过程可以利用校准装置来校准。在之后的情况中,一旦机器人已经被教授到装卸锁定位置,可以自动地安装特殊设计的校准衬底。
一旦利用该技术将端部操纵装置教授到装卸锁定室,然后定中心系统本身必须被校准。传统的方法需要将室排气到大气压,因此室盖被去除。然而,一旦端部操纵装置已经被准确地教授到装卸锁定,那么不对系统排气而将特殊的定中心校准衬底传递到组合装置内应该是可能的。最简单的识别方法,利用设计的钉住的衬底1300来与端部操纵装置中心中的孔1302连接(图13),此方法被以手动校准方法准确地使用。如果该简单的方法证实是不足够的,那么可以使用更稳固的运动学安装替换;然而,将更有可能需要特殊设计的端部操纵装置。
图14A-D示出了适于将衬底对准在预定位置的设备的例子,从而提高上述校准过程。在图14A-B中,示出了机械地移动衬底到预定位置的运动学设备。例如,图14A示出了端部操纵装置1402,在其末端具有边1404,并且一推杆1406最接近端部操纵装置的腕部。例如可以通过气压的圆筒或螺线管起动推杆1406,以促使衬底112(影象所示)抵靠边1404,从而将衬底关于端部操纵装置定中心。
图14B示出了衬底支座1412,其具有多个设置在支座1412圆周周围的推杆1414。例如可以通过气压的圆筒或螺线管推杆1414起动推杆1414,以在支座1412上对衬底定中心。为了简洁,在此和在其他实施例中已经省略提升针。
可替换地,衬底可以由无源设备对准。例如在图14C中,衬底支座1422设定为接合校准薄片1424。支座1422和薄片1424包括配合的部件,它们将薄片1424关于支座1422无源地定位。在图14C示出的实施例中,衬底支座1424包括多个槽1428,该槽接合从准薄片1424延伸的相应的针1426。企图可以利用配合的部件或几何结构来将薄片1424关于支座1422定位在预定位置。
图14D示出了具有无源对准机构的衬底支座1432的另一实施例。支座1432包括接收容器1434的衬底,该容器具有张开的侧壁1436。该张开的侧壁1436被设定为将未对准的衬底推到关于支座1432的预定位置。
图15是设定为防止误差(也就是衬底移动)的校准薄片1500的一实施例,该误差是在衬底支撑元件和端部操纵装置之间传送期间由端部操纵装置的部件引入的。校准薄片1500本身必须与定中心传感器(由虚线示出的是其传感路径)连接,但是无论如何也一定不能受端部操纵装置容器或边1506的影响。因此,校准薄片1500具有一个或多个用于触发传感器116的周界部分1502和一个或多个切开部分1504,该切开部分设计成以致于当其被放置在端部操纵装置上时部分1504和边1506之间具有适当的间隙1508。在底面上校准薄片也可以具有摩擦垫,其与端部操纵装置接触以防止在传送期间滑动。
无源和有源定中心设备的功能都可以利用与图11中示出的方法类似的相互作用的方法检验。一旦通过这样的定中心设备无源地(或有源地)定中心校准或处理薄片,操作者不可能通过视觉确定对准正确的事实。为了在定中心中检测未对准的误差,例如运动学部件的总的未对准度,可以要求一些正确工作的定中心处理形式或检验。因此,一旦薄片已经通过定中心设备对准到目标位置,可以通过反复地重复在不同方向具有小的已知偏移的拾起和放下操作来检验该对准。每次将薄片放置在稍微偏移的位置,对准机构会将薄片再对准到相同位置。如果在重复过程期间,定中心系统观察薄片离开比适当运行的定中心设备所期望的更大的量,然后就可以检测无源定中心中的严重误差。
在定中心中检验该检测未对准误差的另一方法可以通过将衬底传递到端部操纵装置来实行,其中接收衬底之前端部操纵装置在已知方向偏移小预定偏移。如果定中心机构适当地进行,定中心将确定衬底和端部操纵装置以该预定偏移地未对准。如果定中心系统薄片离开比适当运行的定中心设备所期望的更大的量或在不同的方向,然后就可以检测定中心中的严重误差。
因此,提供用于机器人的自动化教授的方法和衬底定中心系统,该机器人设置在具有传感器基础的处理系统中。在一些实施例中,本发明包括机器人端部操纵装置位置关于目标的位置定位,其中位于目标位置上的衬底被检验并且从机器人端部操纵装置上的目标位置传送该衬底,当在传送期间端部操纵装置传递通过多个传感器(也就是定中心器)时,确定衬底关于机器人端部操纵装置的衬底位置。端部操纵装置的关于传感器的位置已经被预先确定,并且衬底和端部操纵装置的中心之间的误差被用来校正目标的教授位置,从该位置接收衬底。端部操纵装置的位置可以通过校准步骤预先确定,其中该校准通过准确地将类似于衬底的设备对准到端部操纵装置来执行,并且该设备被传递通过传感器以确定端部操纵装置本身的位置。在目标位置的衬底可以被机械地对准,因此在衬底被传送到端部操纵装置之前衬底的中心和目标位置的中心是重合的。
在另一实施例中,用于教授机器人的方法可以包括关于在目标位置的衬底定位机器人端部操纵装置的位置,其中位于目标位置附近的衬底被收回并且从机器人端部操纵装置上的目标位置被传送,当在传送期间端部操纵装置传递衬底通过多个传感器时关于机器人端部操纵装置的衬底位置被确定,关于传感器的端部操纵装置位置已经被确定,并且衬底和端部操纵装置中心之间的误差被用来连续地监测指示系统功能性能的参数。该功能参数可以包括传递之前的衬底移动,传递期间的初底移动,由于先前传递造成的衬底未对准,机器人臂内的摩擦,以及在影响可重复的机器人运动的其他功能参数之中的机器人臂内的反冲(backlash)。
虽然本发明论述的过程如同软件程序一样地执行,但是在此公开的一些该方法步骤可以以硬件以及由其本身或控制器执行。同样地,本发明可以以软件执行,如同执行在硬件中的计算机系统,硬件系统例如应用系统、特殊集成电路或其他类型的硬件工具或软硬件的结合中。
虽然前面所述指出了本发明的优选实施例,但是在不脱离本发明的基本范围内可以设计本发明的其他或进一步的实施例,本发明的范围由所附的权利要求确定。
权利要求
1.一种用于监测机器人传送系统的方法,包括检测机器人传送系统中的第一位置误差;以及将该第一位置误差与机器人传送系统中的第二位置误差作比较。
2.权利要求1的方法,其中在第一位置确定所述第一位置误差,在第二位置确定所述第二位置误差。
3.权利要求1的方法,其中在不同的时侯在一个位置上确定所述的第一位置误差和第二位置误差。
4.权利要求2的方法,其中第一位置误差和第二位置误差表示工件和机器人端部操纵装置之间的未对准。
5.权利要求2的方法,其中检测第一位置误差的步骤还包括,确定第一工件和机器人端部操纵装置之间的未对准;以及,第二位置误差是第二工件和机器人端部操纵装置之间的未对准。
6.权利要求1的方法,其中检测第一位置误差的步骤还包括检测工件传递之前的移动。
7.权利要求1的方法,其中检测第一位置误差的步骤还包括检测工件传递期间的移动。
8.权利要求1的方法,其中检测第一位置误差的步骤还包括检测由于先前的传递而造成的工件未对准。
9.权利要求1的方法,其中检测第一位置误差的步骤还包括检测机器人联接内的摩擦。
10.权利要求1的方法,其中检测第一位置误差的步骤还包括检测机器人联接内的反冲。
11.权利要求1的方法,其中检测第一位置误差的步骤还包括检测机器人电机内的反冲。
12.权利要求1的方法,其中检测第一位置误差的步骤还包括在半导体工艺系统中,确定机器人端部操纵装置关于支撑在其上的工件的位置。
13.权利要求12的方法,其中确定工件关于端部操纵装置的位置的步骤还包括记录联合着传感器状态改变的机器人位置量度;以及确定所记录的机器人位置量度与所期望的端部操纵装置位置量度之间的误差。
14.权利要求13的方法,其中记录机器人位置量度的步骤还包括锁定机器人电机位置的量度。
15.权利要求1的方法,其中检测第一位置误差的步骤还包括检测机器人传送系统在其中运行的系统的温度、压力或振动中的至少一个的变化。
16.权利要求1的方法还包括从误差比较中确定机器人传送系统什么时候需要预防性维护。
17.一种用于监测机器人传送系统的方法,包括通过多个传感器传递配置在机器人端部操纵装置上的工件,其中一个传感器响应于端部操纵装置或工件中的至少一个的位置而改变状态;利用来自传感器状态改变的信息确定工件关于机器人端部操纵装置的位置;确定工件和端部操纵装置中心之间的第一误差;以及将该误差与先前确定的误差作比较。
18.权利要求17的方法,还包括继续监测作为指示机器人传送系统功能性能的参数的误差。
19.权利要求18的方法,其中确定第一误差的步骤还包括检测薄片工件在传递之前的移动。
20.权利要求18的方法,其中确定第一误差的步骤还包括检测薄片工件在传递期间的移动。
21.权利要求18的方法,其中确定第一误差的步骤还包括检测由于先前传递而导致的工件未对准。
22.权利要求18的方法,其中确定第一误差的步骤还包括检测机器人联接内的摩擦。
23.权利要求18的方法,其中确定第一误差的步骤还包括检测机器人电机内的反冲。
24.权利要求18的方法,其中确定第一误差的步骤还包括检测机器人电机内的反冲。
25.权利要求17的方法,其中通过确定机器人端部操纵装置关于工件的相对位置来确定第一误差。
26.权利要求17的方法,其中确定工件关于端部操纵装置的位置的步骤还包括记录联合着传感器状态改变的机器人位置量度;以及确定所记录的机器人位置量度与所期望的端部操纵装置位置量度之间的误差。
27.权利要求26的方法,其中记录机器人位置量度的步骤还包括锁定机器人电机位置的量度。
28.权利要求17的方法,其中,和所述误差一样,所述先前确定的误差也联合着相同工件的机器人传送。
29.权利要求28的方法,其中,响应于传感器状态的改变而确定所述先前确定的误差,其中该传感器可以用来获得所述第一误差。
30.权利要求28的方法,其中,响应于传感器状态的改变而确定所述先前确定的误差,其中该传感器不同于用来获得第一误差的传感器。
31.权利要求17的方法,其中,所述先前确定的误差联合着不同工件的机器人传送。
32.权利要求31的方法,其中,响应于传感器状态的改变而确定所述的先前确定的误差,其中该传感器可以用来获得所述第一误差。
33.权利要求31的方法,其中,响应于传感器状态的改变而确定所述先前确定的误差,其中该传感器不同于用来获得第一误差的传感器。
34.一种用于监测机器人传送系统的方法,包括监测机器人传送系统中位置误差的改变。
35.权利要求34的方法,其中监测步骤还包括监测机器人位置的漂移。
36.权利要求34的方法,其中监测步骤还包括随着时间的过去监测工件位置的改变。
37.权利要求34的方法,其中监测步骤还包括随着时间的过去监测工件与端部操纵装置的相对位置的改变。
38.权利要求34的方法,还包括基于所监测的变化确定工件传送性能的状态。
39.权利要求38的方法,其中确定步骤还包括监测机器性能的变化。
40.权利要求38的方法,其中确定步骤还包括确定在衬底处理系统内影响机器性能的温度或压力中的至少一个的变化。
41.权利要求38的方法,其中确定步骤还包括从随着时间过去的误差倾向中确定机器人保养的需要。
42.权利要求41的方法,其中当误差在操作公差内时确定机器人保养的所述需要。
43.权利要求34的方法还包括确定在真空室内机器人运动的位置误差。
全文摘要
提供一种用于工件传送系统的自动校准和诊断的方法。在一实施例中,用于对端部操纵装置定位的方法包括,收回位于目标位置的工件,传送工件通过多个传感器,其中至少一个传感器响应至少一个端部操纵装置或工件的位置而改变状态,记录联系着传感器状态改变的机器人位置量度,确定从记录的机器人位置量度与所期望的端部操纵装置量度的误差,并且对于目标位置校正机器人的教授位置。在另一实施例中,提供监测机器人传送系统的方法,包括检测机器人传送系统中的第一位置误差,以及将机器人传送系统中的第一位置误差与第二位置误差作比较。
文档编号B25J9/16GK1638021SQ20041008224
公开日2005年7月13日 申请日期2004年12月3日 优先权日2003年12月5日
发明者D·K·克科斯, M·L·弗里曼 申请人:应用材料股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1